Электролиз. законы фарадея

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Окислительно-восстановительный процесс, принудительно протекающий под действием электрического тока, называется электролизом.

Электролиз проводят в электролизере, заполненном электролитом, в который погружены электроды, подсоединенные к внешнему источнику тока.

Электрод, подсоединенный к отрицательному полюсу внешнего источника тока, называется катодом . На катоде протекают процессы восстановления частиц электролита. Электрод, подсоединенный к положительному полюсу источника тока, называется анодом . На аноде протекают процессы окисления частиц электролита или материала электрода.

Анодные процессы зависят от природы электролита и материала анода. В связи с этим различают электролиз с инертным и растворимым анодом.

Инертным называется анод, материал которого не окисляется в ходе электролиза. К инертным электродам относятся, например, графитовый (угольный) и платиновый.

Растворимым называется анод, материал которого может окисляться в ходе электролиза. Большинство металлических электродов являются растворимыми.

В качестве электролита могут быть использованы растворы или расплавы. В растворе или расплаве электролита ионы находятся в хаотичном движении. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к катоду, а анионы - к аноду и, соответственно, на электродах они могут разряжаться.

При электролизе расплавов с инертными электродами на катоде возможно восстановление только катионов металла, а на аноде − окисление анионов.

При электролизе водных растворов на катоде кроме катионов металла, могут восстанавливаться молекулы воды, а в кислых растворах - ионы водорода Н + . Таким образом, на катоде возможны следующие конкурирующие реакции:

(-) К: Ме n + + → Me

2H 2 O + 2 ē → H 2 + 2 OH -

2Н + + 2 ē → Н 2

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала.

При электролизе водных растворов с растворимым анодом , кроме окисления анионов, возможны реакции окисления самого электрода, молекул воды и в щелочных растворах гидроксид-ионов (ОН -):



(+) А: Me - n ē → Ме n +

окисление аниона Е 0

2H 2 O – 4 ē O 2 + 4 H +

4OH – - 4 ē = O 2 +2H 2 O

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала.

Для электродных реакций приведены равновесные потенциалы в отсутствии электрического тока.

Электролиз - процесс неравновесный, поэтому потенциалы электродных реакций под током отличаются от своих равновесных значений. Смещение потенциала электрода от его равновесного значения под влиянием внешнего тока называется электродной поляризацией. Величина поляризации называется перенапряжением. На величину перенапряжения влияют многие факторы: природа материала электрода, плотность тока, температура, рН-среды и др.

Перенапряжения катодного выделения металлов сравнительно невелики.

С высоким перенапряжением, как правило, протекает процесс образования газов, таких как водород и кислород. Минимальное перенапряжение водорода на катоде в кислых растворах наблюдается на Pt (h=0,1 В), а максимальное −на свинце, цинке, кадмии и ртути. Перенапряжение изменяется при замене кислых растворов на щелочные. Например, на платине в щелочной среде перенапряжение водорода h=0,31 В (см. приложение).

Анодное выделение кислорода также связано с перенапряжением. Минимальное перенапряжение выделения кислорода наблюдается на Pt-электродах (h=0,7 В), а максимальное − на цинке, ртути и свинце (см. приложение).

Из вышеизложенного следует, что при электролизе водных растворов:

1) на катоде восстанавливаются ионы металлов, электродные потенциалы которых больше потенциала восстановления воды (-0,82В). Ионы металлов, имеющие более отрицательные электродные потенциалы чем -0,82В, не восстанавливаются. К ним относятся ионы щелочных и щелочноземельных металлов и алюминия.

2) на инертном аноде с учетом перенапряжения кислорода протекает окисление тех анионов, потенциал которых меньше потенциала окисления воды (+1,23В). К таким анионам относятся, например, I - , Br - , Cl - , NO 2 - , ОН - . Анионы СO 3 2- , РO 4 3- , NO 3 - , F - - не окисляемы.

3) при электролизе с растворимым анодом, в нейтральных и кислых средах растворяются электроды из тех металлов, электродный потенциал которых меньше +1,23В, а в щелочных – меньше, чем +0,413В.

Суммарными продуктами процессов на катоде и аноде являются электронейтральные вещества.

Для осуществления процесса электролиза на электроды необходимо подать напряжение. Напряжение электролиза U эл-за – это разность потенциалов, необходимая для протекания реакций на катоде и аноде. Теоретическое напряжение электролиза (U эл-за, теор) без учета перенапряжения, омического падения напряжения в проводниках первого рода и в электролите

U эл-за, теор = E а – E к, (7)

где E а, E к - потенциалы анодных и катодных реакций.

Связь между количеством выделившегося при электролизе вещества и количеством прошедшего через электролит тока выражается двумя законами Фарадея.

I закон Фарадея. Количество вещества, образовавшегося на электроде при электролизе, прямо пропорционально количеству электричества, прошедшему через раствор (расплав) электролита:

где k – электрохимический эквивалент, г/Кл или г/А·ч; Q – количество электричества, Кулон, Q =It ; t -время, с; I -ток, А; F = 96500 Кл/моль (А·с/моль) = 26,8 А·ч/моль – постоянная Фарадея; Э- эквивалентная масса вещества, г/моль.

В электрохимических реакциях эквивалентная масса вещества определяется:

n –число электронов, участвующих в электродной реакции образования этого вещества.

II закон Фарадея. При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на электродах, пропорциональны их эквивалентным массам:

где m 1 и m 2 – массы веществ 1 и 2, Э 1 и Э 2, г/моль – эквивалентные массы веществ 1 и 2.

На практике часто вследствие протекания конкурирующих окислительно-восстановительных процессов на электродах образуется меньше вещества, чем соответствует прошедшему через раствор электричеству.

Для характеристики потерь электричества при электролизе введено понятие «Выход по току». Выходом по току В т называется выраженное в процентах отношение количества фактически полученного продукта электролиза m факт. к теоретически рассчитанному m теор:

Пример 10 . Какие процессы будут протекать при электролизе водного раствора сульфата натрия с угольным анодом? Какие вещества будут выделяться на электродах, если угольный электрод заменить на медный?

Решение: В растворе сульфата натрия в электродных процессах могут участвовать ионы натрия Na + , SO 4 2- и молекулы воды. Угольные электроды относятся к инертным электродам.

На катоде возможны следующие процессы восстановления:

(-) К: Na + + ē → Na

2H 2 O + 2 ē → H 2 + 2 OH -

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала. Поэтому на катоде будет происходить восстановление молекул воды, сопровождающееся выделением водорода и образованием в прикатодном пространстве гидроксид- ионов ОН - . Имеющиеся у катода ионы натрия Na + совместно с ионами ОН - будут образовывать раствор щелочи NaOH.

(+)А: 2 SO 4 2- - 2 ē → S 2 O 8 2-

2 H 2 O - 4 ē → 4H + + O 2 .

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала. Поэтому на аноде будет протекать окисление молекул воды с выделением кислорода, а в прианодном пространстве накапливаются ионы Н + . Имеющиеся у анода ионы SO 4 2- с ионами Н + будут образовывать раствор серной кислоты H 2 SO 4 .

Суммарная реакция электролиза выражается уравнением:

2 Na 2 SO 4 + 6H 2 O = 2H 2 + 4 NaOH + O 2 + 2H 2 SO 4 .

катодные продукты анодные продукты

При замене угольного (инертного) анода на медный на аноде становится возможным протекание еще одной реакции окисления – растворение меди:

Cu – 2 ē → Cu 2+

Этот процесс характеризуется меньшим значением потенциала, чем остальные возможные анодные процессы. Поэтому при электролизе Na 2 SO 4 с медным анодом на аноде пройдет окисление меди, а в анодном пространстве будет накапливаться сульфат меди CuSO 4 . Cуммарная реакция электролиза выразится уравнением:

Na 2 SO 4 + 2H 2 O + Cu = H 2 + 2 NaOH + CuSO 4 .

катодные продукты анодный продукт

Пример 11 . Составьте уравнение процессов, протекающих при электролизе водного раствора хлорида никеля NiCl 2 с инертным анодом.

Решение: В растворе хлорида никеля в электродных процессах могут участвовать ионы никеля Ni 2+ , Cl - и молекулы воды. В качестве инертного анода можно использовать графитовый электрод.

На катоде возможны следующие реакции:

(-) К: Ni 2+ + 2 ē → Ni

2H 2 O + 2 ē → H 2 + 2 OH -

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов никеля.

На аноде возможны следующие реакции:

(+) А: 2 Cl - - 2 ē → Cl 2

2H 2 O – 4 ē O 2 + 4 H + .

Согласно величинам стандартных электродных потенциалов на аноде

должен выделяться кислород. В действительности, из-за высокого перенапряжения кислорода на электроде выделяется хлор. Величина перенапряжения зависит от материала, из которого изготовлен электрод. Для графита перенапряжение кислорода составляет 1,17 В при плотности тока равной 1а/см 2 , что повышает потенциал окисления воды до 2,4 В.

Следовательно, электролиз раствора хлорида никеля протекает с образованием никеля и хлора:

Ni 2+ + 2Cl - = Ni + Cl 2 .

на катоде на аноде

Пример 12 . Вычислить массу вещества и объем газа, выделившихся на инертных электродах при электролизе водного раствора нитрата серебра AgNO 3 , если время электролиза составляет 25 мин, а сила тока 3 А.

Решение. При электролизе водного раствора AgNO 3 в случае с нерастворимым анодом (например, графитовый) на электродах протекают процессы:

(-) К: Ag + + ē → Ag ,

2H 2 O + 2 ē → H 2 + 2OH - .

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов серебра.

(+) A: 2H 2 O – 4 ē O 2 + 4 H + ,

анион NO 3 - не окисляем.

Г или в литрах л.

Задания

5. Записать реакции электролиза на инертных электродах и вычислить массу вещества, полученного на катоде, и объем газа, выделившегося на аноде, при электролизе растворов электролитов, если время электролиза 20 минут, сила тока I =2А, если выход по току В т =100%. Какие вещества будут выделяться на электродах при замене инертного анода на металлический, указанный в задании?

№№ Электролит Металлический электрод
CuSO 4 Cu
MgCl 2 Ni
Zn(NO 3) 2 Zn
SnF 2 Sn
CdSO 4 Cd
FeCl 2 Fe
AgNO 3 Ag
HCl Co
CoSO 4 Co
NiCl 2 Ni

Окончание таблицы

Между массой превращенного при электролизе ве­щества и количеством прошедшего через электролит элек­тричества существует связь, которая находит отражение в двух законах Фарадея.

I закон Фарадея . Для любого данного электрод­ного процесса масса превращенного вещества прямо про­порциональна количеству электричества, прошедшего че­рез электролит:

m = kQ, (2.10)

где m - масса превращенного вещества, г; Q - количест­во электричества (Кл), равное произведению силы тока (I , А) на время (t , с); k - электрохимический эквивалент ве­щества, выражающий число граммов его, превращенное одним кулоном электричества.

II закон Фарадея . При пропускании равного количества электричества через растворы разных элек­тролитов масса каждого из веществ, претерпеваю­щих превращение, пропорциональна его химическому эквиваленту т 1: т 2: m 3 ... = m э1: m э2: m э3 …(где m э -эквивалентная масса вещества). Если масса одного из пре­вращенных веществ при прохождении определенного количества электричества оказалась равной его эквивалентной массе (т 1 =m э1), то и для других веществ окажутся справедливыми равенства m 2 = m э2 , m 3 = m э3 и т. д.

Таким образом, для превращения одной экви­валентной массы любого вещества требуется одно и то же коли­чество электричества, называемое постоянной Фарадея F (96494 Кл/моль). Постоянная Фарадея – это заряд, который несет на себе один моль электронов или один моль однозарядных ионов (т.е. 6,02·1023 электронов или однозарядных ионов).

Второй закон Фарадея можно также записать в следующей редакции: для разряда одного моль ионов на электроде через раствор необходимо пропустить столько фарадеев электричества, сколько элементарных зарядов имеет данный ион.

На основании II закона Фарадея мож­но написать

k = m э /F. (2.11)

Из соотношений (2.10) и (2.11) вытекает объе­диненное уравнение законов Фарадея:

m = (m э /F )Q = ( m э /F )It. (2.12)

Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея осно­ван самый точный способ измерения количества электри­чества, прошедшего через цепь. Он заключается в опре­делении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор CuSO 4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция, и полученный продукт был доступен точному количественному опреде­лению. Например, все количество электричества, прохо­дящее через медный кулонометр, расходуется на пере­нос меди с анода на катод, где масса ее определяется гравиметрическим методом.

В исследовательских целях пользуются серебряным кулонометром или газовым, в котором измеряют объем смеси (2Н 2 + О 2), полученной электролизом водного рас­твора КОН.

Использование кулонометров дает возможность определить долю полезно затраченного тока (т.е. тока, израсходованного на получение полезного продукта), которая характеризуется выходом по току. Выход по току - это отношение фактически полученного при электролизе вещества к теоретически рассчитанному. Обычно выход по току ηвыражается в процентах. Тогда:

η = (m практ /m теорет)100%. (2.13)

Можно иначе подойти к расчету η. Если по фактиче­ски выделенной массе вещества определить на основе (2.12) количество полезно затраченного электричест­ва Q ’ то η выразится как отношение полезного электри­чества к его общему количеству, прошедшему через цепь:

η = (Q ’/Q )100%. (2.14)

Законы Фарадея утвердили представление об атоми­стической природе электричества. Эти представления легли в основу расчета важнейшей константы - постоян­ной Авогадро. Связь между постоянной Фарадея F, Аво-гадро N а и зарядом электрона е следует из соотношения:

F/e = N A (2.15)

Применение электролиза. Электролиз с растворимым анодом применяется для очистки металлов (электрорафинирование ). При электрорафинировании меди в электролизер помещают в качестве анода пластины из очищаемой меди (катод - пластины из электролитически ранее очищенной меди). На аноде и катоде проходят процессы соот­ветственно:

Сu (загрязненная) – 2ē = Сu 2+ ,

Сu 2+ + 2ē = Сu (чистая).

При электрорафинировании меди загрязнения из более благо­родных металлов типа Ag или Аu в раствор не переходят и соби­раются на дне электролизера. Загрязнения из менее благородных металлов типа Pb, Fe, Zn, как и сама медь, переходят в раствор, но на катоде не осаждаются и поэтому не загрязняют осажда­ющуюся на нем медь. В качестве растворимых анодов могут быть кроме меди никель, кадмий, алюминий и другие металлы.

Электролиз с растворимым анодом используется в гальвано­технике для покрытий одних металлов тонкими слоями других (гальваностегия ). При этом покрываемые металлом изделия являются при элек­тролизе катодом, а в качестве анода используется металл покры­тия. Технологически это очень удобно, так как концентрации ионов (солей) в электролизном растворе не изменяются. Электрохимически наносят покрытия декоративные, коррозионностойкие, упрочняющие поверхность (хромирование). При помощи покрытий восстанавливают размеры деталей (ремонт). Чтобы покрытие прочно удерживалось, поверхность металла перед нанесением покрытия тщательно очищают (шлифуют, полируют) и обезжиривают (обрабатывают горячим раствором соды, протирают мелом в смеси со щелочью и т.д.). Для удаления оксидов поверхность металла протравливают 15…20% раствором серной кислоты 10…15 мин. Для окончательного удаления пленки оксида деталь очищают декапированием , подключая перед гальванизацией на короткое время к аноду. Наилучшее сцепление покрытия с поверхностью металла наблюдается для мелкокристаллических покрытий. Нужной структуры покрытия добиваются, изменяя состав электролита и режим электролиза:---------

Электролиты

Определение 1

Явление выделения электрическим током химических составных частей проводника при прохождении тока называется электролизом.

Электролиз может протекать не во всех проводниках. К числу проводников, в которых электролиз не протекает, относят металлы, уголь и другие соединения (Это проводники первого рода). Проводники, в которых электролиз возможен, называют проводниками второго рода или электролитами. К электролитам относят большое количество водных растворов кислот, солей, некоторые жидкие и твердые соединения.

Явление электролиза часто сопровождается химическими реакциями (вторичные реакции), которые не связаны с прохождением тока. В ходе электролиза на отрицательном полюсе (катоде) всегда выделяются металлы и водород, на положительном полюсе (аноде) - остаток химического соединения. Составные части электролита выделяются только на электродах. Явление выделения составных частей электролита на электродах при прохождении электрического тока было исследовано М. Фарадеем.

Законы электролиза Фарадея не стоит путать с законом электромагнитной индукции Фарадея, рассматривающим электрический контур и силы в нём. В этом законе говорится о зависимости ЭДС от скорости изменения магнитного потока.

Явление электролиза отражает тот факт, что молекулы растворенного вещества в электролите существуют как две части: ион с положительным знаком и ион с отрицательным знаком. Под воздействием внешнего электрического поля эти ионы движутся: положительные ионы в сторону катода, отрицательные ионы в сторону анода. Таким образом, когда отрицательный ион достигнет анода, то он отдает свой заряд электроду, что ведёт к изменению его заряда. Следовательно, некоторое количество электронов проходят по внешней цепи. Ион становится нейтральным и выделяется на аноде, как атом или молекула. Положительный ион забирает у катода некоторое количество электронов (столько, сколько ему требуется для нейтрализации), что порождает его выделение на катоде.

Замечание 1

Ионы, знак заряда при которых отрицательный, выделяются на аноде, они были названы Фарадеем анионами, а положительно заряженные ионы получили название катионов.

Законы Фарадея

Фарадей установил экспериментальным путем два основных закона электролиза. В соответствии с первым законом, масса вещества $(m)$, которая выделяется на одном из электродов, прямо пропорциональна заряду $(q)$, который прошел через электролит:

$m=Kq\left(1\right),$

где $K$ - электрохимический эквивалент, который отличается для разных электролитов. $K$ равен массе электролита, которая выделяется при прохождении заряда $q=1Kл$. Основной единицей измерения электрохимического коэффициента является $\frac{кг}{Кл}$.

Кроме того, Фарадей заметил, что электрохимический эквивалент всегда пропорционален молярной массе вещества ($\mu $) и обратно пропорционален валентности $(Z)$. Отношение $\frac{\mu }{Z}$ называют химическим эквивалентом вещества.

В соответствии со вторым законом Фарадея: электрохимический эквивалент прямо пропорционален химическому эквиваленту для избранного вещества:

$K=\frac{C\mu }{Z}=\frac{\mu }{FZ}\left(2\right),$, где:

  • $C=\frac{1}{F}$ - величина постоянная для всех веществ,
  • $F$ - постоянная Фарадея.

Первый и второй законы электролиза Фарадея часто выражают одной формулой, а именно:

$m=\frac{\mu }{Z}\frac{q}{F}\left(3\right).$

Эмпирическим путем получено, что в СИ $F=9,65{\cdot 10}^4\frac{Кл}{моль}$ - фундаментальная физическая постоянная, отражающая отношение электрохимических и физических свойств вещества. Причем известно, что:

$F=q_eN_A\left(4\right),$ где:

  • $q_e$ - заряд электрона,
  • $N_A$ - постоянная Авогадро.

Объяснить законы Фарадея можно с точки зрения ионной проводимости. Допустим, что количество ионов, которое выделяется на одном из электродов при электролизе равно $\nu $, заряд одного из ионов равен $q_1$. Следовательно, суммарный заряд, который прошел через электролит, на который действовало внешнее электрическое поле, равен:

$q=q_1\nu \left(5\right).$

Пусть масса одного иона равна $m_1$, тогда масса вещества, которая выделяется на электроде, равна:

$m=m_1\nu \left(6\right).$

Выразим из (5) $\nu $, получим:

$\nu =\frac{q}{q_1}\left(7\right).$

Подставим (7) в (6), имеем:

$m=\frac{m_1}{q_1}q\left(8\right).$

Выражение (8) не что иное как первый закон Фарадея, где:

$K=\frac{m_1}{q_1}=\frac{m_1N_A}{q_1N_A}=\frac{\mu }{q_1N_A}\left(9\right).$

Сравним выражения (2) и (9), получим, что:

$q_1=\frac{ZF}{N_A}\left(10\right).$

В выражении (10) мы получили, что заряд иона в электролите пропорционален валентности вещества $(Z)$. Этот результат показывает, что величины электрических зарядов ионов кратны между собой. Минимальный заряд, равный заряду электрона, имеют ионы одновалентных веществ.

Пример 1

Задание: Найдите скорость $v,$ с которой увеличивается слой вещества, являющегося проводником второго рода на плоской поверхности электрода в процессе электролиза при прохождении тока, плотность которого равна $j$. Считать, что электролит имеет валентность равную $Z$, плотность $\rho ,\ молярную\ массу\ \mu .$

Решение:

В качестве основы решения задачи применим объединенный закон Фарадея:

$m=\frac{\mu }{Z}\frac{q}{F}\left(1.1\right),$

где $q=It$, $I$ - сила тока, текущего через электролит, $t$ - время, которое тек ток. Если считать, что осаждение никеля идет равномерно по поверхности металла, то массу выделившегося вещества запишем как:

$m=\rho Sh\ \left(1.2\right),$

где $\rho $ - плотность никеля, $S$ - площадь поверхности металла, $h$ - толщина слоя никеля. Силу тока, выразим через его плотность:

$I=jS\left(1.3\right).$

Подставим в выражение (1.1) силу тока из (1.3) и массу из (1.2), получим:

$\rho Sh=\frac{\mu}{Z}\frac{jSt}{F}\to \rho h=\frac{\mu}{Z}\frac{jt}{F}\left(1.4\right).$

В том случае, если плотность тока постоянна, то скорость ($v=\frac{h}{t}$) увеличения слоя никеля так же постоянна. Разделим обе части выражения (1.4) на время, имеем:

$\rho \frac{h}{t}=\frac{\mu }{Z}\frac{j}{F}\to v=\frac{\mu }{Z}\frac{j}{\rho F}.$

Ответ: $v=\frac{\mu }{Z}\frac{j}{\rho F}.$

Пример 2

Задание: Через раствор электролита ток силой $I$ тек в течение времени $t$. Какое количество вещества $(\nu)$ выделится на катоде, каково число атомов $(N)$ вещества при этом, если металл имеет валентность $Z$.

Решение:

За основу решения задачи примем объединенный закон Фарадея:

$m=\frac{\mu }{Z}\frac{q}{F}\left(2.1\right),$

где $q=It$, $I$ - сила тока, текущего через электролит, $t$ - время, которое тек ток. При этом нам известно, что:

$\nu =\frac{m}{\mu }\left(2.2\right).$

Разделим правую и левую части выражения (2.1) на молярную массу ($\mu $) вещества электролита, получим:

$\nu =\frac{1}{Z}\frac{q}{F}=\frac{It}{ZF}\left(2.3\right),$

где $q=It.$ Количество атомов осадка найдем, используя формулу:

$N=\nu \cdot N_A=\frac{It}{ZF}N_A.$

Ответ: $\nu =\frac{It}{ZF},\ N=\frac{It}{ZF}N_A.$

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»