Кривая нормального распределения Гаусса и гистограмма. Распределение признака

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Одним из важнейших в математической статистике является понятие нормального распределœения. Нормальное распределœение (называемое также распределœением Гаусса), характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величинœе – часто. Нормальное распределœение возникает, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всœей суммы незначительную роль.

Нормальное распределœение имеет колоколообразную форму, значения моды, медианы и среднего арифметического равны между собой. Было установлено, что многие биологические параметры распределœены подобным образом (рост, вес и так далее). Впоследствии психологи выяснили, что и большинство психологических свойств (показатели интеллекта͵ темпераментных особенностей, способностей и другие психические явления) также имеют нормальное распределœение. Этот принцип учитывается при стандартизации тестовых методик. При этом, чем больше объём выборки, тем более полученное эмпирическое распределœение приближается к нормальному.

Характерное свойство нормального распределœения состоит в том, что 68,26 % из всœех его наблюдений всœегда лежат в диапазоне ± 1 стандартное отклонение от среднего арифметического (какова бы ни была величина стандартного отклонения). 95,44 % - в пределах ± двух стандартных отклонений и 99,72 – в пределах ± трех стандартных отклонений.

Нормальное распределение - понятие и виды. Классификация и особенности категории "Нормальное распределение" 2017, 2018.

  • - Усеченное нормальное распределение.

    Классическое нормальное распределение НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ НАРАБОТКИ ДО ОТКАЗА Лекция 6 Нормальное распределение или распределение Гаусса является наиболее универсальным, удобным и широко применяемым. Считается, что... .


  • - Нормальное распределение

    Рассмотрим Пример 2, в котором случайная величина Х представлена выборкой {хi}. Эти данные получены оператором при измерении свойства А с помощью СИ. Значение А является постоянным. Случайные возмущения на входе и выходе СИ привели к тому, что (xj) рассеяны в диапазоне D = xmax -... .


  • - Нормальное распределение

    Равномерное распределение Некоторые абсолютно непрерывные распределения Определение.Равномерным распределением на отрезке называют распределение с плотностью ОпределениеНормальным распределением c параметрами и называют распределение с плотностью... .


  • - Логарифмически-нормальное распределение

    Определение 1. Непрерывная случайная величина называется распределённой логарифмически-нормально (логнормально), если её логарифм подчинён нормальному закону распределения. Так как при неравенства и равносильны, то функция распределения логнормального распределения... .


  • - Нормальное распределение

    Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если, s>0. (5) Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N(a;s). Покажем, что p(x) – плотность (показано в... .


  • - Нормальное распределение

    Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если, s>0. (5) Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N(a;s). Покажем, что p(x) – плотность (показано в...

  • Случайные величины связаны со случайными событиями. О случайных событиях говорят тогда, когда оказывается невозможным однозначно предсказать результат, который может быть получен в тех или иных условиях.

    Предположим, мы бросаем обыкновенную монету. Обычно результат этой процедуры не является однозначно определенным. Можно лишь с уверенностью утверждать, что произойдет одно из двух: либо выпадет "орел", либо "решка". Любое из этих событий будет случайным. Можно ввести переменную, которая будет описывать исход этого случайного события. Очевидно, что эта переменная будет принимать два дискретных значения: "орел" и "решка". Поскольку мы заранее точно не можем предугадать, какое из двух возможных значений примет эта переменная, можно утверждать, что в этом случае мы имеем дело со случайными величинами.

    Предположим теперь, что в эксперименте мы проводим оценку времени реакции испытуемого при предъявлении какого-либо стимула. Как правило, оказывается, что даже тогда, когда экспериментатор предпримет все меры к тому, чтобы стандартизировать экспериментальные условия, минимизировав или даже сведя к нулю возможные вариации в предъявлении стимула, измеренные величины времени реакции испытуемого все равно будут различаться. В таком случае говорят, что время реакции испытуемого описывается случайной величиной. Поскольку в принципе в эксперименте мы можем получить любое значение времени реакции – множество возможных значений времени реакции, которые можно получить в результате измерений, оказывается бесконечным, – говорят о непрерывности этой случайной величины.

    Возникает вопрос: существуют ли какие-либо закономерности в поведении случайных величин? Ответ на этот вопрос оказывается утвердительным.

    Так, если провести бесконечно большое число подбрасываний одной и той же монеты, можно обнаружить, что число выпадений каждой из двух сторон монеты окажется примерно одинаковым, если, конечно, монета не фальшивая и не гнутая. Чтобы подчеркнуть эту закономерность, вводят понятие вероятности случайного события. Ясно, что в случае с подбрасыванием монеты одно из двух возможных событий произойдет непременно. Это обусловлено тем, что суммарная вероятность этих двух событий, иначе называемая полной вероятностью, равна 100%. Если предположить, что оба из двух событий, связанных с испытанием монеты, происходят с равными долями вероятности, то вероятность каждого исхода в отдельности, очевидно, оказывается равной 50%. Таким образом, теоретические размышления позволяют нам описать поведение данной случайной величины. Такое описание в математической статистике обозначается термином "распределение случайной величины" .

    Сложнее обстоит дело со случайной величиной, которая не имеет четко определенного набора значений, т.е. оказывается непрерывной. Но и в этом случае можно отметить некоторые важные закономерности ее поведения. Так, проводя эксперимент с измерением времени реакции испытуемого, можно отметить, что различные интервалы длительности реакции испытуемого оцениваются с разной степенью вероятности. Скорее всего, редко, когда испытуемый будет реагировать слишком быстро. Например, в задачах семантического решения испытуемым практически не удается более или менее точно реагировать со скоростью менее 500 мс (1/2 с). Аналогично маловероятно, что испытуемый, добросовестно следующий инструкциям экспериментатора, будет сильно затягивать свой ответ. В задачах семантического решения, например, реакции, оцениваемые более чем 5 с, обычно рассматриваются как недостоверные. Тем не менее со 100%-ной уверенностью можно предполагать, что время реакции испытуемого окажется в диапазоне от О до +со. Но эта вероятность складывается из вероятностей каждого отдельного значения случайной величины. Поэтому распределение непрерывной случайной величины можно описать в виде непрерывной функции у = f (х ).

    Если мы имеем дело с дискретной случайной величиной, когда все возможные ее значения заранее известны, как в примере с монетой, построить модель ее распределения, как правило, оказывается не очень сложным. Достаточно ввести лишь некоторые разумные допущения, как мы это сделали в рассматриваемом примере. Сложнее обстоит дело с распределением непрерывных величии, принимающих заранее неизвестное число значений. Конечно, если бы мы, например, разработали теоретическую модель, описывающую поведение испытуемого в эксперименте с измерением времени реакции при решении задачи семантического решения, можно было бы попытаться на основе этой модели описать теоретическое распределение конкретных значений времени реакции одного и того же испытуемого при предъявлении одного и того же стимула. Однако такое не всегда оказывается возможным. Поэтому экспериментатор бывает вынужденным предположить, что распределение интересующей его случайной величины описывается каким-либо уже заранее исследованным законом. Чаще всего, хотя это, возможно, и не всегда оказывается абсолютно корректным, для этих целей используется так называемое нормальное распределение, выступающее в качестве эталона распределения любой случайной величины независимо от ее природы. Это распределение впервые было описано математически еще в первой половине XVIII в. де Муавром.

    Нормальное распределение имеет место тогда, когда интересующее нас явление подвержено влиянию бесконечного числа случайных факторов, уравновешивающих друг друга. Формально нормальное распределение, как показал де Муавр, может быть описано следующим соотношением:

    где х представляет собой интересующую нас случайную величину, поведение которой мы исследуем; Р – значение вероятности, связанное с этой случайной величиной; π и е – известные математические константы, описывающие соответственно отношение длины окружности к диаметру и основание натурального логарифма; μ и σ2 – параметры нормального распределения случайной величины – соответственно математическое ожидание и дисперсия случайной величины х.

    Для описания нормального распределения оказывается необходимым и достаточным определение лишь параметров μ и σ2.

    Поэтому если мы имеем случайную величину, поведение которой описывается уравнением (1.1) с произвольными значениями μ и σ2, то можем обозначить его как Ν (μ, σ2), не держа в памяти всех деталей этого уравнения.

    Рис. 1.1.

    Любое распределение можно представить наглядно в виде графика. Графически нормальное распределение имеет вид колоколообразной кривой, точная форма которой определяется параметрами распределения, т.е. математическим ожиданием и дисперсией. Параметры нормального распределения могут принимать практически любые значения, которые оказываются ограничены лишь используемой экспериментатором измерительной шкалой. В теории значение математического ожидания может равняться любому числу из диапазона чисел от -∞ до +∞, а дисперсия – любому неотрицательному числу. Поэтому существует бесконечное множество различных видов нормального распределения и соответственно бесконечное множество кривых, его представляющих (имеющих, однако, сходную колоколообразную форму). Понятно, что все их описать невозможно. Однако, если известны параметры конкретного нормального распределения, его можно преобразовать к так называемому единичному нормальному распределению, математическое ожидание для которого равно нулю, а дисперсия – единице. Такое нормальное распределение называют еще стандартным или z-распределением. График единичного нормального распределения представлен на рис. 1.1, откуда очевидно, что вершина колоколообразной кривой нормального распределения характеризует величину математического ожидания. Другой параметр нормального распределения – дисперсия – характеризует степень "распластанности" колоколообразной кривой относительно горизонтали (оси абсцисс).

    Читатель наверняка уже обратил внимание на особенности распределения, представленного в таблице 1 и на рисунке 2. Большинство случаев расположены в центре ряда, а приближаясь к крайним значениям, происходит долгий плавный спад. На графике нет разрывов - нет классов, которые были бы отделены друг от друга. Кроме этого, график по обе стороны симметричен; это означает, что если его разделить вертикальной линией по центру, то получившиеся две половинки окажутся примерно одинаковыми. Такой график распределения своей формой похож на колокол, это так называемое «нормальное распределение», которое чаще всего встречается при измерениях индивидуальных различий. В своем идеальном виде нормальное распределение изображено на рисунке 3.

    Понятие нормального распределения в статистике используется уже давно. Вероятность какого-либо события представляет собой частоту его наступления, зафиксированного очень большим количеством наблюдений. Эта вероятность представляет собой определенное соотношение, точнее, дробь, числителем которой является ожидаемый результат, а знаменателем - все возможные результаты. Таким образом, вероятность, или шансы, того, что две монеты выпадут одной и той же стороной, например решкой, будет один к четырем, или 1 / 4 . Это следует из того факта, что существует всего четыре возможные комбинации выпадения монет РР, РО, ОР, ОО, где Р - решка, а О - орел. Одна из четырех, РР, означает выпадение только решек. Вероятность выпадения двух орлов будет также составлять 1 / 4 , а вероятность выпадения решки какой-либо одной монеты при выпадении орла другой составит один к двум, или 1 / 2 . Даже если число монет увеличить, скажем, до 100, и количество возможных комбинаций станет очень большим, то мы по-прежнему сможем математически определить вероятность возникновения каждой комбинации, например, выпадения всех решек или 20 решек и 80 орлов. Эти вероятности, или ожидаемую частоту выпадений, можно изобразить графически описанным выше методом. Если число монет будет очень велико, то построенный график окажется колокольной формы, то есть графиком нормального распределения.


    0 1 2 3 4 5 6 Количество выпадений решек

    Рис. 4. Теоретическое (пунктир, линия) и фактически наблюдаемое (сплошная линия) распределение количества выпадений решек в 128 случаях подбрасывания шести монет. (Данные из Гилфорда, 10, с. 119.)


    Рис. 3. График нормального распределения

    На рисунке 4 можно найти теоретический и фактический графики, показывающие количество выпадения решек в 128 случаях подбрасывания шести монет. При каждом броске число решек, естественно, может варьироваться от 0 до 6. Чаще всего будет выпадать комбинация из трех решек (и трех орлов). Частота возрастает или понижается, когда число решек становится меньше или больше трех. На рисунке 4 теоретически вычисленные вероятности обозначены пунктирной линией, в то время как реальная частота, полученная в результате 128 последовательных подбрасываний шести монет, начерчена непрерывной линией. Необходимо заметить, что ожидаемые и фактически полученные результаты достаточно близки друг к другу. Чем больше количество наблюдений (или бросков), тем больше вероятность их совпадения.

    Чем большее количество монет подбрасывается, тем ближе будет график теоретически ожидаемого распределения к графику нормальной вероятности. Говорят, что результаты, получаемые при подбрасывании монет или бросании игральных костей, зависят от «случайности». Под этим подразумевается, что результат определяется большим количеством независимых факторов, влияние которых учесть невозможно. Высота, с которой бросают монету или игральную кость, ее вес и размер, подкрутка, которую делает бросающий, и многие другие подобные факторы определяют в каждом отдельном случае, какой стороной упадет монета. График нормального распределения был впервые построен математиками Лапласом и Гауссом в связи с исследованиями ими игры случая, распределения отклонений в наблюдениях и других типов случайных изменений.

    Уже в девятнадцатом веке бельгийский статистик Адольф Кутелет первым применил понятие нормального распределения к исследованию качеств человека (ср. 4). Кутелет обратил внимание на то, что определенные измерения роста, объема грудной клетки армейских призывников распределялись в соответствии с графиком вероятности колокольной формы. На основании сходства этого графика с данными человеческой изменчивости, он построил теорию, согласно которой такая человеческая изменчивость имеет место, когда природа стремилась воплотить «идеал», или норму, но в силу различных обстоятельств потерпела неудачу. Иными словами, человеческий рост, вес, уровень интеллектуального развития зависят от огромного количества независимых факторов, так что конечный результат окажется распределенным в соответствии с теорией вероятности. Опыт Кутелета по применению графика нормального распределения был переосмыслен и развит Гальтоном, чей вклад в дифференциальную психологию уже обсуждался нами в главе 1. У Гальтона график нормального распределения получил широкое и разнообразное применение, многие наработки были связаны с квантификацией и преобразованием данных, касающихся как индивидуальных, так и групповых различий.

    Определить, является ли распределение, воспроизведенное в таблице 1 и на рисунке 2, «нормальным» можно путем применения соответствующих математических процедур. Несмотря на незначительные отклонения, этот график не отличается существенно от графика нормального распределения. Таким образом, мы можем сделать вывод, что его расхождение с нормой находится в пределах ожидаемых флуктуации, и считать его графиком нормального распределения. Многие распределения, открытые в дифференциальной психологии, так же соответствуют математическим вариантам нормального распределения, особенно когда они получаются в результате применения тщательно сконструированных измерительных приборов на больших репрезентативных выборках. В остальных случаях распределение может соответствовать нормальному лишь приблизительно. Оно может представлять собой некую непрерывность и быть более или менее симметричным, отражая то, что большинство индивидов находятся в центре ряда, а ближе к крайним значениям их количество постепенно и плавно снижается.

    На рисунках 5-10 мы видим примеры графиков распределения, отражающих широкое разнообразие свойств человека. Эти распределения были выбраны специально, потому что они основаны на больших репрезентативных выборках, большинство из которых включало в себя 1000 и более случаев. Два графика, построенные для меньших групп, приводятся для того, чтобы показать распределение физиологических и личностных характеристик в таких областях, где данные для больших групп сравнительно скудные.


    Рис. 5. Распределение роста у 8585 коренных англичан. (Данные из Юля и Кенделла, 34, с. 95.)


    Рис. 6. Распределение качества, связанного с возможностями легких, у 1633 студентов мужского колледжа. (Данные из Харриса и др., 12, с. 94.)

    Пример распределения слабоструктурированного качества дан на рисунке 5, который показывает рост в дюймах 8585 коренных англичан. Можно заметить, что график практически совпадает с математически нормальным графиком. На рисунке 6 представлен частотный график более функционального, физиологического качества, связанного с возможностями легких. Это измеряющийся в кубических сантиметрах объем воздуха, который выдувается из легких после максимально глубокого вдоха. Необходимые для построения графика измерения были сделаны на 1633 студентах мужского колледжа. Общее соответствие нормальному графику здесь так же очевидно.

    Рисунок 7 связан с физиологическими измерениями, которые, как считается, имеют отношение к эмоциональным и личностным свойствам. На нем показано распределение показателей 87 детей по данным композиционного измерения автономного баланса. Высокие результаты в этом исследовании показывают функциональное преобладание парасимпатического отдела периферической нервной системы; низкие значения - функциональное преобладание ее симпатического отдела. Для психологов периферическая нервная система представляет особый интерес, он связан с той ролью, которую она играет в эмоциональном поведении.

    График, представленный на рисунке 8 иллюстрирует распределение результатов теста на скорость и точность восприятия. Результатом является общее число вычеркнутых за одну минуту букв А на пестром листе. Этот тест считается просто тестом на внимание и восприятие, хотя скорость и координация движений здесь тоже имеют значение. В этой связи можно вспомнить данные теста на простое научение, зафиксированные в таблице 1 и на рисунке 2. Этот тест требовал применения кода, состоявшего из парных, не имеющих смысла слогов. Оба теста предлагались одной и той же группе, состоящей из 1000 студентов колледжа, и оба дали распределения, лежащие в пределах ожидаемых математических значений нормального графика.


    Показатель автономного баланса

    Рис. 7. Распределение значений оценок автономного баланса у 87 детей в возрасте от 6 До 12 лет. (Данные из Уингера и Эллингтона, 33, с. 252.)


    Рис. 8. Количество вычеркнутых за одну минуту букв А 1000 студентами колледжа. (Данные из Анастази, 2, с. 32.)


    Рис. 9. Измерение IQ репрезентативной выборки, состоящей из 2904 детей в возрасте от 2 до 18 лет, по шкале Стэнфорд - Бине. (Данные от Термена и Меррилла, 27, с. 37.)

    На рисунке 9 мы видим типичные результаты применения интеллектуального теста в условиях большой выборки. Она показывает распределение IQ (Стэнфорд - Бине, редакция 1937 года) 2904 детей в возрасте от 2 до 18 лет. График показывает, что в наибольшем проценте случаев IQ испытуемых находится в пределах среднего интервала, от 95 до 104 баллов. Процент постепенно снижается до 1, поскольку IQ лишь очень малого числа детей находится в пределах между 35 и 44 и между 165 и 174 баллами. В данное распределение не включались данные по находящимся в интернатах слабоумным детям, выборка была также ограничена и по ряду других параметров. Так, в нее вошли только белые американцы с несколько преувеличенной (по сравнению с реальным населением страны) пропорцией городских жителей. Большую часть выборки составили учащиеся начальной школы, и хотя организаторы стремились к тому, чтобы обеспечить полноценное участие в тестировании групп старших и самых младших возрастов, их число едва ли соответствовало числу тестируемых учащихся начальной школы. Отметим, что весь ряд IQ для целостной популяции, на самом деле, как свидетельствуют данные, полученные разными исследователями, простирается от значений, близких к 0, до значений, несколько превышающих 200.



    Рис. 10. Распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. (Данные из Рагглза и Оллпорта, 24, с. 520.)

    В качестве последней иллюстрации рассмотрим рисунок 10, содержащий распределение результатов широко используемого личностного опросника. График показывает распределение 600 учениц колледжа по результатам теста Оллпорта на доминирование-подчинение. Целью этого личностного опросника было исследование стремления индивида доминировать над другими членами группы в повседневной жизни или подчиняться им. Рисунок 10 показывает, что, несмотря на биполярное определение качества (противопоставление доминирования и подчинения), большинство результатов испытуемых располагаются вокруг середины шкалы и распределение приближается к нормальному. Иными словами, биполярное наименование качества не должно вводить нас в заблуждение, что индивидов можно классифицировать на доминирующих и подчиняющихся. Как и другие измеряемые свойства человека, данное личностное качество имеет множество степеней проявления; и при этом большинство людей относятся к промежуточным типам.


    Рис. 11. Скошенное распределение

    Рис. 1.1. Схема вычисления стандартных оценок (стенов) по фактору N 16-

    факторного личностного опросника Р. Б. Кеттелла; снизу указаны интервалы в единицах 1/2 стан­дартного отклонения

    Справа от среднего значения будут располагаться интервалы, равные 6, 7, 8, 9 и 10 стенам, причем последний из этих интервалов открыт. Слева от среднего значе­ния будут располагаться интервалы, равные 5, 4, 3, 2 и 1 стенам, и крайний интервал также открыт. Теперь мы поднимаемся вверх, к оси "сырых баллов", и размечаем границы интервалов в единицах "сырых" баллов. Поскольку М=10,2; δ=2,4, вправо мы откладываем 1/2δ т.е. 1,2 "сырых" балла. Таким образом, гра­ница интервала составит: (10,2 + 1,2) = 11,4 "сырых" балла. Итак, границы ин­тервала, соответствующего 6 стенам, будут простираться от 10,2 до 11,4 баллов. В сущности, в него попадает только одно "сырое" значение - 11 баллов. Влево от средней мы откладываем 1/2δ и получаем границу интервала: 10,2-1,2=9. Таким образом, границы интервала, соответствующие 9 стенам, простираются от 9 до 10,2. В этот интервал попадают уже два "сырых" значения - 9 и 10. Если испы­туемый получил 9 "сырых" баллов, ему начисляется теперь 5 стенов; если он по­лучил 11 "сырых" баллов - 6 стенов, и т. д.

    Мы видим, что в шкале стенов иногда за разное количество "сырых" баллов будет начисляться одинаковое количество стенов. Например, за 16, 17, 18, 19 и 20 баллов будет начисляться 10 стенов, а за 14 и 15 - 9 стенов и т. д.

    В принципе, шкалу стенов можно построить по любым данным, измеренным по крайней мере в порядковой шкале, при объеме выборки п>200 и нормальном рас­пределении признака 2 .

    Другой способ построения равноинтервальной шкалы - группировка интервалов по принципу равенства накопленных частот. При нормальном распределении при­знака в окрестности среднего значения группируется большая часть всех наблюде­ний, поэтому в этой области среднего значения интервалы оказываются меньше, уже, а по мере удаления от центра распределения они увеличиваются, (см. Рис. 1.2). Следовательно, такая процентнльная шкала является равноинтервальной толь­ко относительно накопленной частоты (Мельников В.М., Ямпольский Л.Т., 1985, с. 194).

    Рис. 1.2. Процентильная шкала; сверху для сравнения указаны интервалы в единицах стандартного отклонения

    О нормальном распределении см. Пояснения в вопросе 3.

    Построение шкал равных интервалов по данным, полученным по шкале порядка, напоминает трюк с веревочной лестницей, на который ссылался С. Стивене. Мы сначала поднимаемся по лестнице, которая ни на чем не закреплена, и добираемся до лестницы, которая закрепле­на. Однако каким путем мы оказались на ней? Измерили некую психо­логическую переменную по шкале порядка, подсчитали средние и стан­дартные отклонения, а затем получили, наконец, интервальную шкалу. "Такому нелегальному использованию статистики может быть дано из­вестное прагматическое оправдание; во многих случаях оно приводит к плодотворным результатам" (Стивенс С, 1960, с. 56).

    Многие исследователи не проверяют степень совпадения получен­ного ими эмпирического распределения с нормальным распределением, и тем более не переводят получаемые значения в единицы долей стан­дартного отклонения или процентили, предпочитая пользоваться "сырыми" данными. "Сырые" же данные часто дают скошенное, срезан­ное по краям или двухвершинное распределение. На Рис. 1.3 представле­но распределение показателя мышечного волевого усилия на выборке из 102 испытуемых. Распределение с удовлетворительной точностью мож­но считать нормальным (х 2 =12,7 при v=9, М=89,75, δ= 25,1).

    Рис. 1.3. Гистограмма и плавная кривая распределения показателя мышечного волевого усилия (п=102)

    На Рис. 1.4 представлено распределение показателя самооценки по шкале методики Дж. Менестера - Р.Корзини "Уровень успеха, ко­торого я должен был достичь уже сейчас" (n=356). Распределение зна­чимо отличается от нормального

    (χ 2 = 58,8, при v=7; p

    Рис. 1.4. Гистограмма и плавная кривая распределения показателя должного успеха (n =356)

    С такими "ненормальными" распределениями приходится встре­чаться очень часто, чаще, может быть, чем с классическими нормаль­ными. И дело здесь не в каком-то изъяне, а в самой специфике психо­логических признаков. По некоторым методикам от 10 до 20% испы­туемых получают оценку "ноль" - например, в их рассказах не встреча­ется ни одной словесной формулировки, которая отражала бы мотив "надежда на успех" или "боязнь неудачи" (методика Хекхаузена). То, что испытуемый получил оценку "ноль", нормально, но распределение таких оценок не может быть нормальным, как бы мы ни увеличивали объем выборки (см. в. 5.3).

    Методы статистической обработки, предлагаемые в настоящем руководстве, в большинстве своем не требуют проверки совпадения по­лученного эмпирического распределения с нормальным. Они построены на подсчете частот и ранжирования. Проверка необходима только в случае применения дисперсионного анализа. Именно поэтому соответст­вующая глава сопровождается описанием процедуры подсчета необхо­димых критериев.

    Во всех остальных случаях нет необходимости проверять степень совпадения полученного эмпирического распределения с нормальным, и тем более стремиться преобразовать порядковую шкалу в равноинтервальную. В каких бы единицах ни были измерены переменные - в се­кундах, миллиметрах, градусах, количестве выборов и т. п. - все эти данные могут быть обработаны с помощь непараметрических критери­ев 3 , составляющих основу данного руководства.

    Определение и описание («параметрических критериев дано ниже в данной главе.

    Шкала равных отношений - это шкала, классифицирующая объекты или субъектов пропорционально степени выраженности изме­ряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. В физике абсолютная нулевая точка отсчета встречается при измерении длин от­резков или физических объектов и при измерении температуры по шка­ле Кельвина с абсолютным нулем температур. Считается, что в психо­логии примерами шкал равных отношений являются шкалы порогов аб­солютной чувствительности (Стивене С, 1960; Гайда В. К., Захаров В. П., 1982). Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная чест­ность - понятия скорее житейской психологии.

    То же относится и к установлению равных отношений: только метафора обыденной речи допускает, чтобы Иванов был в 2 раза (3, 100, 1000) умнее Петрова или наоборот.

    Абсолютный нуль, правда, может иметь место при подсчете ко­личества объектов или субъектов. Например, при выборе одной из 3 альтернатив испытуемые не выбрали альтернативу А ни одного раза, альтернативу Б - 14 раз и альтернативу В - 28 раз. В этом случае мы можем утверждать, что альтернативу В выбирают в два раза чаще, чем альтернативу Б. Однако при этом измерено не психологическое свойст­во человека, а соотношение выборов у 42 человек.

    По отношению к показателям частот возможно применять все арифметические операции: сложение, вычитание, деление и умножение. Единица измерения в этой шкале отношений - 1 наблюдение, 1 выбор, 1 реакция и т. п. Мы вернулись к тому, с чего начали: к универсальной шкале измерения в частотах встречаемости того или иного значения признака и к единице измерения, которая представляет собой 1 наблю­дение. Расклассифицировав испытуемых по ячейкам номинативной шка­лы, мы можем применить потом высшую шкалу измерения - шкалу от­ношений между частотами.

    Вопрос 3 Распределение признака. Параметры распределения

    Распределением признака называется закономерность встречаемо­сти разных его значений (Плохинский Н.А., 1970, с. 12).

    В психологических исследованиях чаще всего ссылаются на нор­мальное распределение.

    Нормальное распределение характеризуется тем, что крайние зна­чения признака в нем встречаются достаточно редко, а значения, близ­кие к средней величине - достаточно часто. Нормальным такое распре­деление называется потому, что оно очень часто встречалось в естест­венно-научных исследованиях и казалось "нормой" всякого массового случайного проявления признаков. Это распределение следует закону, открытому тремя учеными в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции (Плохинский Н.А., 1970, с.17). График нормального распределения представляет собой привычную глазу психолога-исследователя так на­зываемую колоколообразную кривую (см, напр., Рис. 1.1, 1.2).

    Параметры распределения - это его числовые характеристики, указывающие, где "в среднем" располагаются значения признака, на­сколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака. Наиболее практически важными параметрами являются математическое ожидание, дисперсия, показатели асимметрии и эксцесса.

    В реальных психологических исследованиях мы оперируем не па­раметрами, а их приближенными значениями, так называемыми оценка­ми параметров. Это объясняется ограниченностью обследованных выбо­рок. Чем больше выборка, тем ближе может быть оценка параметра к его истинному значению. В дальнейшем, говоря о параметрах, мы будем иметь в виду юс оценки.

    Среднее арифметическое (оценка математического ожидания) вы­числяется по формуле:

    где x i - каждое наблюдаемое значение признака;

    i - индекс, указывающий на порядковый номер данного зна­чения признака;

    n - количество наблюдений;

    ∑ - знак суммирования.

    Оценка дисперсии определяется по формуле:

    где X i - каждое наблюдаемое значение признака;

    x - среднее арифметическое значение признака;

    п - количество наблюдений.

    Величина, представляющая собой квадратный корень из несме­щенной оценки дисперсии (S), называется стандартным отклонением или средним квадратнческим отклонением. Для большинства исследова­телей привычно обозначать эту величину греческой буквой δ (сигма), а не S. На самом деле, δ - это стандартное отклонение в генеральной совокупности, a S - несмещенная оценка этого параметра в исследован­ной выборке. Но, поскольку S - лучшая оценка δ (Fisher R.A., 1938), эту оценку стали часто обозначать уже не как S, а как δ:

    В тех случаях, когда какие-нибудь причины благоприятствуют более частому появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторон­ней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней, или отрица­тельной - более высокие (см. Рис. 1.5).

    Показатель асимметрии (А) вычисляется по формуле:

    Для симметричных распределений А=0.


    Рис. 1.5. Асимметрия распределений.

    А) Левая, положительная

    Б) правая, отрицательная

    В тех случаях, когда какие-либо причины способствуют преиму­щественному появлению средних или близких к средним значений, об­разуется распределение с положительным эксцессом. Если же в рас­пределении преобладают крайние значения, причем одновременно и бо­лее низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см. Рис. 1.6).

    Показатель эксцесса (Е) определяется по формуле:

    Рис. 1.6. Эксцесс: а) положительный; б) отрицательный

    В распределениях с нормальной выпуклостью Е=0.

    Параметры распределения оказывается возможным определить только по отношению к данным, представленным по крайней мере в интервальной шкале. Как мы убедились ранее, физические шкалы длин, времени, углов являются интервальными шкалами, и поэтому к ним применимы способы расчета оценок параметров, по крайней мере, с формальной точки зрения. Параметры распределения не учитывают

    истинной психологической неравномерности секунд, миллиметров и других физических единиц измерения.

    На практике психолог-исследователь может рассчитывать пара­метры любого распределения, если единицы, которые он использовал при измерении, признаются разумными в научном сообществе.

    ← Вернуться

    ×
    Вступай в сообщество «koon.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «koon.ru»