Число делится и 1. Старт в науке

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Математика - самая древняя наука, она была и остаётся необходимой людям. Слово математика греческого происхождения. Оно означает «наука», «размышление».

В древности полученные знания, открытия часто старались сохранить в тайне. Например, в школе Пифагора было запрещено делиться своими знаниями с непифагорейцами.

За нарушение этого правила один из учеников, требовавший свободного обмена знаниями, - Гиппас был изгнан из школы. Сторонников Гиппаса стали называть математиками, то есть приверженцами науки. Основы математики все без исключения начинают изучать с первых классов школы и с каждым годом знания расширяются. Математика прошла во все отрасли знаний – физику, химию, науки о языке, медицину, астрономию и т. д. Математики учат вычислительные машины сочинять стихи и музыку, измерять размеры атомов и проектировать плотины, электростанции и т. д. Много интересного можно узнать из математики. Мне нравится тема «Признаки делимости», которую мы изучали в 6 классе и я решил узнать об этой теме побольше.

Цель данной работы осветить признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 25, 125.

Зная из 6 класса признаки делимости на 2, 3, 5, 9, 10 легко вывести признаки делимости на 4, 6, 8, 12, 15, 25, 125.

Эти признаки я объединил в таблицу.

на 2 На 2 делятся те, и только те натуральные числа, запись которых оканчивается на четные цифры (0,2,4, 6,8)

на 3 На 3 делятся те, и только те натуральные числа, сумма цифр которых делится на 3

На 4 делятся те, и только те натуральные числа, в записи которых последние две цифры образуют число, делящееся на 4

на 5 На 5 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5.

на 6 На 6 делятся те, и только те натуральные числа, которые оканчиваются чётной цифрой, и сумма цифр делится на 3

на 8 На 8 делятся те, и только те натуральные числа, в записи которых три последние цифры образуют число, делящееся на 8

на 9 На 9 делятся те, и только те натуральные числа, сумма цифр которых делится на 9

на 10 На10 делятся те, и только те натуральные числа, запись которых оканчивается на 0

на 12 На 12 делятся те, и только те натуральные числа, в записи которых две последние цифры образуют число, делящееся на 4 и сумма цифр числа делится на 3

на 15 На 15 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5 и сумма цифр делится на 3

на 25. Для того чтобы натуральное число содержащее не менее трёх цифр, делилось на 25 необходимо и достаточно, чтобы делилось на 25 число, образованное двумя последними на 125 Для того чтобы натуральное число содержащее не менее четырёх цифр делилось на 125 необходимо и достаточно чтобы делилось на 125 число образованное тремя последними цифрами.

Признаки делимости

Изучая разную литературу, я нашёл признак делимости на 11.

Число делится на 11, если разность между суммой его цифр, стоящих на нечётных местах и суммой цифр, стоящих на чётных местах делится на 11. (нумерация цифр ведётся слева направо или справа налево). Например число 120340568.

Найдём сумму его цифр стоящих на нечётных местах 1+0+4+5+8=18 и на чётных местах 2+3+0+6=11.

Разность между найденными суммами 18-11=7.

7 не делится на 11, значит и данное число не делится на 11.

Признак делимости на 11 можно сформулировать и по-другому.

Если алгебраическая сумма цифр числа с чередующимися знаками делится на 11, то и само число делится на 11.

Например: не выполняя деления, доказать, что число 86849796 делится на 11.

Решение: Составим алгебраическую сумму цифр данного числа, начиная с цифры единиц и чередующимися знаками «+» и «-».

6 – 9 + 7-9 + 4 – 8 + 6 – 8 = -11

11 делится на 11, значит, число 86849796 делится на 11.

И вот ещё один признак делимости на 11.

Чтобы узнать делится ли число на 11 - надо от числа десятков отнять число единиц и посмотреть, делится ли эта разность на 11.

Возьмем, например число 583, и применим этот признак:

58-3=55; 55 делится на 11, значит, и 583 делится на 11.

Проверим теперь на четырёхзначном числе.

Например: 3597

359-7=352 не понятно делится или нет.

35-2=33; 33 делится на 11, значит, число 3597 делится на 11.

Интересны признаки делимости на 7 и 13.

Для того чтобы натуральное число делилось на 7 или 13 необходимо и достаточно, чтобы алгебраическая сумма чисел, образующих грани по 3 цифры (начиная с цифры единиц), взятых со знаком «+» для нечётных граней и со знаком «-» для чётных граней, делилась на 7.

Не выполняя деление доказать, что число 254390815 делится на 7.

Разобьём число на грани 254,390,815. Составим алгебраическую сумму граней, начиная с последней грани и чередуя знаки «+» и «-».

Число 679 делится на 7, то и число 254390815 делится на 7.

Не выполняя деление доказать, что число 304954 делится на 13.

Разобьём на грани 304 и 954 составим алгебраическую сумму граней 954-304=650.

Число 650 делится на 13, значит, 304954 делится на 13.

И существует ещё один признак делимости, объединяющий числа 7, 11, 13.

Числа 7, 11, 13 связаны между собой загадочным числом 7 *11*13=1001

1001 - это 77 чертовых дюжен;

1001 - это 143 семерки;

1001 - это 91 раз по 11.

А еще число1001 – это число Шехерезады.

Вникнув в запись 7*11*13=1001, можно добавить следующее: возьмем некоторое число 235 и умножим его на 1001, получим 235235.

Так как 1001 делится на 7, 11, 13 то и число 235235 делится на 7, 11, 13. Отсюда следует вывод: числа вида abcabc делятся на 7, 11, 13. Есть, конечно, и другие признаки делимости, которые я ещё не знаю. И что можно с помощью вычислительной техники узнать делится ли число на другое число, но уже то, что существуют такие признаки делимости и чтобы познакомиться с ними, надо изучить дополнительную литературу, и расширив свои знания, получить при этом большое удовольствие.

Из школьной программы многие помнят, что существуют признаки делимости. Под данным словосочетанием понимают правила, которые позволяют достаточно быстро определить, является ли число кратным заданному, не совершая при этом непосредственную арифметическую операцию. Данный способ основан на действиях, совершаемых с частью цифр из записи в позиционной

Самые простые признаки делимости многие помнят из школьной программы. Например, то, что на 2 делятся все числа, последняя цифра в записи которых четная. Данный признак наиболее легко запомнить и применять на практике. Если говорить о способе деления на 3, то для многозначных чисел применяется следующее правило, которое можно показать на таком примере. Необходимо узнать, будет ли 273 кратно трем. Для этого выполняем следующую операцию: 2+7+3=12. Полученная сумма делится на 3, следовательно, и 273 будет делиться на 3 таким образом, что в результате получится целое число.

Признаки делимости на 5 и 10 будут следующие. В первом случае запись будет оканчиваться на цифры 5 или 0, во втором случае только на 0. Для того чтобы узнать, кратно ли делимое четырем, следует поступить следующим образом. Необходимо вычленить две последние цифры. Если это два нуля или число, которое делится на 4 без остатка, то и все делимое будет кратно делителю. Нужно отметить, что перечисленные признаки используются только в десятичной системе. Они не применяются в других способах счисления. В таких случаях выводятся свои правила, которые зависят от основания системы.

Признаки деления на 6 следующие. 6 в том случае, если оно кратно и 2, и 3. Для того чтобы определить, делится ли число на 7, нужно удвоить последнюю цифру в его записи. Полученный результат вычитается из первоначального числа, в котором не учитывается последняя цифра. Данное правило можно рассмотреть на следующем примере. Необходимо узнать, кратно ли 364. Для этого 4 умножается на 2, получается 8. Далее выполняется следующее действие: 36-8=28. Полученный результат кратен 7, а, следовательно, и первоначальное число 364 можно разделить на 7.

Признаки делимости на 8 звучат следующим образом. Если три последних цифры в записи числа образуют число, которое кратно восьми, то и само число будет делиться на заданный делитель.

Узнать, делится ли многозначное число на 12, можно следующим образом. По перечисленным выше признакам делимости необходимо узнать, кратно ли число 3 и 4. Если они могут выступать одновременно делителями для числа, то с заданным делимым можно проводить и операцию деления на 12. Подобное правило применяется и для других сложных чисел, например, пятнадцати. При этом делителями должны выступать 5 и 3. Чтобы узнать, делится ли число на 14, следует посмотреть, кратно ли оно 7 и 2. Так, можно рассмотреть это на следующем примере. Необходимо определить, можно ли 658 разделить на 14. Последняя цифра в записи четная, следовательно, число кратно двум. Далее мы 8 умножаем на 2, получаем 16. Из 65 нужно вычесть 16. Результат 49 делится на 7, как и все число. Следовательно, 658 можно разделить и на 14.

Если две последние цифры в заданном числе делятся на 25, то и все оно будет кратно этому делителю. Для многозначных чисел признак делимости на 11 будет звучать следующим образом. Необходимо узнать, кратна ли заданному делителю разность сумм цифр, которые стоят на нечетных и четных местах в его записи.

Нужно отметить, что признаки делимости чисел и их знание очень часто значительно упрощает многие задачи, которые встречаются не только в математике, но и в повседневной жизни. Благодаря умению определить, кратно ли число другому, можно быстро выполнять различные задания. Помимо этого, применение данных способов на занятиях математики поможет развивать у студентов или школьников, будет способствовать развитию определенных способностей.

Приступим к рассмотрению темы «Признак делимости на 3 ». Начнем с формулировки признака, приведем доказательство теоремы. Затем рассмотрим основные подходы к установлению делимости на 3 чисел, значение которых задано некоторым выражением. В разделе приведен разбор решения основных типов задач, основанных на применении признака делимости на 3 .

Признак делимости на 3 , примеры

Формулируется признак делимости на 3 просто: целое число будет делиться на 3 без остатка, если сумма входящих в его состав цифр делится на 3 . Если суммарное значение всех цифр, которые входят в состав целого числа, на 3 не делится, то и само исходное число на 3 не делится. Получить сумму всех входящих в целое число цифр можно с помощью сложения натуральных чисел.

Теперь рассмотрим примеры применения признака делимости на 3 .

Пример 1

Делится ли на 3 число - 42 ?

Решение

Для того, чтобы ответить на этот вопрос, сложим все цифры, входящие в состав числа - 42: 4 + 2 = 6 .

Ответ: согласно признаку делимости, раз сумма цифр, входящих с восстав исходного числа, делится на три, то и само исходное число делится на 3 .

Для того, чтобы ответить на вопрос о том, делится ли на 3 число 0 , нам понадобится свойство делимости, согласно которому нуль делится на любое целое число. Получается, что нуль делится на три.

Существуют задачи, для решения которых прибегать в признаку делимости на 3 необходимо несколько раз.

Пример 2

Покажите, что число 907 444 812 делится на 3 .

Решение

Найдем сумму всех цифр, которые образуют запись исходного числа: 9 + 0 + 7 + 4 + 4 + 4 + 8 + 1 + 2 = 39 . Теперь нам нужно определить, делится ли на 3 число 39 . Еще раз складываем цифры, входящие в состав этого числа: 3 + 9 = 12 . Нам осталось провести сложение цифр еще раз для того, чтобы получить окончательный ответ: 1 + 2 = 3 . Число 3 делится на 3

Ответ: исходное число 907 444 812 также делится на 3 .

Пример 3

Делится ли на 3 число − 543 205 ?

Решение

Посчитаем сумму цифр, входящих в состав исходного числа: 5 + 4 + 3 + 2 + 0 + 5 = 19 . Теперь посчитаем сумму цифр полученного числа: 1 + 9 = 10 . Для того, чтобы получить окончательный ответ, найдем результат еще одного сложения: 1 + 0 = 1 .
Ответ: единица на 3 не делится, значит и исходное число на 3 не делится.

Для того, чтобы определить, делится ли данное число на 3 без остатка, мы можем провести деление данного числа на 3 . Если разделить число − 543 205 из рассмотренного выше примера столбиком на три, то в ответе мы не получим целого числа. Это точно также значит, что − 543 205 на 3 без остатка не делится.

Доказательство признака делимости на 3

Здесь нам понадобятся следующие навыки: разложение числа по разрядам и правило умножения на 10 , 100 и т.д. Для того, чтобы провести доказательство, нам необходимо получить представление числа a вида , где a n , a n − 1 , … , a 0 – это цифры, которые располагаются слева направо в записи числа.

Приведем пример с использованием конкретного числа: 528 = 500 + 20 + 8 = 5 · 100 + 2 · 10 + 8 .

Запишем ряд равенств: 10 = 9 + 1 = 3 · 3 + 1 , 100 = 99 + 1 = 33 · 3 + 1 , 1 000 = 999 + 1 = 333 · 3 + 1 и проч.

А теперь подставим эти равенства вместо 10 , 100 и 1000 в равенства, приведенные ранее a = a n · 10 n + a n - 1 · 10 n - 1 + … + a 2 · 10 2 + a 1 · 10 + a 0 .

Так мы пришли к равенству:

a = a n · 10 n + … + a 2 · 100 + a 1 · 10 + a 0 = = a n · 33 . . . . 3 · 3 + 1 + … + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0

А теперь применим свойства сложения и свойства умножения натуральных чисел для того, чтобы переписать полученное равенство следующим образом:

a = a n · 33 . . . 3 · 3 + 1 + . . . + + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0 = = 3 · 33 . . . 3 · a n + a n + . . . + + 3 · 33 · a 2 + a 2 + 3 · 3 · a 1 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + . . . + + 3 · 33 · a 2 + 3 · 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + … + 33 · a 2 + 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0

Выражение a n + . . . + a 2 + a 1 + a 0 - это сумма цифр исходного числа a . Введем для нее новое краткое обозначение А . Получаем: A = a n + . . . + a 2 + a 1 + a 0 .

В этом случае представление числа a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A принимает такой вид, который нам будет удобно использовать для доказательства признака делимости на 3 .

Определение 1

Теперь вспомним следующие свойства делимости:

  • необходимым и достаточным условием для того, чтобы целое число a делилось на целое число
    ​​​​​​ b , является условие, по которому модуль числа a делится на модуль числа b ;
  • если в равенстве a = s + t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Мы заложили основу для того, чтобы провести доказательство признака делимости на 3 . Теперь же сформулируем этот признак в виде теоремы и докажем ее.

Теорема 1

Для того, чтобы утверждать, что целое число a делится на 3 , нам необходимо и достаточно, чтобы сумма цифр, которая образует запись числа a , делилась на 3 .

Доказательство 1

Если взять значение a = 0 , то теорема очевидна.

Если ы возьмем число a , отличное от нуля, то модуль числа a будет натуральным числом. Это позволяет нам записать следующее равенство:

a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A , где A = a n + . . . + a 2 + a 1 + a 0 - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то
33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 - целое число, тогда по определению делимости произведение 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 делится на 3 при любых a 0 , a 1 , … , a n .

Если сумма цифр числа a делится на 3 , то есть, A делится на 3 , то в силу свойства делимости, указанного перед теоремой, a делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и a делится на 3 , тогда в силу того же свойства делимости число
A делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Целые числа могут быть заданы как значение некоторого выражения, которое содержит переменную, при определенном значении этой переменной. Так, при некотором натуральном n значение выражения 4 n + 3 n - 1 является натуральным числом. В этом случае непосредственное деление на 3 не может дать нам ответ на вопрос, делится ли число на 3 . Применение признака делимости на 3 также может быть затруднено. Рассмотрим примеры таких задач и разберем методы их решения.

Для решения таких задач может быть применено несколько подходов. Суть одного из них заключается в следующем:

  • представляем исходное выражение как произведение нескольких множителей;
  • выясняем, может ли хотя бы один из множителей делиться на 3 ;
  • на основе свойства делимости делаем вывод о том, что все произведение делится на 3 .

В ходе решения часто приходится прибегать к использованию формулы бинома Ньютона.

Пример 4

Делится ли значение выражения 4 n + 3 n - 1 на 3 при любом натуральном n ?

Решение

Запишем равенство 4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 . Применим формулу бинома Ньютона бинома Ньютона:

4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 = = (C n 0 · 3 n + C n 1 · 3 n - 1 · 1 + . . . + + C n n - 2 · 3 2 · 1 n - 2 + C n n - 1 · 3 · 1 n - 1 + C n n · 1 n) + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + n · 3 + 1 + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + 6 n - 3

Теперь вынесем 3 за скобки: 3 · 3 n - 1 + C n 1 · 3 n - 2 + . . . + C n n - 2 · 3 + 2 n - 1 . Полученное произведение содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Это позволяет нам утверждать, что полученное произведение и исходное выражение 4 n + 3 n - 1 делится на 3 .

Ответ: Да.

Также мы можем применить метод математической индукции.

Пример 5

Докажите с использованием метода математической индукции, что при любом натуральном
n значение выражения n · n 2 + 5 делится на 3 .

Решение

Найдем значение выражения n · n 2 + 5 при n = 1 : 1 · 1 2 + 5 = 6 . 6 делится на 3 .

Теперь предположим, что значение выражения n · n 2 + 5 при n = k делится на 3 . Фактически, нам придется работать с выражением k · k 2 + 5 , которое, как мы ожидаем, будет делиться на 3 .

Учитывая, что k · k 2 + 5 делится на 3 , покажем, что значение выражения n · n 2 + 5 при n = k + 1 делится на 3 , то есть, покажем, что k + 1 · k + 1 2 + 5 делится на 3 .

Выполним преобразования:

k + 1 · k + 1 2 + 5 = = (k + 1) · (k 2 + 2 k + 6) = = k · (k 2 + 2 k + 6) + k 2 + 2 k + 6 = = k · (k 2 + 5 + 2 k + 1) + k 2 + 2 k + 6 = = k · (k 2 + 5) + k · 2 k + 1 + k 2 + 2 k + 6 = = k · (k 2 + 5) + 3 k 2 + 3 k + 6 = = k · (k 2 + 5) + 3 · k 2 + k + 2

Выражение k · (k 2 + 5) делится на 3 и выражение 3 · k 2 + k + 2 делится на 3 , поэтому их сумма делится на 3 .

Так мы доказали, что значение выражения n · (n 2 + 5) делится на 3 при любом натуральном n .

Теперь разберем подход к доказательству делимости на 3 , которых основан на следующем алгоритме действий:

  • показываем, что значение данного выражения с переменной n при n = 3 · m , n = 3 · m + 1 и n = 3 · m + 2 , где m – произвольное целое число, делится на 3 ;
  • делаем вывод о том, что выражение будет делиться на 3 при любом целом n .

Для того, чтобы не отвлекать внимание от второстепенных деталей, применим данный алгоритм к решению предыдущего примера.

Пример 6

Покажите, что n · (n 2 + 5) делится на 3 при любом натуральном n .

Решение

Предположим, что n = 3 · m . Тогда: n · n 2 + 5 = 3 m · 3 m 2 + 5 = 3 m · 9 m 2 + 5 . Произведение, которое мы получили, содержит множитель 3 , следовательно само произведение делится на 3 .

Предположим, что n = 3 · m + 1 . Тогда:

n · n 2 + 5 = 3 m · 3 m 2 + 5 = (3 m + 1) · 9 m 2 + 6 m + 6 = = 3 m + 1 · 3 · (2 m 2 + 2 m + 2)

Произведение, которое мы получили, делится на 3 .

Предположим, что n = 3 · m + 2 . Тогда:

n · n 2 + 5 = 3 m + 1 · 3 m + 2 2 + 5 = 3 m + 2 · 9 m 2 + 12 m + 9 = = 3 m + 2 · 3 · 3 m 2 + 4 m + 3

Это произведение также делится на 3 .

Ответ: Так мы доказали, что выражение n · n 2 + 5 делится на 3 при любом натуральном n .

Пример 7

Делится ли на 3 значение выражения 10 3 n + 10 2 n + 1 при некотором натуральном n .

Решение

Предположим что n = 1 . Получаем:

10 3 n + 10 2 n + 1 = 10 3 + 10 2 + 1 = 1000 + 100 + 1 = 1104

Предположим, что n = 2 . Получаем:

10 3 n + 10 2 n + 1 = 10 6 + 10 4 + 1 = 1000 000 + 10000 + 1 = 1010001

Так мы можем сделать вывод, что при любом натуральном n мы будем получать числа, которые делятся на 3 . Это значит, что 10 3 n + 10 2 n + 1 при любом натуральном n делится на 3 .

Ответ: Да

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ПРИЗНАКИ ДЕЛИМОСТИ чисел - простейшие критерии (правила), позволяющие судить о делимости (без остатка) одних натуральных чисел на другие. Решение вопроса о делимости чисел признаки делимости сводят к действиям над небольшими числами, обычно выполняемым в уме.
Так как основанием общепринятой системы счисления является 10, то наиболее простыми и распространенными являются признаки делимости на делители чисел трех видов: 10 k , 10 k - 1, 10 k + 1 .
Первый вид - признаки делимости на делители числа 10 k , для делимости любого целого числа N на любой целый делитель q числа 10 k необходимо и достаточно, чтобы последняя k-циферная грань (к-циферное окончание) числа N делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 = 10 (I 1), 10 2 = 100 (I 2) и 10 3 = 1000 (I 3):
I 1 . На 2, 5 и 10 - одноциферное окончание (последняя цифра) числа должно делиться соответственно на 2, 5 и 10. Например, число 80 110 делится на 2, 5 и 10, так как последняя цифра 0 этого числа делится на 2, 5 и 10; число 37 835 делится на 5, но не делится на 2 и 10, так как последняя цифра 5 этого числа делится на 5. но не делится на 2 и 10.

I 2 . На 2, 4, 5, 10, 20, 25, 50 и 100-двуциферное окончание числа должно делиться соответственно на 2, 4, 5, 10, 20, 25, 50 и 100. Например, число 7 840 700 делится на 2, 4, 5, 10, 20, 25, 50 и 100, так как двуциферное окончание 00 этого числа делится на 2, 4, 5, 10, 20, 25, 50 и 100; число 10 831 750 делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100, так как двуциферное окончание 50 этого числа делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100.

I 3 . На 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000 - трехциферное окончание числа должно делиться соответственно на 2,4,5,8,10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000. Например, число 675 081 000 делится на все перечисленные в этом признаке числа, так как на каждое из них делится трехциферное окончание 000 заданного числа; число 51 184 032 делится на 2, 4 и 8 и не делится на остальные, так как трехциферное окончание 032 заданного числа делится только на 2, 4 и 8 и не делится на остальные.

Второй вид - признаки делимости на делители числа 10 k - 1: для делимости любого целого числа N на любой целый делительq числа 10 k - 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 - 1 = 9 (II 1), 10 2 - 1=99 (II 2) и 10 3 - 1 = 999 (II 3):
II 1 . На 3 и 9 -сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

II 2 . На 3, 9, 11, 33 и 99 - сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

II 3 . На 3, 9, 27, 37, 111, 333 и 999 - сумма трехциферных граней числа должна делиться соответственно на 3, 9, 27, 37, 111, 333 и 999. Например, число 354 645 871 128 делится на все перечисленные в этом признаке числа, так как на каждое из них делится сумма трехциферных граней 354+645+ +871 + 128=1998 (и 1 + 998 = 999) этого числа.

Третий вид - признаки делимости на делители числа 10 k + 1: для делимости любого целого числа N на любой целый делитель q числа 10 k + 1 необходимо и достаточно, чтобы разность между суммой k-циферных граней, стоящих в N на четных местах, и суммой k-циферных граней, стоящих в N на нечетных местах, делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 + 1 =11 (III 1), 10 2 + 1 = 101 (III 2) и 10 3 +1 = 1001 (III 3).

III 1 . На 11 - разность между суммой цифр (одноциферных граней), стоящих на четных местах, и суммой цифр (одноциферных граней), стоящих на нечетных местах, должна делиться на 11. Например, число 876 583 598 делится на 11, так как разность 8 - 7+6 - 5+8 - 3+5 - 9+8=11 (и 1 - 1=0) между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делится на 11.

III 2 . На 101 - разность между суммой двуциферных граней, стоящих в числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, должна делиться на 101. Например, число 8 130 197 делится на 101, так как разность 8-13+01-97 = 101 (и 1-01=0) между суммой двуциферных граней, стоящих в этом числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, делится на 101.

III 3 . На 7, 11, 13, 77, 91, 143 и 1001 - разность между суммой трехциферных граней, стоящих в числе на четных местах, и суммой трехциферных граней, стоящих на нечетных местах, должна делиться соответственно на 7, 11, 13, 77, 91, 143 и 1001. Например, число 539 693 385 делится на 7, 11 и 77, но не делится на 13, 91, 143 и 1001, так как 539 - 693+385=231 делится на 7, 11 и 77 и не делится на 13, 91, 143 и 1001.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»