Коэффициент применения элементарных функций. Основные элементарные функции

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Раздел содержит справочный материал по основным элементарным функциям и их свойствам. Приводится классификация элементарных функций. Ниже даны ссылки на подразделы, в которых рассматриваются свойства конкретных функций - графики, формулы, производные, первообразные (интегралы), разложения в ряды, выражения через комплексные переменные.

Содержание

Страницы со справочным материалом по элементарным функциям

Классификация элементарных функций

Алгебраическая функция - это функция, которая удовлетворяет уравнению:
,
где - многочлен от зависимой переменной y и независимой переменной x . Его можно записать в виде:
,
где - многочлены.

Алгебраические функции делятся на многочлены (целые рациональные функции), рациональные функции и иррациональные функции.

Целая рациональная функция , которая также называется многочленом или полиномом , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания) и умножения. После раскрытия скобок, многочлен приводится к каноническому виду:
.

Дробно-рациональная функция , или просто рациональная функция , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания), умножения и деления. Рациональную функцию можно привести к виду
,
где и - многочлены.

Иррациональная функция - это алгебраическая функция, не являющаяся рациональной. Как правило, под иррациональной функцией понимают корни и их композиции с рациональными функциями. Корень степени n определяется как решение уравнения
.
Он обозначается так:
.

Трансцендентными функциями называются неалгебраические функции. Это показательные, тригонометрические, гиперболические и обратные к ним функции.

Обзор основных элементарных функций

Все элементарные функции можно представить в виде конечного числа операций сложения, вычитания, умножения и деления, произведенных над выражением вида:
z t .
Обратные функции могут выражаться также через логарифмы. Ниже перечислены основные элементарные функции.

Степенная функция :
y(x) = x p ,
где p - показатель степени. Она зависит от основания степени x .
Обратной к степенной функции является также степенная функция:
.
При целом неотрицательном значении показателя p она является многочленом. При целом значении p - рациональной функцией. При рациональном значении - иррациональной функцией.

Трансцендентные функции

Показательная функция :
y(x) = a x ,
где a - основание степени. Она зависит от показателя степени x .
Обратная функция - логарифм по основанию a :
x = log a y .

Экспонента, е в степени х :
y(x) = e x ,
Это показательная функция, производная которой равна самой функции:
.
Основанием степени экспоненты является число e :
≈ 2,718281828459045... .
Обратная функция - натуральный логарифм - логарифм по основанию числа e :
x = ln y ≡ log e y .

Тригонометрические функции :
Синус : ;
Косинус : ;
Тангенс : ;
Котангенс : ;
Здесь i - мнимая единица, i 2 = -1 .

Обратные тригонометрические функции :
Арксинус: x = arcsin y , ;
Арккосинус: x = arccos y , ;
Арктангенс: x = arctg y , ;
Арккотангенс: x = arcctg y , .

Рассматривая функции комплексного переменного, Лиувилль определил элементарные функции несколько шире. Элементарная функция y переменной x - аналитическая функция , которая может быть представлена как алгебраическая функция от x и функций , причем является логарифмом или экспонентой от некоторой алгебраической функции g 1 от x .

Например, sin(x ) - алгебраическая функция от e i x .

Не ограничивая общности рассмотрения, можно считать функции алгебраически независимы, то есть если алгебраическое уравнение выполняется для всех x , то все коэффициенты полинома равны нулю.

Дифференцирование элементарных функций

где z 1 "(z ) равно или g 1 " / g 1 или z 1 g 1 " в зависимости от того, логарифм ли z 1 или экспонента и т. д. На практике удобно использовать таблицу производных .

Интегрирование элементарных функций

Теорема Лиувилля является основой для создания алгоритмов символьного интегрирования элементарных функций, реализуемых, напр., в

Вычисление пределов

Теория Лиувилля не распространяется на вычисление пределов . Не известно, существует ли алгоритм, который по заданной элементарной формулой последовательности дает ответ, имеет ли она предел или нет. Например, открыт вопрос о том, сходится ли последовательность .

Литература

  • J. Liouville. Mémoire sur l’intégration d’une classe de fonctions transcendantes // J. Reine Angew. Math. Bd. 13, p. 93-118. (1835)
  • J.F. Ritt. Integration in Finite Terms . N.-Y., 1949// http://lib.homelinux.org
  • А. Г. Хованский. Топологическая теория Галуа: разрешимость и неразрешимость уравнений в конечном виде Гл. 1. M, 2007

Примечания


Wikimedia Foundation . 2010 .

  • Элементарное возбуждение
  • Элементарный исход

Смотреть что такое "Элементарная функция" в других словарях:

    элементарная функция - Функция, которая, если ее разделить на более мелкие функции, не сможет быть однозначно определена в иерархии цифровой передачи. Следовательно, с точки зрения сети она является неделимой (МСЭ T G.806). Тематики электросвязь, основные понятия EN adaptation functionA … Справочник технического переводчика

    функция взаимодействия между уровнями сети - Элементарная функция, которая обеспечивает взаимодействие характеристической информации между двумя уровнями сети. (МСЭ T G.806). Тематики электросвязь, основные понятия EN layer… … Справочник технического переводчика

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Полный перечень основных элементарных функций

К классу основных элементарных функций относятся следующие:

  1. Постоянная функция $y=C$, где $C$ -- константа. Такая функция принимает одно и то же значение $C$ при любом $x$.
  2. Степенная функция $y=x^{a} $, где показатель степени $a$ -- действительное число.
  3. Показательная функция $y=a^{x} $, где основание степени $a>0$, $a\ne 1$.
  4. Логарифмическая функция $y=\log _{a} x$, где основание логарифма $a>0$, $a\ne 1$.
  5. Тригонометрические функции $y=\sin x$, $y=\cos x$, $y=tg\, x$, $y=ctg\, x$, $y=\sec x$, $y=A>\sec \, x$.
  6. Обратные тригонометрические функции $y=\arcsin x$, $y=\arccos x$, $y=arctgx$, $y=arcctgx$, $y=arc\sec x$, $y=arc\, \cos ec\, x$.

Степенные функции

Поведение степенной функции $y=x^{a} $ рассмотрим для тех простейших случаев, когда её показатель степени определяет целочисленные возведение в степень и извлечение корня.

Случай 1

Показатель степени функции $y=x^{a} $ -- натуральное число, то есть $y=x^{n} $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=x^{2\cdot k} $ -- четная и неограниченно возрастает как при неограниченном возрастании аргумента $\left(x\to +\infty \right)$, так и при неограниченном его убывани $\left(x\to -\infty \right)$. Такое поведение функции можно описать выражениями $\mathop{\lim }\limits_{x\to +\infty } x^{2\cdot k} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } x^{2\cdot k} =+\infty $, которые означают, что функция в обоих случаях неограниченно возрастает ($\lim $ -- предел). Пример: график функции $y=x^{2} $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=x^{2\cdot k-1} $ -- нечетная, неограниченно возростает при неограниченном возрастании аргумента и неограниченно убывает при неограниченном его убывании. Такое поведение функции можно описать выражениями $\mathop{\lim }\limits_{x\to +\infty } x^{2\cdot k-1} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } x^{2\cdot k-1} =-\infty $. Пример: график функції $y=x^{3} $.

Случай 2

Показатель степени функци $y=x^{a} $ -- целое отрицательное число, то есть $y=\frac{1}{x^{n} } $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=\frac{1}{x^{2\cdot k} } $ -- четная и асимптотически (постепенно) приближается к нулю как при неограниченном возрастании аргумента, так и при неограниченном его убывании. Такое поведение функции можно описать единым выражением $\mathop{\lim }\limits_{x\to \infty } \frac{1}{x^{2\cdot k} } =0$, которое означает, что при неограниченном возрастании аргумента по абсолютной величине предел функции равен нулю. Кроме того, при стремлении аргумента к нулю как слева $\left(x\to 0-0\right)$, так и справа $\left(x\to 0+0\right)$, функция неограниченно возрастает. Поэтому справедливы выражения $\mathop{\lim }\limits_{x\to 0-0} \frac{1}{x^{2\cdot k} } =+\infty $ и $\mathop{\lim }\limits_{x\to 0+0} \frac{1}{x^{2\cdot k} } =+\infty $, которые означают, что функция $y=\frac{1}{x^{2\cdot k} } $ в обоих случаях имеет бесконечный предел, равный $+\infty $. Пример : график функции $y=\frac{1}{x^{2} } $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=\frac{1}{x^{2\cdot k-1} } $ -- нечетная и асимптотически приближается к нулю как при неограниченном возрастании аргумента, так и при неограниченном его убывании. Такое поведение функции можно описать единым выражением $\mathop{\lim }\limits_{x\to \infty } \frac{1}{x^{2\cdot k-1} } =0$. Кроме того, при приближении аргумента к нулю слева функция неограниченно убывает, а при приближении аргумента к нулю справа функция неограниченно возрастает, то есть $\mathop{\lim }\limits_{x\to 0-0} \frac{1}{x^{2\cdot k-1} } =-\infty $ и $\mathop{\lim }\limits_{x\to 0+0} \frac{1}{x^{2\cdot k-1} } =+\infty $. Пример : график функции $y=\frac{1}{x} $.

Случай 3

Показатель степени функции $y=x^{a} $ -- число, обратное к натуральному, то есть $y=\sqrt[{n}]{x} $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=\pm \sqrt[{2\cdot k}]{x} $ является двузначной и определена только при $x\ge 0$. При неограниченном возрастании аргумента значение функции $y=+\sqrt[{2\cdot k}]{x} $ неограниченно возрастает, а значение функции $y=-\sqrt[{2\cdot k}]{x} $ неограниченно убывает, то есть $\mathop{\lim }\limits_{x\to +\infty } \left(+\sqrt[{2\cdot k}]{x} \right)=+\infty $ и $\mathop{\lim }\limits_{x\to +\infty } \left(-\sqrt[{2\cdot k}]{x} \right)=-\infty $. Пример: график функции $y=\pm \sqrt{x} $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=\sqrt[{2\cdot k-1}]{x} $ -- нечетная, неограниченно возрастает при неограниченном возрастании аргумента и неограниченно убывает при неограниченном его убывает, то есть $\mathop{\lim }\limits_{x\to +\infty } \sqrt[{2\cdot k-1}]{x} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } \sqrt[{2\cdot k-1}]{x} =-\infty $. Пример: график функции $y=\sqrt[{3}]{x} $.

Показательная и логарифмическая функции

Показательная $y=a^{x} $ и логарифмическая $y=\log _{a} x$ функции являются взаимно обратными. Их графики симметричны относительно общей биссектрисы первого и третьего координатных углов.

При неограниченном возрастании аргумента $\left(x\to +\infty \right)$ показательная функция или неограниченно возрастает $\mathop{\lim }\limits_{x\to +\infty } a^{x} =+\infty $, если $a>1$, или асимптотически приближается к нулю $\mathop{\lim }\limits_{x\to +\infty } a^{x} =0$, если $a1$, или неограниченно возрастает $\mathop{\lim }\limits_{x\to -\infty } a^{x} =+\infty $, если $a

Характерным значением для функции $y=a^{x} $ является значение $x=0$. При этом все показательные функции, независимо от $a$, обязательно пересекают ось $Oy$ при $y=1$. Примеры: графики функций $y=2^{x} $ и $y = \left (\frac{1}{2} \right)^{x} $.

Логарифмическая функция $y=\log _{a} x$ определена только при $x > 0$.

При неограниченном возрастании аргумента $\left(x\to +\infty \right)$ логарифмическая функция или неограниченно возрастает $\mathop{\lim }\limits_{x\to +\infty } \log _{a} x=+\infty $, если $a>1$, или неограниченно убывает $\mathop{\lim }\limits_{x\to +\infty } \log _{a} x=-\infty $, если $a1$, или неограниченно возрастает $\mathop{\lim }\limits_{x\to 0+0} \log _{a} x=+\infty $, если $a

Характерным значением для функции $y=\log _{a} x$ является значение $y=0$. При этом все логарифмические функции, независимо от $a$, обязательно пересекают ось $Ox$ при $x=1$. Примеры: графики функций $y=\log _{2} x$ и $y=\log _{1/2} x$.

Некоторые логарифмические функции имеют специальные обозначения. В частности, если основание логарифма $a=10$, то такой логарифм называется десятичным, а соответствующая функция записывается как $y=\lg x$. А если основанием логарифма выбирается иррациональное число $e=2,7182818\ldots $, то такой логарифм называется натуральным, а соответствующая функция записывается как $y=\ln x$. Обратной к ней является функция $y=e^{x} $, называемая экспонентой.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»