Светодиодный маяк схема. Проблесковый маячок Обычные светодиоды и семы мигалок на их основе

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Проблесковые маячки применяются в электронных охранных домовых системах и на автомобилях как устройства индикации, сигнализации и предупреждения. Причем их внешний вид и "начинка" часто совсем не отличаются от проблесковых маячков (спецсигналов) аварийных и оперативных служб.

В продаже имеются классические маячки, но их внутренняя "начинка" поражает своим анахронизмом: изготовлены они на основе мощных ламп с вращающимся патроном (классика жанра) или ламп типа ИФК-120, ИФКМ-120 со стробоскопическим устройством, обеспечивающим вспышки через равные промежутки времени (импульсные маячки). А между тем на дворе XXI век, когда наблюдается триумфальное шествие очень ярких (мощных по световому потоку) светодиодов.

Одним из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, являются больший ресурс (срок безотказной работы) и меньшая стоимость последних.

Кристалл светодиода практически "неубиваем", поэтому ресурс прибора определяет в основном долговечность оптического элемента. Подавляющее большинство производителей применяют для его изготовления различные комбинации эпоксидных смол, разумеется, с различной степенью очистки. В частности, из-за этого светодиоды имеют ограниченный ресурс, по истечении которого они мутнеют.

Разные производители (не будем их бесплатно рекламировать) заявляют ресурс своих светодиодов от 20 до 100 тысяч (!) часов. В последнюю цифру мне слабо верится, потому что светодиод должен работать непрерывно 12 лет. За это время пожелтеет даже бумага, на которой отпечатана статья.

Однако, в любом случае, по сравнению с ресурсом традиционных ламп накаливания (менее 1000 часов) и газоразрядных ламп (до 5000 часов), светодиоды на несколько порядков долговечнее. Совершенно очевидно, что залогом большого ресурса является обеспечение благоприятного теплового режима и стабильного питания светодиодов.

Преобладание светодиодов с мощным световым потоком 20 - 100 лм (люменов) в новейших электронных устройствах промышленного изготовления, в которых они работают вместо ламп накаливания, дает основание и радиолюбителям применять такие светодиоды в своих конструкциях. Таким образом, я подвожу читателя к мысли о возможности замены в аварийных и специальных маячках различных ламп мощными светодиодами. При этом ток потребления устройством от источника питания уменьшится и будет зависеть в основном от примененного светодиода. Для использования в автомобиле (в качестве спецсигнала, аварийного светового указателя и даже "знака аварийной остановки" на дорогах) ток потребления непринципиален, поскольку аккумуляторная батарея (АКБ) автомобиля имеет достаточно большую энергоемкость (55 и более Ач и более). Если же маячок питается от автономного источника, то ток потребления установленного внутри оборудования будет иметь немаловажное значение. Кстати, и АКБ автомобиля без подзарядки может разрядиться при длительной работе маячка.

Так, например, "классический" маячок оперативных и аварийных служб (синий, красный, оранжевый - соответственно) при питании от источника постоянного напряжения 12 В потребляет ток более 2,2 А, который складывается из потребляемого электродвигателем (вращающим патрон) и самой лампой. При работе проблескового импульсного маячка ток потребления снижается до 0,9 А. Если же вместо импульсной схемы собрать светодиодную (об этом ниже), ток потребления сократится до 300 мА (зависит от мощности примененных светодиодов). Экономия в стоимости деталей также ощутима.

Конечно, не изучен вопрос о силе света (или, лучше сказать, его интенсивности) от тех или иных проблесковых устройств, поскольку автор не имел и не имеет специальной аппаратуры (люксометра) для такого теста. Но в силу новаторских решений, предложенных ниже, данный вопрос становится второстепенным. Ведь даже относительно слабые световые импульсы (в частности от светодиодов), пропущенные сквозь призму неоднородного стекла колпачка маячка в ночное время более чем достаточны для того, чтобы маячок заметили за несколько сотен метров. Именно в этом смысл дальнего предупреждения, не правда, ли?

Теперь рассмотрим электрическую схему "заменителя лампы" проблескового маячка (рис. 1).


Рис. 1. Принципиальная электрическая схема светодиодного маяка

Эту электрическую схему мультивибратора можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего два прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1%. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и другие.

В состав устройства, кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), входят еще времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С3 выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1-HL3.

Принцип работы устройства

Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.

В первый момент на выводе 3 микросхемы DA1 высокий уровень напряжения - и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.

Спустя примерно одну секунду (время зависит от сопротивления делителя напряжения R1R2 и емкости конденсатора С1 напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю - и светодиоды гаснут. Так продолжается циклически, пока на устройство подано напряжение питания.

Кроме указанных на схеме, в качестве HL1-HL3 рекомендую использовать мощные светодиоды HPWS-T400 или аналогичные с током потребления до 80 мА. Можно применять и только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01,

LXHL-MH1D производства Lumileds Lighting (все - оранжевого и краснооранжевого цвета свечения).

Напряжение питания устройства можно довести до 14,5 В, тогда его можно подключать в бортовую автомобильную сеть даже при работающем двигателе (а точнее - генераторе).

Особенности конструкции

Плата с тремя светодиодами устанавливается в корпус проблескового маячка вместо "тяжеловесной" штатной конструкции (лампы с вращающимся патроном и электродвигателем).

Для того чтобы выходной каскад обладал еще большей мощностью, потребуется установить в точку А (рис. 1) усилитель тока на транзисторе VT1 так, как это показано на рисунке 2.


Рис. 2. Схема подключения дополнительного усилительного каскада

После подобной доработки можно применять по три параллельно включенных светодиода типов LXHL-PL09, LXHL-LL3C (1400 мА),

UE-HR803RO (700 мА), LY-W57B (400 мА) - все оранжевого цвета. При этом общий ток потребления соответственно увеличится.

Вариант с лампой-вспышкой

У кого сохранились детали фотоаппаратов со встроенной вспышкой, тот может пойти и другим путем. Для этого старую лампу-вспышку демонтируют и подключают в схему так, как показано на рисунке 3. С помощью представленного преобразователя, подключаемого также в точку А (рис. 1), на выходе устройства с низким напряжением питания получают импульсы амплитудой 200 В. Напряжение питания в данном случае однозначно увеличивают до 12 В.

Выходное импульсное напряжение можно увеличить, включив в цепь несколько стабилитронов по примеру VТ1 (рис. 3). Это кремниевые планарные стабилитроны, предназначенные для стабилизации напряжения в цепях постоянного тока с минимальным его значением 1 мА и мощностью до 1 Вт. Вместо указанных на схеме можно применить стабилитроны КС591А.


Рис. 3. Схема подключения лампы-вспышки

Элементы С1, R3 (рис.2) составляют демпфирующую RС-цепочку, гасящую высокочастотные колебания.

Теперь с появлением (в такт) импульсов в точке А (рис. 2) будет включаться лампа-вспышка ЕL1. Встроенная в корпус проблескового маячка данная конструкция позволит применять его и далее, если штатный маячок вышел из строя.


Плата со светодиодами, устанавливаемая в штатный корпус проблескового маячка

К сожалению, ресурс лампы-вспышки от портативного фотоаппарата ограничен и едва ли превысит 50 часов работы в импульсном режиме.

Смотрите другие статьи раздела .

Снова всем привет! В этой статье буду рассказывать начинающим радиолюбителям о том, как сделать простую мигалку всего на одном самом дешевом транзисторе. Конечно в продаже можно найти готовые , но они есть не во всех городах, частота их вспышек не регулируется, и напряжение питания довольно ограниченно. Часто бвает проще не ходить по магазинам и не ждать неделями заказа с интернета (когда надо иметь мигалку здесь и сейчас), а собрать за пару минут по простейшей схеме. Для изготовления конструкции нам понадобятся:

1 . Транзистор типа КТ315 (Не важно, будет ли он буквы б,в,г, - пойдет любой).

2 . Электролитический конденсатор напряжением не менее 16вольт, и емкостью от 1000 мкф - 3000 мкф (Чем меньше емкость, тем быстрее мигание светодиода).

3 . Резистор 1 кОм, мощность ствите как вам по душе.

4 . Светодиод (Любой цвет, кроме белого).

5 . Два провода (Желательно многожильные).

Для начала сама схема LED мигалки. Теперь приступим к её изготовлению. Можно сделать как вариант на печатной плате, а можно и навесным монтажом, выглядит оно примерно так:


Паяем транзистор, затем электролитический конденсатор, в моем случае это 2200 микрофарад. Не забываем, что у электролитов есть полярность.


Различный специальный автотранспорт оснащается проблесковыми маячками, которые обычно представляют собой лампу, вокруг которой при помощи электродвигателя вращается светоотражающее зеркало. В любительских условиях эффект вращения света в маячке можно получить другим способом, если в корпусе маячка расположить четыре лампы, каждая из которых имеет собственный неподвижный отражатель. Лампы расположить диаметрально противоположно в плоскости окружности основания маячка, так чтобы они были направлены в четыре разные стороны. А затем, при помощи электронного устройства переключать эти лампы по кругу.

Принципиальная схема такого устройства показана на рисунке. В маячке используются мощные автомобильные лампы на 40-60 ВТ каждая. Попытка переключать эти лампы при помощи транзисторных ключей на КТ829 положительных результатов не дала - транзисторы быстро выходили из строя Поэтому в качестве коммутационных элементов были использованы три автомобильных электромагнитных реле с переключающими контактами.

Реле включаются транзисторными ключами VT1-VT3, на которые поступают уровни с выхода двоичного счетчика D2 и дешифратора на элементах D1.3 и D1.4. На счетчик поступают импульсы от мультивибратора на D1.1 и D1.2.

Предположим, в исходном состоянии счетчик находится в нулевом положении. При этом на его выходах нули и все три реле обесточены. В этом случае напряжение 12В поступает через контакты К1 и К2 на лампу Н1. С поступлением первого импульса счетчик переходит в положение П и на его выводе 3 появляется единица. При этом срабатывает реле Р1 и напряжение 12В через К1 и К3 поступает на лампу Н2.

Затем на счетчик поступает второй импульс. Единица появляется на выводе 4, а на выводе 3 - ноль. Реле Р1 выключается, и срабатывает реле Р2. Напряжение через К1 и К2 поступает на лампу НЗ. С поступлением третьего импульса единицы устанавливаются на обеих выходах счетчика и оба реле срабатывают. При этом единицы поступают на оба входа элемента D1.3, и на выходе D1.4 появляется единица. Таким образом, срабатывают сразу все три реле. При этом напряжение через контакты К1 и КЗ поступает на лампу Н4.

Затем весь процесс повторяется. Установить скорость вращения света можно подбором номинала R1. Если вместо него поставить последовательно включенные постоянный резистор на 100-200 кОм и переменный на 500-1000 кОм можно будет регулировать скорость в процессе эксплуатации.

Электромагнитные реле типа 112.3747-10Е от автомобиля ВАЗ-2108 (они имеют пять контактов). Вместо счетчика К561ИЕ10 можно использовать любой двоичный счетчик КМОП, или собрать счетчик на триггерах микросхемы К561ТМ2.

21.09.2014

Ферриты магнитомягкие это вещества поликристаллического строения получаемые в результате спекания при высокой температуре смеси оксидов железа с оксидами цинка, марганца и других металлов, с последующим измельчением и дальнейшим формированием из полученного порошка магнитопроводов необходимой формы. Благодаря высокому удельному сопротивлению потери мощности в ферритах малы, а рабочая частота высокая. Марки ферритов …

  • 21.09.2014

    Эффект бегущие огни удается получить когда лампы или светодиоды поочередно загораются и гаснут. Схема устройства очень проста, она содержит счетчик импульсов DD2, дешифратор DD3 и задающий генератор на DD1. Скорость перемещения света по гирлянде из светодиодов меняется подбором С1 и R1. Литература Ж.Радио 11 2000

  • 06.10.2014

    Роль виртуального резистора в регуляторе громкости выполняют 2-а мультиплексора D4 D5 и набор резисторов R6-R20. Мультиплексоры выполняют роль переключателя на 16 положений. При этом закон регулировки можно выбрать самим изменив номиналы R6-R20. если нужен сдвоенный резистор то тогда берем еще 2-а мультиплексора с резисторами и подключаем их управляющие входы (выводы …

  • 22.10.2014

    TDA7294 — модуль усилителя интегральной микросхемы. Он предназначен для использования в качестве звукового усилителя класса АВ в Hi-Fi звуковоспроизводящей аппаратуре. TDA7294 имеет широкий диапазон выходного напряжения и выходного тока, что позволило TDA7294 применять как на 4 Ом так и на 8 Ом-й нагрузке. TDA7294 будет выдавать 50W (RMS) на …

  • 12.10.2014

    Микросхема КР174УН31 предназначена для применения в качестве оконечного каскада усиления звукового сигнала, подаваемого с микросхемы непосредственно на громкоговорители (сопротивление более 8 Ом), в малогабаритной аппаратуре (радиоприемниках, плейерах, беспроводных телефонах). Параметры микросхемы представлены в табл.1. Микросхема выпускается в 8-выводном корпусе DIP (типа 2101.8-1). Чертеж дан на рис.1. Типовые схемы включения — …

  • Проблесковые маячки применяются в электронных охранных комплексах и на автотранспорте как устройства индикации, сигнализации и предупреждения. Причем их внешний вид и «начинка» часто совсем не отличаются от проблесковых маячков аварийных и оперативных служб (спецсигналов) – см. рис. 3.9.

    Внутренняя «начинка» классических мачков поражает своим анахронизмом: то здесь, то там в продаже регулярно появляются маяки на основе мощных ламп с вращающимся патроном (классика жанра) или ламп типа ИФК-120, ИФКМ-120 со стробоскопическим устройством, обеспечивающим вспышки через равные промежутки времени (импульсные маячки). А между тем на дворе XXI век, в котором продолжается триумфальное шествие суперярких (и мощных по световому потоку) светодиодов.

    Одним из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, являются ресурс и стоимость светодиода.

    Под ресурсом, как правило, понимают срок безотказной службы.

    Ресурс светодиода определяют две составляющие: ресурс самого кристалла и ресурс оптической системы. Подавляющее большинство производителей светодиодов применяют для оптической системы различные комбинации эпоксидных смол, разумеется, с различной степенью очистки. В частности, из-за этого светодиоды имеют ограниченный ресурс в этой части параметров, после истечения которого они «мутнеют».

    Разные компании-производители (не будем их бесплатно рекламировать) заявляют ресурс своей продукции в части светодиодов от 20 до 100 тыс. (!) часов. С последней цифрой я категорически не согласен, поскольку мне слабо верится, что отдельно выбранный светодиод будет работать непрерывно 12 лет. За это время пожелтеет даже бумага, на которой отпечатана моя книга.

    Однако совершенно очевидно, что залогом большого ресурса является обеспечение тепловых режимов и условий питания светодиодов.

    В любом случае, по сравнению с ресурсом традиционных ламп накаливания (менее 1000 час.) и газоразрядных ламп (до 5000 час.), светодиоды на несколько порядков долговечнее.

    Преобладание светодиодов с мощным световым потоком 20-100 лм (люменов) в новейших электронных устройствах промышленного изготовления, где ими заменяют даже лампы накаливания, дает повод и радиолюбителям применять такие светодиоды в своих конструкциях.

    Рис 3.9. Внешний вид проблесковых маячков

    Таким образом, я веду речь о замене в аварийных и специальных маячках ламп различного назначения мощными светодиодами. Причем при такой замене основной ток потребления от источника питания уменьшится и будет зависеть в основном от тока потребления примененного светодиода. Для применения совместно с автомобилем (в качестве спецсигнала, аварийного светового указателя и даже «знака аварийной остановки» на дорогах) ток потребления не принципиален, поскольку АКБ автомобиля имеет достаточно большую энергоемкость (55 А/ч и более). Если же маячок питается от иного источника питания (автономного или стационарного), то зависимость тока потребления от установленного внутри оборудования – прямая. Кстати, и АКБ автомобиля может разрядиться при длительной работе маячка без подзарядки аккумулятора.

    Так, например, «классический» маячок оперативных и аварийных служб (синий, красный, оранжевый – соответственно) при питании 12 В потребляет ток более 2,2 А. Этот ток складывается из учета потребления электродвигателя вращающегося патрона и тока потребления самой лампы. При работе проблескового импульсного маячка ток потребления снижается до 0,9 А. Если же вместо импульсной схемы собрать светодиодную (об этом ниже), ток потребления сократится до 300 мА (зависит от примененных мощных светодиодов). Экономия в деталях очевидна.

    Приведенные выше данные установлены практическими экспериментами, проведенными автором в мае 2009 года в Санкт-Петербурге (всего протестировано 6 различных классических проблесковых маячков).

    Конечно, не изучен вопрос о силе или, лучше сказать, интенсивности света от тех или иных проблесковых устройств, поскольку автор не обладает специальной аппаратурой (люксометром) для такого теста. Но в силу новаторских решений, предложенных ниже, данный вопрос остается второстепенным. Ведь даже относительно слабые световые импульсы (в частности, от мощных светодиодов) в ночное и темное время более чем достаточны для того, чтобы маячок заметили за несколько сотен метров. Именно в этом смысл.дальнего предупреждения, не правда ли?

    Теперь рассмотрим электрическую схему «заменителя лампы» проблескового маячка (рис. 3.10).

    Эту электрическую схему мультивибратора можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего 2 прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1%. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и др.

    В состав устройства входят, кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1-HL3.

    Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.

    В первый момент времени на выводе 3 микросхемы DA1 высокий уровень напряжения и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.

    Спустя примерно 1 сек. (время зависит от сопротивления делителя напряжения R1R2 и емкости конденсатора С1) напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю, и светодиоды гаснут/Так продолжается циклически, пока на устройство подано напряжение питания.

    Рис. 3.10. Простая электрическая схема светодиодного маяка

    Кроме указанных на схеме, в качестве HL1-HL3 рекомендую использовать мощные светодиоды HPWS-TH00 или аналогичные с током потребления до 80 мА. Можно применять только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01, LXHL-MH1D производства Lumileds Lighting (все – оранжевого и красно-оранжевого цвета свечения).

    Напряжение питания устройства можно довести до 12 В.

    Плата с элементами устройства устанавливается в корпус проблескового маячка вместо «тяжеловесной» штатной конструкции с лампой и вращающимся патроном с электродвигателем. Вид на установленную плату с 3 светодиодами представлен на рис. 3.11.

    Для того чтобы выходной каскад обладал еще большей мощностью, потребуется установить в точку А (рис. 3.10) усилитель тока на транзисторе VT1 так, как это показано на рис. 3.12.

    После такой доработки можно применять по три параллельно включенных светодиода типов LXHL-PL09, LXHL-LL3C (1400 мА), UE-lf R803RQ (700 мЛ), LY-W57B (400 мА) – все оранжевого цвета.

    При отсутствии питания устройство тока не потребляет вообще.

    Рис. 3 11 Вид на плату светодиодного маячка, устанавливаемую в штатном корпусе проблескового маячка

    У кого сохранились части фотоаппаратов со встроенной вспышкой, тот может пойти и другим путем. Для этого старую лампу-вспышку демонтируют и подключают в схему так, как показано на рис. 3.13.

    С помощью представленного преобразователя, подключаемого также в точку А (рис. 3.10), на выходе устройства с низким напряжением питания получают импульсы амплитудой 200 В. Напряжение питания в данном случае увеличивают до 12 В.

    Выходное импульсное напряжение можно увеличить, включив в цепь несколько стабилитронов по примеру VD1, VD2 (рис. 3.13). Это кремниевые планарные стабилитроны, предназначенные для стабилизации напряжения в цепях постоянного тока с минимальным током 1 мА и мощностью до 1 Вт. Вместо указанных на схеме можно применить стабилитроны КС591А.

    Элементы C1, R3 составляют демпфирующую RC-цепочку, гасящую высокочастотные колебания.

    Теперь с появлением (в такт) импульсов в точке А (рис. 3.10) будет включаться лампа-вспышка ELI. Встроенная в корпус проблескового маячка, данная конструкция позволит применять его и далее, если штатный маячок вышел из строя.

    Рис 3.12 Схема подключения дополнительного усилительного каскада

    Вариант с лампой-вспышкой

    Рис 3 13. Схема подключения лампы-вспышки

    К сожалению, ресурс лампы-вспышки от портативного фотоаппарата ограничен и едва ли превысит 50 час. непрерывной работы в импульсном режиме. Устройство контроля зарядки-разрядки батареи шахтерского фонаря

    Зачастую приобретенные нами мобильные осветительные приборы, использующие энергию встроенной аккумуляторной батареи, но не оснащенные индикатором ее состояния, подво­дят нас в самый неподходящий момент. В этой статье автор предлагает несложное устройство…….

    ← Вернуться

    ×
    Вступай в сообщество «koon.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «koon.ru»