Как доказать что функция периодическая. Периодическая функция

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Особенности построения графика периодических функций

График периодической функции обычно сначала строят на промежутке [x 0 ; x 0 + T ). Выполняют параллельный перенос точек графика на всю об­ласть определения.

Примеры периодических функций и их графиков.

Примерами периодических функции могут служить тригонометрические функ­ции. Рассмотрим основные из них.

Функция F(x) =sin(x)

а) Область определения: D (sin x) = R .

б) Множество значений: E (sin x) = [– 1 , 1] .
в) Четность, нечетность: функция нечетная.

г) Периодичность: функция периодическая с основным периодом .

д) Нули функции: sin x = 0 при , n Z .

е) Промежутки знакопостоянства функции:

ж) Промежутки монотонности: функция возрастает при ;

функция убывает при ,

з) Экстремумы функции:
; .

График функции y= sin x изображен на рисунке.

Функция F(x) = cos(x)

а) Область определения .

б) Множество значений: E (cos x ) = [ – 1 , 1 ] .

в) Четность, нечетность: функция четная.

г) Периодичность: функция периодическая с основным периодом .

д)Нули функции: при .

е)Промежутки знакопостояннства:

ж) Промежутки монотонности:

функция возрастает при ;

функция убывает при

з) Экстремумы:

График функции y = cosx изображен на рисунке.

Функция F(x) = tg(x)

а) Область определения:

б) Множество значений: E ()

в) Четность, нечетность. Функция нечетная.

г) Периодичность. Функция периодическая с основным периодом

д) Нули функции.: tg x = 0 при x = n, n Z .

е) Промежутки знакопостоянства:

ж) Промежутки монотонности: функция возрастает на каждом интервале, целиком принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = tg x изображен на рисунке.

Функция F(x) = ctg(x)

а) Область определения: D (ctg x) = R \ { n(n Z) } .

б) Множество значений: E (ctg x) = R .
в) Четность, нечетность функция нечетная.

г) Периодичность: функция периодическая с основным периодом T = .

д) Нули функции: ctg x = 0 при x = /2 + n, n Z .

е) Промежутки знакопостоянства;

ж) Промежутки монотонности: функция убывает на каждом интервале, це­ликом принадлежащем ее области определения.

з) Экстремумы: нет.

График функции y = ctg x изображен на рисунке.

Интересные графики получаются с применением суперпозиции-образования сложных функций на основе тригонометрических периодических функций.

График периодической функции

II. Приложения периодических функций. Периодические колебания.

Колебания.

Колебаниями называют процессы, отличающиеся той или иной степенью повторяемости. Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел. При электрических – напряжение и сила тока. В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

Повторяющиеся процессы непрерывно происходят внутри любого живого организма, например: сокращения сердца, работа легких; мы дрожим, когда нам холодно; мы слышим и разговариваем благодаря колебаниям барабанных перепонок и голосовых связок; при ходьбе наши ноги совершают колебательные движения. Колеблются атомы, из которых мы состоим. Мир, в котором мы живем, склонен к колебаниям.

Периодические колебания.

Периодическими называют такие колебания, при которых все характеристики движения повторяются через определенный промежуток времени.

Для периодических колебаний используют следующие характеристики:

период колебаний Т, равный времени, в течение которого совершается одно полное колебание;

частота колебаний ν, равная числу колебаний, совершаемых за одну секунду (ν = 1/Т);

Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими. Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса. Они называются гармоническими. Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция, гармонических колебаний.

Приложение №7

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 3

Учитель

Короткова

Ася Эдиковна

г. Курганинск

2008г.

С О Д Е Р Ж А Н И Е

Введение ……………………………………………… 2-3

Периодические функции и их свойства ……………. 4-6

Задачи ………………………………………………… 7-14

Введение

Отметим, что у задач на периодичность в учебно-методической литературе нелёгкая судьба. Объясняется это странной традицией-допускать те или иные небрежности в определении периодических функций, которые приводят к к спорным решениям и провоцируют инциденты на экзаменах.

Например, в книге «Толковый словарь математических терминов» - М, 1965г., даётся следующее определение: «периодическая функция – функция

y = f(х), для которой существует число t > 0, что для всех х и х+t из области определения f(x + t) = f(х).

Приведём контр-пример, показывающий некорректность этого определения. По этому определению периодической с периодом t = 2π будет функция

с(x) = Cos(√x) 2 – Cos(√4π - x) 2 с ограниченной областью определения , что противоречит общепринятой точке зрения о периодических функциях.

Аналогичные проблемы возникают и во многих новейших альтернативных учебниках для школы.

В учебнике А.Н.Колмогорова приводится следующее определение: «Говоря о периодичности функции f, полагают, что имеется такое число Т ≠ 0, что область определения Д (f) вместе с каждой точкой х содержит и точки, получающиеся из х параллельным переносом вдоль оси Ох (вправо и влево) на расстояние Т. Функцию f называют периодической с периодом Т ≠ 0, если для любого из области определения значения этой функции в точках х, х – Т, х + Т равны, т.е. f (х + Т) = f (х) = f (х – Т)». Далее в учебнике написано: «Поскольку синус и косинус определена на всей числовой прямой и Sin (х + 2π) = Sin х,

Cos (х + 2π) = Cos х для любого х, синус и косинус – период функции с периодом 2π».

В этом примере почему-то не проверяется требуемое в определении условия что

Sin (х – 2π) = Sin х. В чём дело? Дело в том, что это условие в определении лишнее. Действительно, ведь если Т > 0 – период функции f(х), то Т тоже будет являться периодом этой функции.

Хочу привести ещё одно определение из учебника М.И.Башмакова «Алгебра и начала анализа 10-11 кл.» «Функция у = f(х) называется периодической, если существует такое число Т ≠ 0, что равенство

f (х + Т) = f(х) выполняется тождественно при всех значениях х».

В приведённом определении ничего не говорится об области определения функции, хотя имеется в виду х из области определения, не любые действительные х. По такому определению периодической может быть функция у = Sin (√х) 2 , определенная только при х ≥ 0, что неверно.

В едином государственном экзамене имеются задачи на периодичность. В одном научно- периодическом журнале в качестве тренинга по разделу С ЕГЭ было приведено решение задачи: « является ли функция у (х) = Sin 2 (2+х) – 2 Sin 2 Sin х Cos (2+х) периодической?»

В решении проявляется, что у (х – π) = у (х) в ответе – лишняя запись

«Т = π» (ведь вопрос о нахождении наименьшего положительного периода не ставиться). Так ли необходимо для решения этой задачи проводить непростое тригонометрическое образование. Ведь здесь можно ориентироваться на понятие периодичности, как на ключевое в условии задачи.

Решение.

f 1 (x) = Sin х – периодическая функция с периодом Т = 2π

f 2 (x) = Cos х – периодическая функция с периодом Т = 2π, тогда 2π – период и для функций f 3 (x) = Sin (2 + х) и f 4 (x) = Cos (2 + х), (это следует из определения периодичности)

f 5 (x) = - 2 Sin 2 = Const, её периодом является любое число, в том числе и 2π.

Т.к. сумма и произведение периодических функций с общим периодом Т, также является Т-периодичной, то данная функция периодичная.

Надеюсь, что приведённый в этой работе материал, поможет при подготовке к единому государственному экзамену в решении задач на периодичность.

Периодические функции и их свойства

О п р е д е л е н и е: функция f(t) называется периодической, если для любого t из области определения этой функции D f существует число ω ≠ 0, такое, что:

1) числа (t ± ω) є D f ;

2) f (t + ω) = f(t).

1. Если число ω = период функции f (t), то число kω, где k = ±1, ±2, ±3, … тоже являются периодами функции f(t).

П р и м е р. f (t) = Sin t. Число Т = 2π – наименьший положительный период данной функции. Пусть Т 1 = 4π. Покажем, что Т 1 тоже является периодом данной функции.

F (t + 4π) = f (t + 2π + 2π) = Sin (t + 2π) = Sin t.

Значит, Т 1 – период функции f (t) = Sin t.

2. Если функция f(t) – ω – периодическая функция, то функции f (аt), где а є R, и f (t + с), где с – произвольная константа, тоже являются периодическими.

Найдём период функции f (аt).

f(аt) = f(аt + ω) = f (а(t + ω/а)), т.е. f (аt) = f (а(t + ω/а).

Следовательно, период функции f(аt) – ω 1 = ω/а.

П р и м е р 1. Найти период функции у = Sin t/2.

П р и м е р 2. Найти период функции у = Sin (t + π/3).

Пусть f(t) = Sin t; у 0 = Sin (t 0 + π/3).

Тогда функция f(t) = Sin t примет тоже значение у 0 при t = t 0 + π/3.

Т.е. все значения, которые принимает функция у принимает и функция f(t). Если t толковать как время, то каждое значение у 0 функцией у = Sin (t + π/3) принимается на π/3 единиц времени раньше, чем функцией f(t) «сдвигом» влево на π/3. Очевидно, период функции от этого не изменится т.е. Т у = Т 1 .

3. Если F(x) – некоторая функция, а f(t) – периодическая функция, причём такая, что f(t) принадлежит области определения функции F(x) – D F , тогда функция F(f (t)) – периодическая функция.

Пусть F(f (t)) = φ.

Φ (t + ω) = F(f (t + ω)) = F(f (t)) = φ (t) для любого t є D f .

П р и м е р. Исследовать на периодичность функцию: F(x) = ℓ sin x .

Область определения данной функции D f совпадает с множеством действительных чисел R. f (х) = Sin х.

Множество значений этой функции – [-1; 1]. Т.к. отрезок [-1; 1] принадлежит D f , то функция F(x) периодическая.

F(x+2π) = ℓ sin (x + 2π) = ℓ sin x = F(x).

2 π – период данной функции.

4. Если функции f 1 (t) и f 2 (t) периодические соответственно с периодами ω 1 и ω 2 и ω 1 /ω 2 = r, где r – рациональное число, то функции

С 1 f 1 (t) + С 2 f 2 (t) и f 1 (t) · f 2 (t) являются периодическими (С 1 и С 2 – константы).

Замечание: 1) Если r = ω 1 /ω 2 = p/q, т.к. r – рациональное число, тогда

ω 1 q = ω 2 p = ω, где ω – наименьшее общие кратное чисел ω 1 и ω 2 (НОК).

Рассмотрим функцию С 1 f 1 (t) + С 2 f 2 (t).

Действительно, ω = НОК (ω 1 , ω 2 ) - период данной функции

С 1 f 1 (t) + С 2 f 2 (t) = С 1 f 1 (t+ ω 1 q) + С 2 f 2 (t+ ω 2 p) + С 1 f 1 (t) + С 2 f 2 (t) .

2) ω – период функции f 1 (t) · f 2 (t), т.к.

f 1 (t + ω) · f 2 (t + ω =f 1 (t +ω 1 q) · f 2 (t =ω 2 p) = f 1 (t) · f 2 (t).

О п р е д е л е н и е: Пусть f 1 (t) и f (t) – периодические функции с периодами соответственно ω 1 и ω 2 , тогда два периода называются соизмеримыми, если ω 1 /ω 2 = r – рациональное число.

3) Если периоды ω 1 и ω 2 не соизмеримы, то функции f 1 (t) + f 2 (t) и

f 1 (t) · f 2 (t) не являются периодическими. Т.е., если f 1 (t) и f 2 (t)отличны от константы, периодичны, непрерывны, их периоды не соизмеримы, то f 1 (t) + f 2 (t), f 1 (t) · f 2 (t) не являются периодическими.

4) Пусть f(t) = С, где С – произвольная константа. Данная функция периодичная. Её периодом является любое рациональное число, значит, наименьшего положительного периода она не имеет.

5) Утверждение верно и для большего числа функций.

П р и м е р 1. Исследовать на периодичность функцию

F(х) = Sin х + Cos х.

Решение. Пусть f 1 (х) = Sin х, тогда ω 1 = 2πk, где k є Z.

Т 1 = 2π – наименьший положительный период.

f 2 (х) = Cos х, Т 2 = 2π.

Отношение Т 1 /Т 2 = 2π/2π = 1 – рациональное число, т.е. периоды функций f 1 (х) и f 2 (х) соизмеримы. Значит, данная функция периодична. Найдём её период. По определению периодической функции имеем

Sin (х + Т) + Cos (х + Т) = Sin х + Cos х,

Sin (х + Т) - Sin х = Cos х - Cos (х + Т),

2 Cos 2х+ π/2 · Sin Т/2 = 2 Sin 2х+Т/2 · Sin Т/2,

Sin Т/2 (Cos Т+2х/2 - Sin Т+2х/2) =0,

√2 Sin Т/2 Sin (π/4 – Т+2х/2) = 0, следовательно,

Sin Т/2 = 0, тогда Т = 2πk.

Т.к. (х ± 2πk) є D f , где f(х) = Sin х + Cos х,

f(х + t) = f(х), то функция f(х) – периодическая с наименьшим положительным периодом 2π.

П р и м е р 2. Является ли периодическая функция f(х) = Cos 2х · Sin х, каков её период?

Решение. Пусть f 1 (х) = Cos 2х, тогда Т 1 = 2π : 2 = π (см. 2)

Пусть f 2 (х) = Sin х, тогда Т 2 = 2π. Т.к. π/2π = ½ - рациональное число, то данная функция является периодической. Её период Т = НОК

(π, 2π) = 2π.

Итак, данная функция периодическая с периодом 2π.

5. Пусть функция f(t), тождественно не равная константе, непрерывна и периодична, тогда она имеет наименьший положительный период ω 0 , всякий другой период её ω имеет вид: ω = kω 0 , гдк k є Z.

Замечание: 1) В этом свойстве очень важны два условия:

f(t) непрерывна, f(t) ≠ С, где С – константа.

2) Обратное утверждение не верно. Т.е., если все периоды соизмеримы, то отсюда не следует, что существует наименьший положительный период. Т.е. у периодической функции наименьшего положительного периода может и не быть.

П р и м е р 1. f(t) = С, периодическая. Её период – любое действительное число, наименьшего периода нет.

П р и м е р 2. Функция Дирихле:

D(х) =

Любое рациональное число является её периодом, наименьшего положительного периода нет.

6. Если f(t) – непрерывная периодическая функция и ω 0 – её наименьший положительный период, то функция f(αt + β) имеет наименьший положительный период ω 0 /‌‌/α/. Это утверждение следует из п. 2.

П р и м е р 1. Найти период функции у = Sin (2х – 5).

Решение. у = Sin (2х – 5) = Sin (2(х – 5/2)).

График функции у получается из графика функции Sin х сначала «сжатием» в два раза, затем «сдвигом» вправо на 2,5. «Сдвиг на периодичность не влияет, Т = π – период данной функции.

Легко получить период данной функции, используя свойство п. 6:

Т = 2π/2 = π.

7. Если f(t) – ω – периодическая функция, и она имеет непрерывную производную f"(t), то f"(t) тоже периодическая функция, Т = ω

П р и м е р 1. f(t) = Sin t, Т = 2πk. Её производная f"(t) = Cos t

F"(t) = Cos t, Т = 2πk, k є Z.

П р и м е р 2. f(t) = Cos t, Т = 2πk. Её производная

F"(t) = - Sin t, Т = 2πk, k є Z.

П р и м е р 3. f(t) =tg t, её период Т = πk.

F"(t) = 1/ Cos 2 t – тоже периодическая по свойству п. 7 и имеет период Т = πk. Её наименьший положительный период Т = π.

З А Д А Ч И.

№ 1

Является ли функция f(t) = Sin t + Sin πt периодической?

Решение. Для сравнения решим эту задачу двумя способами.

Во-первых, по определению периодической функции. Допустим, что f(t) – периодическая, тогда для любого t є D f имеем:

Sin (t + Т) + Sin π (t + Т) = Sin t + Sin πt,

Sin (t + Т) - Sin t = Sin πt - Sin π (t + Т),

2 Cos 2t + Т/2 Sin Т/2 = -2 Cos 2 πt + πt/2 Sin πt/2.

Т.к. это верно для любого t є D f , то в частности и для t 0 , при котором левая часть последнего равенства обращается в ноль.

Тогда имеем: 1) Cos 2t 0 +Т/2 Sin Т/2 = 0. Разрешим относительно Т.

Sin Т/2 = 0 при Т = 2 πk, где k є Z.

2) Cos 2πt 0 + πt 0 /2 Sin πТ/2 = 0. Разрешим относительно Т.

Sin πТ/2 = 0, тогда Т = 2πn/ π = 2n, n≠0, где n є Z.

Т.к. имеем тождество, то 2 πk = 2n, π = 2n/2 k = n/ k, чего быть не может, т.к. π – иррациональное число, а n/ k – рациональное. Т.е., наше предположение что функция f(t) – периодическая было не верным.

Во – вторых, решение гораздо упрощается, если воспользоваться приведёнными выше свойствами периодических функций:

Пусть f 1 (t) = Sin t, Т 1 = 2 π; f 2 (t) = Sin πt, Т 2 - 2π/π = 2. Тогда, Т 1 /Т 2 = 2π/2 = π –иррациональное число, т.е. периоды Т 1 , Т 2 не соизмеримы, значит, f(t) не является периодической.

Ответ: нет.

№ 2

Показать, что если α – иррациональное число, то функция

F(t) = Cos t + Cos αt

не является периодической.

Решение. Пусть f 1 (t) = Cos t, f 2 (t) = Cos αt.

Тогда их периоды соответственно Т 1 = 2π, Т 2 = 2π//α/ - наименьшие положительные периоды. Найдём, Т 1 /Т 2 = 2π/α//2π = /α/ - иррациональное число. Значит Т 1 и Т 2 несоизмеримы, а функция

f(t) не является периодической.

№ 3

Найти наименьший положительный период функции f(t) = Sin 5t.

Решение. По свойству п.2 имеем:

f(t) – периодическая; Т = 2π/5.

Ответ: 2π/5.

№ 4

Является ли периодической функция F(х) = arccos x + arcsin x?

Решение. Рассмотрим данную функцию

F(х) = arccos x + arcsin x = π - arcsin x + arcsin x = π,

т.е. F(х) – периодическая функция (см. свойство п. 5, пример 1.).

Ответ: да.

№ 5

Является ли периодической функция

F(х) = Sin 2х + Cos 4х + 5 ?

решение. Пусть f 1 (х) = Sin 2х, тогда Т 1 = π;

F 2 (х) = Cos 4х, тогда Т 2 = 2π/4 = π/2;

F 3 (х) = 5, Т 3 – любое действительное число, в частности Т 3 можем предположить равным Т 1 или Т 2 . Тогда период данной функции Т = НОК (π, π/2) = π. Т.е., f(х) – периодическая с периодом Т = π.

Ответ: да.

№ 6

Является ли периодической функция f(х) = х – Е(х), где Е(х) – функция, ставящая аргументу х в соответствие наименьшее целое число, не превосходящее данное.

Решение. Часто функцию f(х) обозначают {x} – дробная часть числа х, т.е.

F(х) = {x} = х – Е(х).

Пусть f(х) – периодическая функция, т.е. существует такое число Т >0, что х – Е(х) = х + Т – Е(х + Т). Распишем это равенство

{x} + Е(х) – Е(х) = {x + T} + E(х + Т) – Е(х + Т),

{x} + {x + T} – верно для любого х из области определения D f, при условии, что Т ≠ 0 и Т є Z. Наименьшее положительное из них Т = 1, т.е. Т =1 такое, что

Х + Т – Е(х + Т) = х – Е(х),

Причём, (х ± Тk) є D f , где k є Z.

Ответ: данная функция периодична.

№ 7

Является ли периодичной функция f(х) = Sin х 2 .

Решение. Допустим, что f(х) = Sin х 2 периодическая функция. Тогда по определению периодической функции существует число Т ≠ 0 такое, что: Sin х 2 = Sin (х + Т) 2 для любого х є D f .

Sin х 2 = Sin (х + Т) 2 = 0,

2 Cos х 2 + (х+Т) 2 /2 Sin х 2 -(х+Т) 2 /2 = 0, тогда

Cos х 2 + (х+Т) 2 /2 = 0 или Sin х 2 -(х+Т) 2 /2 = 0.

Рассмотрим первое уравнение:

Cos х 2 + (х+Т) 2 /2 = 0,

Х 2 + (х+Т) 2 /2 = π(1+2 k)/2 (k є Z),

Т = √ π(1+2 k) – х 2 – х. (1)

Рассмотрим второе уравнение:

Sin х 2 -(х+Т) 2 /2 = 0,

Х + Т = √- 2πk + х 2 ,

Т = √х 2 - 2πk – х. (2)

Из выражений (1) и (2) видно, что найденные значения Т зависит от х, т.е. не существует такого Т>0, что

Sin х 2 = Sin (х+Т) 2

Для любого х из области определения этой функции. f(х) – не периодична.

Ответ: нет

№ 8

Исследовать на периодичность функцию f(х) = Cos 2 х.

Решение. Представим f(х) по формуле косинуса двойного угла

F(х) = 1/2 + 1/2 Cos 2х.

Пусть f 1 (х) = ½ , тогда Т 1 – это может быть любое действительное число; f 2 (х) = ½ Cos 2х – периодическая функция, т.к. произведение двух периодических функций, имеющих общий период Т 2 = π. Тогда наименьший положительный период данной функции

Т = НОК (Т 1 , Т 2 ) =π.

Итак, функция f(х) = Cos 2 х – π – периодична.

Ответ: π – периодична.

№ 9

Может ли областью определения периодической функции быть:

А) полупрямая [а, ∞),

Б) отрезок ?

Решение. Нет, т.к.

А) по определению периодической функции, если х є D f, то х ± ω тоже

Должны принадлежать области определения функции. Пусть х = а, то

Х 1 = (а – ω) є [а, ∞);

Б) пусть х = 1, то х 1 = (1 + Т) є .

№ 10

Может ли периодическая функция быть:

А) строго монотонной;

Б) чётной;

В) не чётной?

Решение. а) Пусть f(х) – периодическая функция, т.е. существует Т≠0 такое, что для любого х из области определения функций D f чтсла

(х ±Т) є D f и f (х±Т) = f(х).

Зафиксируем любое х 0 є D f , т.к. f(х) – периодическая, то (х 0 +Т) є D f и f(х 0 ) = f(х 0 +Т).

Допустим, что f(х) строго монотонна и на всей области определения D f , например, возрастает. Тогда по определению возрастающей функции для любых х 1 и х 2 из области определения D f из неравенства х 1 2 следует, что f(х 1 ) 2 ). Вчастности, из условия х 0 0 + Т, следует, что

F(х 0 ) 0 +Т), что противоречит условию.

Значит, периодическая функция не может быть строго монотонной.

б) Да, периодическая функция может быть чётной. Приведём несколько примеров.

F(х) = Cos х, Cos х = Cos (-х), Т = 2π, f(х) – чётная периодическая функция.

0, если х – рациональное число;

D(х) =

1, если х – иррациональное число.

D(х) = D(-х), область определения функции D(х) симметрична.

Функция Дирехле D(х) является чётной периодической функцией.

f(х) = {x},

f(-х) = -х – Е(-х) = {-x} ≠ {x}.

Данная функция не является чётной.

в) Периодическая функция может быть нечётной.

f(х) = Sin х, f(-х) = Sin (-х) = - Sin = - f(х)

f(х) – нечетная периодическая функция.

f(х) – Sin х · Cos х, f(-х) = Sin (-х) Cos (-х) = - Sin х Cos х = - f(х) ,

f(х) – нечётная и периодическая.

f(х) = ℓ Sin x , f(-х) = ℓ Sin(- x) = ℓ -Sin x ≠ - f(х),

f(х) не является нечётной.

f(х) = tg x – нечётная периодическая функция.

Ответ: нет; да; да.

№ 11

Сколько нулей может иметь периодическая функция на:

1) ; 2) на всей числовой оси, если период функции равен Т?

Решение: 1. а) На отрезке [а, б] периодическая функция может не иметь нулей, например, f(х) = С, С≠0; f(х) = Cos х + 2.

б) На отрезке [а, б] периодическая функция может иметь бесконечное множество нулей, например, функция Дирехле

0, если х – рациональное число,

D(х) =

1, если х – иррациональное число.

в) На отрезке [а, б] периодическая функция может иметь конечное число нулей. Найдём это число.

Пусть Т – период функции. Обозначим

Х 0 = {min x є{a,б}, таких что f(х) = 0}.

Тогда число нулей на отрезке [а, б]: N = 1 + Е (в-х 0 /Т).

Пример 1. х є [-2, 7π/2], f(х) = Cos 2 х – периодическая функция с периодом Т = π; х 0 = -π/2; тогда число нулей функции f(х) на данном отрезке

N = 1 + Е (7π/2 – (-π/2)/2) = 1 + Е (8π/2π) = 5.

Пример 2. f(х) = х – Е(х), х є [-2; 8,5]. f(х) – периодическая функция, Т + 1,

х 0 = -2. Тогда число нулей функции f(х) на данном отрезке

N = 1 + Е (8,5 – (-2)/1) = 1 + Е (10,5/1) = 1 + 10 = 11.

Пример 3. f(х) = Cos х, х є [-3π; π], Т 0 = 2π, х 0 = - 5π/2.

Тогда число нулей данной функции на заданном отрезке

N = 1 + Е (π – (-5π/2)/2π) = 1 + Е (7π/2π) = 1 + 3 = 4.

2. а) Бесконечное число нулей, т.к. х 0 є D f и f(х 0 ) = 0, то для всех чисел

Х 0 +Тk, где k є Z, f(х 0 ± Тk) = f(х 0 ) =0, а точек вида х 0 ± Тk бесконечное множество;

б) не иметь нулей; если f(х) – периодическая и для любых

х є D f функция f(х) >0 или f(х)

F(х) = Sin х +3,6; f(х) = С, С ≠ 0;

F(х) = Sin х – 8 + Cos х;

F(х) = Sin х Cos х + 5.

№ 12

Может ли сумма не периодических функций быть периодической?

Решение. Да, может. Например:

  1. f 1 (х) = х – непериодическая, f 2 (х) = Е(х) – непериодическая

F(х) = f 1 (х) – f 2 (х) = х – Е(х) – периодическая.

  1. f 1 (х) = х – непериодическая, f(х) = Sin х + х – непериодическая

F(х) = f 2 (х) – f 1 (х) = Sin х – периодическая.

Ответ: да.

№ 13

Функция f(х) и φ(х) периодические с периодами Т 1 и Т 2 соответственно. Всегда ли их произведение есть периодическая функция?

Решение. Нет, только в случае, когда Т 1 и Т 2 – соизмеримы. Например,

F(х) = Sin х · Sin πх, Т 1 = 2π, Т 2 = 2; тогда Т 1 /Т 2 = 2π/2 = π – иррациональное число, значит, f(х) не является периодической.

f(х) = {х} Cos х = (х – Е(х)) Cos х. Пусть f 1 (х) = х – Е(х), Т 1 = 1;

f 2 (х) = Cos (х), Т 2 = 2π. Т 2 /Т 1 = 2π/1 = 2π, значит f(х) не является периодической.

Ответ: Нет.

Задачи для самостоятельного решения

Какие из функций являются периодическими, найти период?

1. f(х) = Sin 2х, 10. f(х) = Sin х/2 + tg х,

2. f(х) = Cos х/2, 11. f(х) = Sin 3х + Cos 4х,

3. f(х) = tg 3х, 12. f(х) = Sin 2 х+1,

4. f(х) = Cos (1 – 2х), 13. f(х) = tg х + ctg√2х,

5. f(х) = Sin х Cos х, 14. f(х) = Sin πх + Cos х,

6. f(х) = ctg х/3, 15. f(х) = х 2 – Е(х 2 ),

7. f(х) = Sin (3х – π/4), 16. f(х) = (х – Е(х)) 2 ,

8. f(х) = Sin 4 х + Cos 4 х, 17. f(х) = 2 х – Е(х) ,

9. f(х) = Sin 2 х, 18. f(х) = х – n + 1, если n ≤ х≤ n + 1, n = 0, 1, 2…

№ 14

Пусть f(х) – Т – периодическая функция. Какие из функций периодические (найти Т)?

  1. φ(х) = f(х + λ) – периодическая, т.к. «сдвиг» вдоль оси Ох на ω не влияет; её период ω = Т.
  2. φ(х) = а f(х + λ) + в – периодическая функция с периодом ω = Т.
  3. φ(х) = f(kх) – периодическая функция с периодом ω = Т/k.
  4. φ(х) = f(ах + в) - периодическая функция с периодом ω = Т/а.
  5. φ(х) = f(√х) не является периодической, т.к. её область определения D φ = {x/x ≥ 0}, а у периодической функции область определения полуосью быть не может.
  6. φ(х) = (f(х) + 1/(f(х) – 1) – периодическая функция, т.к.

φ(х +Т) = f(х+Т) + 1/f(х +Т) – 1 = φ(х), ω = Т.

  1. φ(х) = а f 2 (х) + в f(х) + с.

Пусть φ 1 (х) = а f 2 (х) – периодическая, ω 1 = т/2;

φ 2 (х) = в f(х) – периодическая, ω 2 = Т/Т = Т;

φ 3 (х) = с – периодическая, ω 3 – любое число;

тогда ω = НОК(Т/2; Т) = Т, φ(х) – периодическая.

Иначе, т.к. областью определения данной функции является вся числовая прямая, то множество значений функции f – Е f є D φ , значит, функция

φ(х) – периодическая и ω = Т.

  1. φ(х) = √φ(х), f(х) ≥ 0.

φ(х) – периодическая с периодом ω = Т, т.к. для любого х функция f(х) принимает значения f(х) ≥ 0, т.е. её множество значений Е f є D φ , где

D φ – область определения функции φ(z) = √z.

№ 15

Является ли функция f(х) = х 2 периодической?

Решение. Рассмотрим х ≥ 0, тогда для f(х) существует обратная функция √х, значит, на этом интервале f(х) – монотонная функция, тогда она не может быть периодической (см. № 10).

№ 16

Дан многочлен P(х) = а 0 + а 1 х + а 2 х + …а n х.

Является ли Р(х) периодической функцией?

Решение. 1. Если тождество равно константе, то P(х) – периодическая функция, т.е. если а i = 0, где i ≥ 1.

2.Пусть P(х) ≠ с, где с – некоторая константа. Допустим P(х) – периодическая функция, и пусть P(х) имеет вещественные корни, тогда т.к. P(х) - периодическая функция, то их должно быть бесконечное множество. А по основной теореме алгебры их число k таково, что k ≤ n. Значит, P(х) не является периодической функцией.

3. Пусть P(х) тождественно неравный нулю многочлен, и он не имеет вещественных корней. Допустим, P(х) – периодическая функция. Введём многочлен q(х) = а 0 , q(х) – периодическая функция. Рассмотрим разность P(х) - q(х) = а 1 х 2 + … +а n х n .

Т.к. в левой части равенства стоит периодическая функция, то функция, стоящая в правой части, тоже периодична, причём, она имеет хотя бы один вещественный корень, х = 0. Т.к. функция периодична, то нулей должно быть бесконечное множество. Получили противоречие.

P(х) не является периодической функцией.

№ 17

Дана функция f(t) – Т – периодическая. Является ли функция f к (t), где

k є Z, периодической функцией, как связаны их периоды?

Решение. Доказательство проведём методом математической функции. Пусть

f 1 = f(t), тогда f 2 = f 2 (t) = f(t) · f(t),

F 3 = f 3 (t) = f(t) · f 2 – периодическая функция по свойству п. 4.

………………………………………………………………………….

Пусть f к-1 = f к-1 (t) – периодическая функция и её период Т к-1 соизмерим с периодом Т. Умножим обе части последнего равенства на f(t), получим f к-1 ·f(t) = f(t) ·f к-1 (t),

F к = f к (t) – периодическая функция по свойству п.4. ω ≤ Т.

№ 18

Пусть f(х – произвольная функция, определённая на . Является ли функция f({x}) периодической?

О т в е т: да, т.к. множество значений функции {x} принадлежит области определения функции f(х), то по свойству п.3 f({x}) – периодическая функция, её период ω = Т = 1.

№ 19

F(х) – произвольная функция, определённая на [-1; 1], является ли функция f(sinx) периодической?

О т в е т: да, её период ω = Т = 2π (доказательство аналогично № 18).


ГАРМОНИЧЕСКИЙ АНАЛИЗ

Введение .

Современное развитие техники предъявляет повышенные требования к математической подготовке инженеров. В результате постановки и исследования ряда конкретных проблем механики и физики возникла теория тригонометрических рядов. Важнейшую роль ряды Фурье играют во всех областях техники, опирающихся на теорию колебаний и теорию спектрального анализа. Например, в системах передачи данных для описания сигналов практическое применение спектральных представлений неизменно приводит к необходимости экспериментального осуществления разложения Фурье. Особенно велика роль тригонометрических рядов в электротехнике при изучении периодических несинусоидальных токов: амплитудный спектр функции находится с помощью ряда Фурье в комплексной форме. Для представления непериодических процессов применяется интеграл Фурье.

Тригонометрические ряды находят важное применение в многочисленных разделах математики и доставляют особенно удобные методы для решения трудных задач математической физики, например, задачи о колебании струны и задачи о распространении тепла в стержне.

Периодические функции.

Многие задачи науки и техники связаны с периодическими функциями, отражающими циклические процессы.

Определение 1. Периодическими называются явления, повторяющиеся в одной и той же последовательности и в одном и том же виде через определенные интервалы аргумента.

Пример. В спектральном анализе – спектры.

Определение 2. Функция у = f (x ) называется периодической с периодом Т , если f (x + Т ) = f (x ) при всех х и x + Т из области определения функции.

На рисунке период изображенной функции Т = 2.

Определение 3. Наименьший положительный период функции называется основным периодом.

Там, где приходится иметь дело с периодическими явлениями, почти всегда встречаются тригонометрические функции.

Период функций равен , период функций равен .

Период тригонометрических функций с аргументом (ах ) находится по формуле:

.

Пример. Найти основной период функций 1) .

Решение . 1) . 2) .

Лемма. Если f (x ) имеет период Т , то интеграл этой функции, взятый в пределах, отличающихся на Т , не зависит от выбора нижнего предела интегрирования, т.е. = .

Основной период сложной периодической функции у = f (x ) (состоящей из суммы периодических функций) – это наименьшее общее кратное периодов составляющих функций.

То есть, если f (x ) = f 1 (x ) + f 2 (x ), Т 1 – период функции f 1 (x ), Т 2 – период функции f 2 (x ), то наименьший положительный период Т должен удовлетворять условию:

T = nT 1 + kT 2 , где (*) –

В обычных школьных задачах доказать периодичность той или иной функции обычно нетрудно: так, чтобы убедиться, что функция $y=sin\frac34 x+sin\frac27 x$ является периодической, достаточно просто отметить, что произведение $T=4\times7\times 2\pi$ является ее периодом: если мы прибавим к х число Т, то это произведение «съест» оба знаменателя и под знаком синуса окажутся лишними только целые кратные числа $2\pi$, которые «съест» сам синус.

Но доказательство непериодичности той или иной функции непосредственно по определению может оказаться совсем не простым. Так, для доказательства непериодичности рассмотренной выше функции $y=\sin x^2$ можно выписать равенство $sin(x+T)^2=\sin x^2$, но не решать по привычке это тригонометрическое уравнение, а догадаться подставить в него х=0, после чего дальнейшее получится почти автоматически: $\sin T^2=0$, $T^2=k\pi$, где k - некоторое целое число, большее 0, т.е. $T=\sqrt {k\pi}$, а если теперь догадаться подставить в него $x=\sqrt {\pi}$, то получится, что $\sin(\sqrt{\pi}+\sqrt{k\pi})=0$, откуда $\sqrt{\pi}+\sqrt{k\pi}=n\pi$, $1+\sqrt{k}=n\sqrt{\pi}$, $1+k+2\sqrt{k}=n^2\pi$, $2\sqrt{k}=n^2\pi-1-k=n^2\pi=m$, $4k=n^4{\pi}^2+2mn^2x+m^2$, и таким образом, число р является корнем уравнения $n^4x^2+2mn^2\pi+m^2-4k=0$, т.е. является алгебраическим, что неверно: $\pi$ является, как мы знаем, трансцендентным, т.е. не является корнем никакого алгебраич­ской уравнения с целыми коэффициентами. Впрочем, в будущем мы получим гораздо более простое доказательство этого утверждения - но уже с помощью средств математического анализа.

При доказательстве непериодичности функций часто помогает элементарный логический трюк: если все периодические функции обладают некоторым свойством, а данная функция им не обладает, то она, естественно, не является периодической . Так, периодическая функция всякое свое значение принимает бесконечно много раз, и поэтому, например, функция $y=\frac{3x^2-5x+7}{4x^3-x+2}$ не является периодической, так как значение 7 она принимает только в двух точках. Часто для доказательства непериодичности удобно использовать особенности ее области определения , а для нахождения нужного свойства периодических функций иногда приходится проявлять определенную фантазию.

Заметим еще, что очень часто на вопрос, что же такое непериодическая функция, приходится слышать ответ в стиле, о котором мы говорили в связи с четными и нечетными функциями , - это когда $f(x+T)\neq f(x)$, что, конечно же, недопустимо.

А правильный ответ зависит от конкретного определения периодической функции, и, исходя из данного выше определения, можно, конечно, сказать, что функция является непериодической, если она не имеет ни одного периода, но это будет «плохое» определение, которое не дает направления доказательства непериодичности . А если его расшифровать далее, описав, что значит предложение «функция f не имеет ни одного периода», или, что то же самое, «никакое число $T \neq 0$ не является периодом функции f», то получим, что функция f не является периодической в том и только в том случае, когда для всякого $T \neq 0$ существует число $x\in D(f)$ такое, что либо хотя бы одно из чисел $x+T$ и $x-T$ не принадлежит D(f), либо $f(x+T)\neq f(x)$.

Можно сказать и иначе: «Существует число $x\in D(f)$ такое, что равенство $f(x+T) = f(x)$ не выполняется» - это равенство может не выполняться по двум причинам: или оно не имеет смысла , т.е. одна из его частей не оп­ределена, или - в противном случае, быть неверным. Для интереса добавим, что языковой эффект, о котором мы говорили выше, здесь проявляется тоже: для равенства «не быть верным» и «быть неверным» - не одно и то же - равенство еще может не иметь смысла.

Детальное выяснение причин и последствий этого языкового эффекта в действительности является предметом не математики, а теории языка, лингвистики, точнее, ее особого раздела: семантики - науки о смысле, где, впрочем, эти вопросы являются весьма сложными и не имеют однозначного решения. А математика, в том числе и школьная, вынуждена мириться с этими трудностями и преодолевать языковые «неурядицы» - пока и поскольку она использует, наряду с символическим, и естественный язык.

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»