Предмет теории вероятностей. Случайные события

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике – понятия силы, массы, скорости, ускорения и т.д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие – это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.

Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.

Под «событием» в теории вероятностей понимается всякий факт, который в результате опыта может произойти или не произойти.

Приведем несколько примеров событий:

А – появление герба при бросании монеты;

В – появление трех гербов при трехкратном бросании монеты;

С – попадание в цель при выстреле;

D – появление туза при вынимании карты из колоды;

Е – обнаружение объекта при одном цикле обзора радиолокационной станции;

F – обрыв нити в течение часа работы ткацкого станка.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни – большей, другие – меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более возможно, чем В и D. Относительно событий С, Е и F аналогичных выводов сразу сделать нельзя; для этого следовало бы уточнить условия опыта. Так или иначе, ясно, что каждое из таких событий обладает той или иной степенью возможности. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число мы назовем вероятностью события.

Таким образом, мы ввели в рассмотрение второе основное понятие теории вероятностей – понятие вероятности события. Вероятность события есть численная мера степени объективной возможности этого события.

Заметим, что уже при самом введении понятия вероятности события мы связываем с этим понятием определенный практический смысл, а именно: на основании опыта мы считаем более вероятными те события, которые происходят чаще; мало вероятными - те, которые почти никогда не происходят. Таким образом, понятие вероятности события в самой своей основе связано с опытным, практическим понятием частоты события.

Сравнивая между собой различные события по степени их возможности, мы должны установить какую-то единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т.е. такого события, которое в результате опыта непременно должно произойти. Пример достоверного события – выпадение не более 6 очков при бросании одной игральной кости.

Если приписать достоверному событию вероятность, равную единице, то все другие события – возможные, но не достоверные – будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т.е. такое событие, которое в данном опыте не может произойти. Пример невозможного события – появление 12 очков при бросании одной игральной кости. Естественно приписать невозможному событию вероятность, равную нулю.

Таким образом, установлены единица измерения вероятностей – вероятность достоверного события – и диапазон изменения вероятностей любых событий – числа от 0 до 1.

1. Случайные события

Теория вероятностей - это раздел математики изучающий закономерности массовых случайных событий.

Случайным называется событие, наступление которого нельзя гарантировать. Случайность того или иного события определяется множеством причин, которые существуют объективно, но учесть их все, а также степень их влияния на изучаемое событие, невозможно. К таким случайным событиям относятся: выпадание того или иного числа при бросании игральной кости, выигрыш в лотереи, коли­чество больных, записавшихся на прием к врачу и т.п.

И хотя в каждом конкретном случае трудно предсказать исход испытания, при достаточно большом числе наблюдений можно установить наличие некоторой закономерности. Подбрасывая монету, можно заметить, что число выпадания орла и решки примерно одинаково, а при бросании игральной кости различные грани также появляются, примерно одинаково. Это говорит о том, что случайным явлениям присущи свои закономерности, но они проявляются лишь при большом количестве испытаний. Правильность этого подтверждает закон больших чисел, который лежит в основе теории вероятностей.

Рассмотрим основные термины и понятия теории вероятностей.

Испытанием называется совокупность условий, при которых может произойти данное случайное событие.

Событие - это факт, который при осуществлении определенных условий может произойти или нет. События обозначают большими буквами латинского алфавита А, В, С...

Например, событие А - рождение мальчика, событие В – выигрыш в лотерее, событие С - выпадение цифры 4 при бросании игральной кости.

События бывают достоверные, невозможные и случайные.

Достоверное событие - это событие, которое в результате испытания непременно должно произойти.

Например, если на игральной кости на всех шести гранях. нанести цифру 1, тогда выпадение цифры 1, при бросании кости, есть событие достоверное.

Невозможное событие - это событие, которое в результате испытания не может произойти.

Например, в ранее рассмотренном примере - это выпадение любой цифры, кроме 1.

Случайное событие - это событие, которое при испытаниях может произойти или не произойти. Те или иные события реализуются с различной возможностью.

Например, завтра днем ожидается дождь. В этом примере наступление дня является испытанием, а выпадение дождя - случайное событие.

События называются несовместными, если в результате данного испытания появление одного из них исключает появление другого.

Например, при бросании монеты выпадение одновременно орла и решки есть события несовместные.

События называются совместными, если в результате данного испытания появление одного из них не исключает появление другого.


Например, при игре в карты появление валета и масти пик - события совместные.

События называются равновозможными, если нет оснований считать, что одно из них происходит чаше, чем другое!

Например, выпадение любой грани игрального кубика есть равновозможные события.

События образуют полную группу событий, если в результате испытания обязательно произойдет хотя бы одно из них и любые два из них несовместны.

Например, при 10 выстрелах в мишень возможно от 0 до 10 попаданий. При бросании игрального кубика может выпасть цифра от 1 до 6. Эти события образуют полную группу.

События, входящие в полную группу попарно несовместных и равновозможных событий, называются исходами, или элементарными событиями. Согласно определению достоверного события, можно считать, что событие, состоящее в появлении одного, неважно какого, из событий полной группы, есть событие достоверное.

Например, при бросании одного игрального кубика выпадает число меньше семи. Это пример достоверного события.

Частным случаем событий, образующих полную группу, являются противоположные события.

Два несовместных события А и (читается «не А») называются противоположными, если в результате испытания одно из них должно обязательно произойти.

Например, если стипендия начисляется только при получении на экзамене хороших и отличных оценок, то события «стипендия» и «неудовлетворительная или удовлетворительная оценка» - противоположные.

Событие А называется благоприятствующим событию В, если появление события А влечет за собой появление события В.

Например, при бросании игрального кубика появлению нечетного числа благоприятствуют события, связанные с выпадением чисел 1,3 и 5.

2. Операции над событиями

Операции над событиями аналогичны операциям над множествами.

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из них в результате испытания.

Сумма событий может быть обозначена знаками «+», «È», «или».

На рисунке 1 представлена геометрическая интерпретация с помощью диаграмм Эйлера-Венна. Сумме событий А + В будет соответствовать вся заштрихованная область.

рис.1

Область пересечения событий А и В соответствует совместным событиям, которые могут произойти одновременно. Аналогично для событий А, В и С имеются совместные события А и В; А и С; В и С; А и В и С, которые могут про изойти одновременно.

Например, в урне находятся белые, красные и синие шары. Возможны следующие события: А - вынут белый шар; В - вынут красный шар; С - вынут синий шар. Событие В + С означает, что произошло событие - вынут цветной шар или вынут не белый шар.

Произведением нескольких событий называется событие которое состоит в совместном наступлении всех этих событий в результате испытания.

Произведение событий может быть обозначено знаками «х», «∩», «и».

Геометрическая интерпретация произведения событий представлена на рис. 2.

рис.2

Произведением событий А и В будет заштрихованная область пересечения площадей А и В. А для трех событий А и В и С - общая площадь, одновременно входящая во все три события.

Например, пусть из колоды карт наугад извлекается карта. Событие А - вынута карта пиковой масти; В - вынут валет. Тогда событие А×В означает событие - вынут валет пик.

Разностью двух событий А-В называется событие, состоящее из исходов, входящих в А, но не входящих в В.

На рис. 3 представлена иллюстрация разности событий с помощью диаграмм Эйлера-Венна.

рис.3

Разностью двух событий А-В является заштрихованная область А без той части, которая входит в событие В. Разность между произведением событий А и В и событием С будет совместная площадь события А и события В без совместной с нею площадью события С.

Например, пусть при бросании игрального кубика событие А - появление четных чисел (2,4,6), а событие В - чисел-кратных 3, т.е. (3, 6). Тогда событие А-В появление чисел (2,4).

3. Определение вероятности события

Случайные события реализуются с различной возможностью. Одни происходят чаще, другие - реже. Для количественной оценки возможностей реализации события вводится понятие вероятности события.

Вероятность события - это число, характеризующее степень возможности появления события при многократном повторении испытаний.

Вероятность обозначается буквой Р (от англ. probability - вероятность). Вероятность является одним из основных понятий теории вероятностей. Существует несколько определений этого понятия.

Классическое определение вероятности заключается в следующем. Если известны все возможные исходы испытания и нет оснований считать, что одно случайное событие появлялось бы чаще других, т.е. события равновозможны и несовместны, то имеется возможность аналитического определения вероятности события.

Вероятностью Р(А) события А называется отношение числа благоприятствующих исходов т к общему числу равновозможных несовместных исходов п:

Свойства вероятности:

1. Вероятность случайного события А находится между 0 и 1.

2. Вероятность достоверного события равна 1.

.

3. Вероятность невозможного события равна 0.

.

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Вероятность. Что это?

Теория вероятностей , как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов. Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах. Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.

Алгоритм решения типовых задач на нахождение вероятности

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике. А теперь не будем ходить вокруг да около, и сформулируем примерную схему , по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде «вычислить вероятность того, что …» и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения.

    Вероятность

    Ответьте на тестовые вопросы типа:

    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}^3=\frac{30!}{3!27!}=\frac{28\cdot 29 \cdot 30}{1\cdot 2 \cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}^3=\frac{5!}{3!2!}=\frac{4 \cdot 5}{1\cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=\frac{m}{n}=\frac{10}{4060}=0,002.$$ Задача решена.

Еще примеры: Решенные задачи на классическое определение вероятности.

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_{n}(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность: $$ P(X)=P_{8}(5)=C_8^5 \cdot 0,5^5 \cdot (1-0,5)^{8-5}=\frac{8!}{5!3!}\cdot 0,5^8=\frac{6\cdot 7 \cdot 8}{1\cdot 2 \cdot 3} \cdot 0,5^8= 0,219.$$ Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли, решебник задач по теории вероятности.

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Спасибо, что читаете и делитесь с другими

Другие полезные статьи по теории вероятностей

Статьи о решении математических задач

Наблюдение явления, опыт, эксперимент, которые можно провести многократно, в теории вероятностей принято называть испытанием . Результат, исход испытания называется событием .

Пример 1 . Сдача экзамена — это испытание; получение определенной отметки — событие. Выстрел — это испытание; попадание в определенную область мишени — событие. Бросание игрального кубика — это испытание; появление того или иного числа очков на брошенной игральной кости — событие.

Виды случайных событий

События называются несовместными , если появление одного из них исключает появления других событий в одном и том же испытании.

Пример 2 :

  • несовместные события : день и ночь, человек читает и человек спит, число иррациональное и четное;
  • совместные события : идет дождь и идет снег, человек ест и человек читает, число целое и четное.

Несколько событий образуют полную группу (пространство исходов) , если в результате испытания появиться хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

Пример 3 .

Урок алгебры » Случайные события. Вероятность случайного события.»

При сдаче зачета возможны следующие исходы: «зачтено», «не зачтено», «не явился»; при подбрасывании монеты – «орел», «решка».

Пример 4 . Пусть в урне содержится 6 одинаковых шаров, причем 2 из них — красные, 3 — синие и 1 — белый. Какова возможность вынуть наудачу из урны цветной шар? Можно ли охарактеризовать эту возможность числом?

Оказывается можно. Это число и называется вероятностью события А (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события .

Каждый из возможных результатов испытания (в примере 4, испытание состоит в извлечении шара из урны) называется элементарным исходом .

Те элементарные исходы, в которых интересующее нас событие наступает, называются благоприятствующими этому событию. В примере 4 благоприятствуют событию А (появление цветного шара) 5 исходов.

События называются равновозможными , если есть основания считать, что не одно из них не является более возможным, чем другое.

Пример 5 . Появление того или иного числа очков на брошенном игральном кубике – равновозможные события.

Вероятностью P(A) события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Вероятность P(A) события А определяется по формуле

где m – число элементарных исходов, благоприятствующих A ; n – число всех возможных элементарных исходов испытания.

В примере 4 всего элементарных исходов 6 ; из них 5 благоприятствуют событию А . Следовательно, вероятность того что взятый шар окажется цветным, равна P(A) = 5/6 .

Пример 6 . Определить вероятность выпадения нечётного числа очков на кости.

Решение. При бросании кости событие A – «выпало нечётное число очков» можно записать как подмножество {1, 3, 5} пространства исходов {1, 2, 3, 4, 5, 6} (рис. 1).

Число всех равновозможных исходов n = 6, а число благоприятных событию A m = 3. Следовательно,

Пример 7 . В урне находится 7 шаров: 2 белых, 4 черных и 1 красный. Вынимается один шар наугад. Какова вероятность того, что вынутый шар будет чёрным?

Решение. Занумеруем шары. Пусть, например, шары с номерами 1 и 2 – белые, с номерами 3, 4, 5 и 6 – чёрные, а красному шару присвоим номер 7 .

Так как мы можем вынуть только один из семи шаров, то общее число равновозможных исходов равно семи (n = 7 ). Из них 4 исхода – появление шаров с номерами 3, 4, 5 и 6 – приведут к тому, что вынутый шар будет чёрным (m = 4 ). Тем самым, вероятность события А , состоящего в появлении чёрного шара, равна

Вычислите вероятность того, что вынутый шар будет белым.

Пример 8 .

Вычислить вероятность выпадения в сумме 10 очков при бросании пары костей.

Решение. Рассмотрим все равновозможные исходы в результате бросания двух костей (их число равно 36 — рекомендуем записать в виде таблицы). Выпадение в сумме 10 очков (событие А ) возможно в трёх случаях4 очка на первой кости и 6 на второй, 5 очков на первой и 5 на второй, 6 очков на первой и 4 на второй. Поэтому вероятность события А (выпадения в сумме 10 очков) равна

Свойство 1 . Вероятность достоверного события А равна единице: Р(А) = 1 .

Свойство 2 . Вероятность невозможного события А равна нулю: Р(А) = 0 .

Свойство 3 . Вероятность случайного события есть положительное число, заключенное между нулем и единицей :

0 £ P (A) £ 1.

Пример 9 . Так как вероятность выпадения 13 очков при бросании пары костей – невозможное событие, его вероятность равна нулю .

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же часто встречаются испытания, число возможных исходов которых бесконечно. Кроме этого, часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. По этой причине, наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение .

Статистическое определение вероятности

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события А называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний:

где m – число появлений события А , n – общее число испытаний.

Классическая вероятность вычисляется до опыта, а относительная частота – после опыта .

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний велико, то относительная частота обнаруживает свойство устойчивости .

Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Таким образом, при достаточно большом количестве испытаний в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Пример 10 . Естествоиспытатель К. Пирсон терпеливо подбрасывал монету и после каждого бросания не ленился записывать полученный результат. Проделав эту операцию 24 000 раз, он обнаружил, что герб выпадал в 12 012 случаях. Вычисляя относительную частоту выпадения герба, он получил , что практически равно 1/2.

Многих интересует вопрос: возможно ли повлиять на случайные события, выявить какую-либо закономерность событий, получить тот результат, который желателен. Все явления, которые окружают нас, происходят и изменяются с какой-то долей случайности, неопределенности.

Со случайными событиями мы встречаемся чаще, чем это принято считать. Случайные факторы лежат в основе окружающей среды, экономики, политики, социальной и общественной жизни, они определяют течение любого процесса массового обслуживания - торговли, телефонной связи, транспортных услуг и медицинской помощи. Задача управления различного рода процессами, которая наиболее остро стоит перед современным обществом, состоит в том, чтобы научиться ориентироваться в мире случайностей и активно действовать, опираясь на скрытые специфические закономерности.

Все явления окружающей нас действительности можно рассматривать с точки зрения вероятности их наступления. Когда студент идет на экзамен, вероятность получения им хорошей оценки зависит от нескольких причин: подготовленности студента, удачно выбранного билета, самочувствия, настроя.

Экономиста может интересовать вероятность того, что цены на товар не вырастут, если не снизится объем его производства, или вероятность того, что застрахованный автомобиль не попадет в аварию.

Все эти события являются случайными и могут наступить или нет с некоторой долей неопределенности. Количественной мерой такой неопределенности является вероятность наступления случайного события, под которой понимают число, которое выражает степень уверенности в наступлении того или иного случайного события.

Случайными событиями называют возможные результаты единичной операции, или испытания .

Под испытанием следует понимать процесс, включающий в себя определенные условия и приводящий к одному из нескольких возможных исходов .

Например: испытание - бросание монеты, случайное событие - выпадение герба. Испытание - рождение ребенка, случайное событие - пол ребенка - мужской.

Исходом опыта может быть результат наблюдения, измерения, оценки.

Случайное событие может состоять из нескольких элементарных событий.

Единичный, отдельный исход испытания называется элементарным событием.

Событие называется случайным, если в результате испытания (опыта) оно может произойти, а может и не произойти.

Например, стрелок, производящий выстрел, может попасть или не попасть в цель. В этом случае испытание - это выстрел, а возможные элементарные исходы - попадание или непопадание в цель. Футбольная команда может участвовать в матче - это испытание, в результате которого могут наступить исходы, или элементарные события: выигрыш, проигрыш или ничья.

Оценка студента на экзамене - это случайное событие, которое состоит из элементарных событий: получение оценки «отлично», получение оценки «хорошо», получение оценки «удовлетворительно», получение оценки «неудовлетворительно».

Элементарные события можно классифицировать по мере их неопределенности как достоверные, невозможные и случайные.

Достовернымназывают событие, которое обязательно произойдет при определенном комплексе условий .

Например, если в ящике находятся только стандартные детали, то извлечение из него стандартной детали есть событие достоверное. Достоверным является и то, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Событие, которое не может произойти в результате данного испытания, называется невозможным .

Если в ящике все детали стандартные, то извлечение из него нестандартной детали есть событие невозможное. Квадрат вещественного числа не может быть отрицательным. Достоверные и невозможные события, вообще говоря, не являются случайными.

Случайные события. Вероятность (стр. 1)

Фундаментом для научного подхода к поиску ответов на вопросы подобного рода является теория вероятностей.

Зарождение теории вероятностей и формирование первых понятий этой ветви математики произошло в середине 17 века, когда Паскаль, Ферма, Бернулли попытались осуществить анализ задач связанных с азартными играми новыми методами. Скоро стало ясно, что возникающая теория найдет широкий круг применения для решения многих задач возникающих в различных сферах деятельности человека .

Производя достаточно большое количество опытов или испытаний, можно определить, как часто появляется событие, и вычислить вероятность его наступления. Вероятность, определенную таким образом, называют статистической или послеопытной. В некоторых случаях можно определить доопытную вероятность, которую называют классической.

Вероятностью появления события А называют отношение числа исходов, благоприятствующих появлению этого события, к общему числу всех единственно возможных и несовместных элементарных исходов. Обозначим число благоприятствующих событию А исходов через М, а число всех возможных исходов N. тогда для определения вероятности можно использовать формулу Р (А) = М/N .

Я провела эксперимент: попробовала вытащить из 15 шариков, 2 из которых красные, остальные зеленые, произвольным образом 2 шарика. Пыталась определить вероятность того, что оба шарика окажутся красными; оба шарика будут зелеными; один шарик будет красный, другой зеленый.

Предположенный перед проведением эксперимента результат оправдался: наиболее возможным исходом является вытаскивание 2 зеленых шариков, наименее возможным исходом является вытаскивание 2 красных шариков.

При сравнении практической и теоретической вероятности, обнаружилось довольно большое расхождение, причиной которого является малое количество проведенных испытаний.

Для получения более точного результата желательно проводить как можно больше испытаний, рассматривать всевозможные исходы испытаний и благоприятные исходы. Не забывать, что проверить это всегда можно и теоретически. При этом вероятности до проведения опыта и после проведения должны совпадать.

Проведя исследование по данному вопросу, я пришла к выводу: теория вероятности не влияет на случайные события, она только позволяет выяснить степень его наступления, а вероятность, посчитанная во время эксперимента, тем точнее, чем больше проведено испытаний.

Литература:

  1. Кибзун А. И. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / А. И. Кибзун. - М.: Физматлит, 2002. - 224 с.
  2. Кочетков Е. С., Смерчинская С. О., Соколов В. В. Теория вероятностей и математическая статистика. - М.: ФОРУМ: ИНФРА-М, 2006. - 240 с.
  3. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. - М.: Айрис-пресс, 2007. - 288 с.

Спасибо, что читаете и делитесь с другими

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события $А$, если появление этого события влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8).

Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров…)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей…)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов…)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .. Количество элементарных исходов (количество карт)

Искомая вероятность
.

Формулы по теории вероятности онлайн

В данном разделе вы найдете формулы по теории вероятностей в онлайн-варианте (скачать можно на странице Таблицы и формулы по теории вероятностей). Если слово подчеркнуто, щелкнув на ссылке, вы перейдете к подробному описанию термина, примерам или вычислению на онлайн-калькуляторе. Используйте эти возможности!

А также для изучения тервера у нас есть:

Спасибо, что читаете и делитесь с другими

I. Случайные события. Основные формулы онлайн

1. Основные формулы комбинаторики

Число перестановок $$P_n = n!

Учебник по теории вероятностей

1\cdot 2 \cdot 3 \cdot … \cdot (n-1) \cdot n$$

Число размещений $$A_m^n = n \cdot (n-1) \cdot … \cdot (n-m+1)$$

Число сочетаний $$C_n^m =\frac{A_n^m}{P_m}=\frac{n!}{m! \cdot (n-m)!}$$

2. Классическое определение вероятности

$$P(A) = \frac{m}{n},$$ где $m$ — число благоприятствующих событию $A$ исходов, $n$ — число всех элементарных равновозможных исходов.

Подробнее о классической вероятности см. в онлайн-учебнике и калькуляторах решений.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

$$ P(A+B) = P(A)+P(B) $$

Теорема сложения вероятностей совместных событий:

$$ P(A+B) = P(A)+P(B)-P(AB) $$

Примеры решений и теория по алгебре событий тут.

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B) $$

Теорема умножения вероятностей зависимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B|A),\\ P(A\cdot B) =P(B)\cdot P(A|B). $$

$P(A|B)$ — условная вероятность события $A$ при условии, что произошло событие $B$,

$P(B|A)$ — условная вероятность события $B$ при условии, что произошло событие $A$.

Подробнее об условной вероятности.

5. Формула полной вероятности

$$ P(A)=\sum_{k=1}^{n} P(H_k)\cdot P(A|H_k), $$

6. Формула Байеса (Бейеса). Вычисление апостериорных вероятностей гипотез

$$ P(H_m|A) =\frac{P(H_m)\cdot P(A|H_m)}{P(A)} = \frac{P(H_m)\cdot P(A|H_m)}{\sum\limits_{k=1}^{n} P(H_k)\cdot P(A|H_k)}, $$

где $H_1, H_2, …, H_n$ — полная группа гипотез.

Примеры и теория на эту тему.

7. Формула Бернулли

$$ P_n(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!}\cdot p^k \cdot (1-p)^{n-k} $$ вероятность появления события ровно $k$ раз в $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании.

Еще полезное по формуле Бернулли теория и примеры, онлайн-калькуляторы.

8. Наивероятнейшее число наступления события

Наивероятнейшее число $k_0$ появления события при $n$ независимых испытаниях (где $p$ — вероятность появления события при одном испытании):

$$ np-(1-p) \le k_0 \le np+p. $$

Вычислить наивероятнейшее значение онлайн.

9. Локальная формула Лапласа

$$ P_n(k) = \frac{1}{\sqrt{npq}} \varphi\left(\frac{k-np}{\sqrt{npq}} \right) $$

вероятность появления события ровно $k$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.

Значения функции $\varphi(x)$ берутся из таблицы.

10. Интегральная формула Лапласа

$$ P_n(m_1, m_2) = \Phi\left(\frac{m_2-np}{\sqrt{npq}} \right)-\Phi\left(\frac{m_1-np}{\sqrt{npq}} \right) $$

вероятность появления события не менее $m_1$ и не более $m_2$ раз при $n$ независимых испытаниях, $p$ — вероятность появления события при одном испытании, $q=1-p$.
Значения функции $\Phi(x)$ берутся из таблицы.

Теория и примеры на формулы Муавра-Лапласа.

11. Оценка отклонения относительной частоты от постоянной вероятности $p$

$$ P\left(\left| \frac{m}{n} -p\right| \le \varepsilon\right) = 2 \Phi\left(\varepsilon\cdot \frac{n}{\sqrt{p(1-p)}} \right) $$

$\varepsilon$ — величина отклонения, $p$ — вероятность появления события.

Решенные задачи по теории вероятностей

Нужна готовая задача по терверу? Найдите на сайте-решебнике:

Каталог формул по теории вероятности онлайн

Полный список страниц с формулами:

Спасибо, что читаете и делитесь с другими

Случайное событие –

Два события несовместны,

Теория вероятностей

Алгебра случайных событий, диаграммы Вьенна-Эйлера.

Сумма событий А и В называется такое событие, которое происходит, когда происходит либо А, либо В, либо оба события.

Произведением А и В называется событие, которое происходит, если в опыте происходят оба события.

Событием Ā, противоположное событию А называется событие, которое происходит всякий раз, когда не наступает событие А.

A\B (дополнение А до В) – происходит А, но не происходит В

Классическое определение вероятности. Комбинаторика.

– классическое определение вероятности.

m – общее число исходов

n – число исходов, благоприятствующих наступлению события А..

Комбинаторика – раздел математики, изучающий расположение объектов в соответствии со специальными правилами и подсчитывает количество способов таких расположений. Комбинаторика возникла в 18 веке. Рассматривается как раздел теории множеств.

Аксиоматическое построение теории вероятностей.

Аксиома 1. «аксиома неотрицательности» P(A)≥0

Аксиома 2. «аксиома нормированности» P(Ω)=1

Аксиома 3. «аксиома аддитивности» Если события А и В несовместны (АВ=Ø), то P(A+B)=P(A)+P(B)

Теорема о вероятности суммы событий.

Для любых событий Р(А+В) = Р(А) + Р(В) – Р(АВ) (док-во в лекции)

Условная вероятность. Зависимые и независимые события. Теоремы о вероятности произведения событий.

Р(А|В) – вероятность события А, если событие В уже произошло – условная вероятность.

Событие А называют независимым , от события В, если вероятность события А не меняется в зависимости от того, происходит или нет событие В.

Теорема умножения вероятностей: Р(АВ) = Р(А|В)·Р(В) = Р(В|А)·Р(А)

Теорема умножения вероятностей независимых событий: Р(АВ) = Р(А)·Р(В)

По определению условной вероятности,

Формула полной вероятности.

Есть события Н 1 , Н 2 ,….,Н n попарно несовместные и образуют полную группу. Такие события называют гипотезами . Пусть есть некоторое событие А. А=АН 1 +АН 2 +…+АН n (слагаемые этой суммы попарно несовместны).

Формула Байеса.

Н 1 , Н 2 ,….,Н n A

Схема Бернулли. Формула Бернулли. Наивероятнейшее число успехов.

Пусть проводится конечное число n последовательных испытаний, в каждом из которых некоторое событие А может либо наступить «успех», либо не наступить «неудача», причем эти испытания удовлетворяют следующим условиям:

· Каждое испытание случайно относительно события А.т.е. до проведения испытания нельзя сказать, появится А или нет;

· Испытания проводятся в одинаковых с вероятностной точки зрения условиях, т.е. вероятность успеха в каждом отдельно взятом испытании равна р и не меняется от испытания к испытанию;

· Испытания независимы, т.е. исход любого из них никак не влияет ни исходы других испытаний.

Такая последовательность испытаний называется схемой Бернулли или биноминальной схемой, а сами испытания – испытаниями Бернулли.

Для расчета вероятности Р n (к) того, что в серии из n испытаний Бернулли окажется ровно k успешных, применяется формула Бернулли: (k = 0,1,2,…n).

10. Понятие случайной величины. Дискретная случайная величина, способы ее задания: ряд распределения.

Случайной величиной называется величина, которая в каждом испытании (при каждом наблюдении) принимает одно из множества своих возможных значений, заранее не известно, какое.

Дискретная с.в. – с.в., множество возможных значений которой конечно или счетно.

Ряд распределения с.в. (ряд распределения вероятности). График ряда распределения задается многоугольником распределения – ломанная, которая соединяет точки с координатами (x i ,p i)

X x 1 x 2 x 3 x k
P p 1 p 2 p 3 p k

Закон распределения с.в.: p k =P({X=x k })

Случайные события, их классификация. Понятие вероятности.

Случайное событие – событие, которое в условиях опыта оно может произойти, а может и не произойти. Причем заранее неизвестно, произойдет оно или нет.

Два события несовместны, если появление одного из них исключает появление другого в том же опыте.

Теория вероятностей изучает закономерности, присущие массовым случайным явлениям. Основные понятия теории вероятностей были заложены в переписке Паскалем и Ферма. Эти понятия зародились в результате попыток математически описать азартные игры.

Глава 1. Основные понятия и формулы теории вероятностей ………………………………………….. 5

§ 1. Предмет теории вероятностей. Случайные

события ………………………………………. 5

§ 2. Вероятность случайного события …………... 8

§ 3 Алгебра событий …………………………….. 12

§ 4 Формула сложения вероятностей …………… 17

§ 5 Аксиоматический подход к теории

вероятностей ………………………………… 19

§ 6 Классическая схема теории вероятностей …. 24

§ 7 Геометрические вероятности ……………….. 26

§ 8 Условная вероятность. Независимость

случайных событий …………………………. 29

§ 9 Формула полной вероятности. Формулы

Байеса ……………………………………….... 39

§ 10 Комбинаторика ………………………………. 42

§ 11 Схема Бернулли ……………………………..... 49

§ 12 Вероятности при больших значениях n .

Глава 2. Случайные величины и их характеристики 62

§ 1 Случайная величина и её функция

распределения.................................................. 62

§ 2 Дискретные случайные величины................. 67

§ 3 Непрерывные случайные величины.............. 70

§ 4 Функции от случайной величины.................. 78

§ 5 Системы случайных величин ………………. 81

§ 6 Независимые случайные величины ………... 89

§ 7 Математическое ожидание случайной

величины …………………………………….. 94

§ 8 Дисперсия случайной величины ………….... 109

§ 9. Корреляционный момент и корреляция

случайных величин ……………………………. 113

Глава 3. Закон больших чисел и центральная

предельная теорема ……………………… 119

§ 1 НеравенствоЧебышева ……………………... 119

§ 2 Закон больших чисел ………………………... 123

§ 3 Центральная предельная теорема Ляпунова и

её следствия …………………………………129

Задачи по теории вероятностей …………………… 138

Индивидуальные задания № 1 по теории

вероятностей …………………………………………… 153

Индивидуальные задания № 2 по теории

вероятностей …………………………………………... 166

Таблица значений функции …….. 183

Таблица значений для функции

................................................... 185

Степени числа e ....................................................... 188

Таблица значений функции ………………..... 189

Глава I. Основные понятия и формулы теории вероятностей.

Предмет теории вероятностей. Случайные события.

Предметом теории вероятностей являются модели опытов (экспериментов, наблюдений, испытаний), которые осуществляются, как только создаются определённые совокупности условий.

Примеры опытов:

1) бросание монеты 20 раз,

2) покупка лотерейного билета,

3) приход утром (между 8 и 9 часами) на станцию метро «Новогиреево»,

На практике часто встречаются такие ситуации, когда исход проводимого нами опыта нельзя предсказать заранее с полной уверенностью. Например (смотри примеры опытов выше)

1) невозможно предсказать, что герб выпадет ровно 9 раз, или герб выпадет от 7 до 15 раз

2) выпадет ли выигрыш на лотерейный билет с таким-то номером

3) мы будем ждать электропоезд от 20 до 80 секунд

Во всех подобных ситуациях мы вынуждены считать результат опыта зависящего от случая, рассматривать его как случайное событие .

Определение. Некоторое событие называется случайным по отношению к данному опыту, если при осуществлении этого опыта оно может наступить, а может и не наступить.

Примером случайного события может служить выпадение герба ровно 9 раз в опыте с бросанием монеты 20 раз, выигрыш проданному лотерейному билету, будем ждать поезд от 20 до 80 секунд, совпадение даты рождения (в опыте) у двух наугад выбранных студентов на лекции по теории вероятностей и в данной аудитории.

Случайные события обозначаются в дальнейшем А , В , С и т.д.

Замечание. Согласно данному выше определению, событие считают случайным, если его наступление в результате опыта представляет собой лишь одну из двух возможностей – оно либо наступит, либо не наступит.

События, которые в результате данного опыта всегда наступают, называется достоверными (обозначение I), которые никогда не наступают – невозможными событиями (обозначение Ø).

Теория вероятностей рассматривает модели таких опытов, которые могут быть повторены в одних и тех же условиях (достаточно) неограниченное число раз, т.е. мы будем предполагать, что в принципе возможно создать много раз одни и те же условия, осуществляющие данный опыт.

Случайные события, наступление которых возможно в такого рода опытах, называются массовыми случайными событиями.

Массовые случайные события следует отличать от единичных, обладающих той особенностью, что опыт, с которым связаны эти события, принципиально невоспроизводим. Например, событие «1 января 2010 г. в Москве шел снег» является в этом смысле единичным (исключительным), так как воспроизвести наступление указанного дня много раз невозможно. В то же время событие « 1 января в Москве шёл снег» (без упоминания о годе) является несомненно, массовым: ведь наблюдать погоду в Москве 1 января можно много раз (в течение многих лет).

В самых общих словах предмет теории вероятностей может быть определён следующим образом:

Теория вероятностей занимается изучением закономерностей, присущих массовым случайным событиям .

Оказывается, и случайные события подчиняются некоторым (вероятностным) закономерностям. Исход каждого опыта по отношению к данному событию является случайным, неопределённым. Однако средний результат большого числа опытов утрачивает случайный характер, становится закономерным.

Например, рассмотрим опыт с бросанием данной монеты. Предположим, что бросание производится много раз подряд. Оказывается «доля» (средний результат) тех бросаний, при которых выпадает герб (т.е. отношение числа таких бросаний к числу всех бросаний) с увеличением числа бросаний приближается к (или другому числу – это зависит от состояния монеты).

Приведём другой пример. В сосуде заключён газ. Находясь в беспрерывном движении, молекулы газа ударяются друг о друга и вследствие этого постоянно меняют величину и направление своей скорости. Казалось бы, отсюда следует, что давление газа на стенки сосуда, обусловленное ударами отдельных молекул о стенки, должно меняться случайным, неконтролируемым образом. Однако это не так: давление газа подчиняется строгой закономерности (закону Бойля-Мариотта). Причина этой закономерности кроется в том, что давление газа на стенки сосуда есть средний результат воздействия большого числа молекул. Случайные особенности, свойственные движению отдельных молекул, в массе (поскольку молекул много) взаимно погашаются, нивелируются и возникает некоторая средняя закономерность.

Именно эта устойчивость среднего результата, его независимость от колебаний отдельных слагаемых (отдельных исходов опыта) и обуславливает широту применения теории вероятностей. Физика, биология, медицина, лингвистика и т.д.- все эти области науки используют (одни в большей степени, другие в меньшей) понятия и выводы теории вероятностей и родственных ей дисциплин - математической статистики, теории информации и т.д.

Перейдём теперь к простейшей, самой главной закономерности в случайных событиях, в конечном счёте, составляющей основу всех приложений теории вероятностей к практике.


Похожая информация.


← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»