Рисовать анатомия строение нейрона. Как свойства и строение нервной клетки обеспечивает основные функции НС? Основные понятия о функциях нейронов

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Человеческий организм состоит из триллионов клеток, один только мозг содержит примерно 100 миллиардов нейронов, самых разных форм и размеров. Возникает вопрос, а как устроена нервная клетка, и чем она отличается от других клеток организма?

Устройство нервной клетки человека

Как большинство других клеток человеческого тела, нервные клетки имеют ядра. Но по сравнению с остальными, они являются уникальными, так как у них есть длинные, нитевидные ответвления, по которым передаются нервные импульсы.

Клетки нервной системы похожи на другие, так как также окружены клеточной мембраной, имеют ядра, содержащие гены, цитоплазму, митохондрии и другие органеллы. Они участвуют в таких фундаментальных клеточных процессах, как синтез белка и выработка энергии.

Нейроны и нервные импульсы

Состоит из - это пучок нервных клеток. Нервная клетка, передающая определенную информацию, называется нейрон. Данные, которые переносят нейроны, называются нервными импульсами. Подобно электрическим импульсам, они переносят информацию с невероятной скоростью. Быструю передачу сигналов обеспечивают аксоны нейронов, покрытые специальной миелиновой оболочкой.

Эта оболочка покрывает аксон подобно пластиковому покрытию на электрических проводах и позволяет нервным импульсам перемещаться быстрее. Что представляет собой нейрон? Он имеет особую форму, которая позволяет передать сигнал от одной клетки к другой. Нейрон состоит из трех основных частей: тела клетки, множества дендритов и одного аксона.

Типы нейронов

Нейроны обычно классифицируются на основании той роли, которую они играют в организме. Известны два основных типа нейронов - сенсорные и моторные. Сенсорные нейроны проводят нервные импульсы от органов чувств и внутренних органов в Моторные нейроны, наоборот, несут нервные импульсы от ЦНС к органам, железам и мышцам.

Клетки нервной системы устроены таким образом, что оба типа нейронов работают сообща. Сенсорные нейроны несут информацию о внутренней и внешней среде. Эти данные используются для отправки сигналов через моторные нейроны, чтобы сообщить организму, как ему стоит реагировать на полученную информацию.

Синапс

Место, где аксон одного нейрона отвечает дендритам другого, называется синапсом. Нейроны связываются друг с другом посредством электрохимического процесса. При этом в реакцию вступают химические вещества, которые называются нейротрансмиттерами.


Тело клетки

Устройство нервной клетки предполагает наличие в теле клетки ядра и других органелл. Дендриты и аксоны, подключенные к телу клетки, напоминают лучи, исходящие от солнца. Дендриты получают импульсы от других нервных клеток. Аксоны передают нервные импульсы к другим клеткам.

Один нейрон может иметь тысячи дендритов, поэтому он может общаться с тысячами других клеток. Аксон покрыт миелиновой оболочкой - жировым слоем, который его изолирует и позволяет передавать сигнал намного быстрее.

Митохондрии

Отвечая на вопрос, как устроена нервная клетка, важно отметить элемент, отвечающий за поставку метаболической энергии, которая затем может легко утилизироваться. В этом процессе первостепенную роль играют митохондрии. Эти органеллы имеют собственную наружную и внутреннюю мембрану.

Основным источником энергии для нервной системы является глюкоза. Митохондрии содержат ферменты, необходимые для преобразования глюкозы в макроэргические соединения, главным образом в молекулы аденозинтрифосфата (АТФ), которые затем могут транспортироваться в другие районы тела, которые нуждаются в их энергии.

Ядро

Сложный процесс синтеза белка начинается в ядре клетки. Ядро нейрона содержит генетическую информацию, которая хранится в виде закодированных строк дезоксирибонуклеиновой кислоты (ДНК). Каждая содержит для всех клеток в организме.

Именно в ядре начинается процесс построения белковых молекул, путем написания соответствующей части кода ДНК на комплементарных молекулах рибонуклеиновой кислоты (РНК). Выпущенные из ядра в межклеточную жидкость, они запускают процесс синтеза белка, в котором также принимают участие так называемые ядрышки. Это отдельная структура внутри ядра, отвечающая за построение молекулярных комплексов, называемых рибосомами, которые участвуют в синтезе белка.


Знаете ли вы, как устроена нервная клетка?

Нейроны - это самые живучие и длинные клетки в организме! Некоторые из них сохраняются в человеческом теле в течение всей жизни. Другие клетки умирают, их заменяют новые, а вот многие нейроны замене не подлежат. С возрастом их становится все меньше. Отсюда и пошло выражение о том, что нервные клетки не восстанавливаются. Однако данные исследований конца 20 века доказывают обратное. В одной из областей мозга, гиппокампе, новые нейроны могут вырасти даже у взрослых людей.

Нейроны могут быть довольно большими и составлять в длину несколько метров (кортикоспинальные и афферентные). В 1898 году известный специалист по нервной системе Камилло Гольджи сообщил о своем открытии - лентовидном аппарате, специализирующимся на нейронах в мозжечке. Этот прибор теперь носит имя своего создателя и известен как «аппарат Гольджи».

Из того, как устроена нервная клетка, следует ее определение как основного структурно-функционального элемента нервной системы, изучение простых принципов которой может служить ключом к решению многих проблем. В основном это касается автономной нервной системы, которая включает в себя сотни миллионов связанных между собой клеток.

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Нейрон (нейроцит),neuronum (neurocytus),имеет тело, corpus длинный отросток-аксон,axon и короткие ветвящиеся отростки-дендриты, dendritа.

Нейроны образуют цепи,передающие сигнал-нервный импульс-от дендритов к телу и далее на аксон,который,разветвляясь,контактирует с телами других нейронов,их дендритами или аксонами.Связь нейронов осуществляется через зону контакта-синапс, обеспечивающий передачу нервного импульса.

В этой передаче, как правило, принимают участие химические вещества-медиаторы. При передаче импульса возникает небольшая задержка в прохождении импульса. На протяжении жизни человека синапсы могут разрушаться и могут формироваться новые синапсы. С образованием новых контактов между нейронамисвязаны,в частности, механизмы памяти.

Цепи нейронов,включающие в себя афферентный нейрон, дендриты которого имеют чувствительные окончания в различных органах,и эфферентный нейрон,чей аксон заканчивается в рабочем органе(мышце,железе),обозначаются как простейшие рефлекторные дуги. Обычно в рефлекторной дуге импульс с чувствительного нейрона передаётся на вставочный (ассоциативный нейрон),а с последнего на эфферентный(эффекторный нейрон).

Многочисленные связи ассоциативного нейрона включают рефлекторную дугу в сложнейшие нейронные комплексы.

Нервная система развивается из наружного зародышевого листка-эктодермы. Закладка нервной системы имеет вид нерной пластинки,представляющей собой утолщение эктодермы вдоль дорсальной поверхности туловища. В дальнейшем края нервной пластинки,утодщаясь сближаются между собой,в то время как сама пластинка,углубляясь, образует нервную бороздку. Края пластинки, принявшие форму нервных валиков,соединяются и образуют нервную трубку,которая,погружаясь в глубину отшнуровывается от эктодермы.

Одновременно из клеток,входящих в состав нервных валиков,образуются узловые(ганглиозные)пластинки. В дальнейшем они расщепляются: часть их,распологаясь ввиде валиков по бокам нервной трубки,ближе к её дорсальной поверхности,образует спинномозговые узлы;другая часть нервных клеток мигрирует на периферию,образуя узлы вегетативной нервной системы.

Различная дифференцировка и неравномерность роста нервной трубки значительно изменяют её внутреннюю структуру,внешний вид и форму полости.

Расширенный краниальный отдел нервной трубки развивается в головной мозг, а остальная её часть в спинной мозг.

Клетки нервной трубки дифференцируются в нейробласты,образующие нейроны с их отростками,и в спонгиобласты дающие элементы нейроглии.

Нейроны развиваются как высокоспециализированные клетки. Посредством своих отростков одни нейроны устанавливают связи между различными отделами мозга-это вставочные(ассоциативные) нейроны ,другие осуществляют связь нервной системы с другими органами-это афферентные(рецепторные) и эфферентные (эффекторны) нейроны.

Аксоны афферентных и эфферентных нейронов входят в состав нервов,отходящих от головного и спинного мозга.

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны ? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это — действия нейронов. Как мы понимаем, что это холодное, а это — горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны. В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя

Основная функция нервной системы – передача информации с помощью электрических стимулов. Для этого необходимо:

1. Обмен химическими веществами с окружающей средой – мембрана –длительные информационные процессы.

2. Быстрый обмен сигналами – специальные участки на мембране –синапсы

3. Механизм быстрого обмена сигналами между клетками – специальные химические вещества – медиаторы , выделяемые одними клетками и воспринимаемые другими в синапсах

4.Клетка отвечает на изменения в синапсах, расположенных на коротких отростках – дендритах с помощью медленных изменений электрических потенциалов

5. Клетка передает сигналы на большие расстояния с помощью быстрых электрических сигналов по длинным отросткам – аксонам

Аксон - в нейроне один, имеет протяженное строение, проводит быстрые электрические импульсы от тела клетки

Дендриты - может быть много, ветвятся, короткие, проводит медленные градуальные электрические импульсы к телу клетки

Нервная клетка, или нейрон, состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.

Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки - нервы, дающие многочисленные ответвления ко всем органам.

От концов аксонов отходят боковые ветви, заканчивающиеся расширениями - аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.

По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, - это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.


Аня: Нейроны, или нервные клетки, являются строительными блоками мозга. Хотя они имеют те же гены, то же общее строение и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функций, скажем печени. Полагают, что мозг человека состоит из 10 в 10-й нейронов: примерно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обычно укладываются в небольшое число категорий, и большинству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон.

Клеточное тело - сома, содержит ядро и биохимический аппарат синтеза ферментов и разнообразных молекул, необходимых для жизнедеятельности клетки. Обычно тело имеет приблизительно сферическую или пирамидальную форму, размерами от 5 до 150 мкм в диаметре. Дендриты и аксон - отростки, отходящие от тела нейрона. Дендриты представляют собой тонкие трубчатые выросты, которые многократно ветвятся, образуя как бы крону дерева вокруг тела нейрона (dendron-дерево). По дендритам нервные импульсы поступают к телу нейрона. В отличие от многочисленных дендритов, аксон - единственный и отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Длина аксона может достигать одного метра, он практически не ветвится, образуя отростки лишь на конце волокна, его название происходит от слова ось (ass-ось). По аксону нервный импульс уходит из тела клетки и передается другим нервным клеткам либо исполнительным органам - мышцам и железам. Все аксоны заключены в оболочку из шванновских клеток (вид глиальных клеток). В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно каждый миллиметр по длине аксона узкими щелями - так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса, происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Такое проведение нервного импульса называется сальтотропным. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

По количеству отростков нейроны делятся на униполярные, биполярные и мультиполярные.

По строению клеточного тела нейроны подразделяются на звездчатые, пирамидальные, зернистые, овальные и т.д.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»