Умножение матриц онлайн подробно. Произведение двух матриц: формула, решения, свойства

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:
Определение 1

Произведение матриц (С= АВ) - операция только для согласованных матриц А и В, у которых число столбцов матрицы А равно числу строк матрицы В:

C ⏟ m × n = A ⏟ m × p × B ⏟ p × n

Пример 1

Даны матрицы:

  • A = a (i j) размеров m × n ;
  • B = b (i j) размеров p × n

Матрицу C , элементы c i j которой вычисляются по следующей формуле:

c i j = a i 1 × b 1 j + a i 2 × b 2 j + . . . + a i p × b p j , i = 1 , . . . m , j = 1 , . . . m

Пример 2

Вычислим произведения АВ=ВА:

А = 1 2 1 0 1 2 , В = 1 0 0 1 1 1

Решение, используя правило умножения матриц:

А ⏟ 2 × 3 × В ⏟ 3 × 2 = 1 2 1 0 1 2 × 1 0 0 1 1 1 = 1 × 1 + 2 × 0 + 1 × 1 1 × 0 + 2 × 1 + 1 × 1 0 × 1 + 1 × 0 + 2 × 1 0 × 0 + 1 × 1 + 2 × 1 = = 2 3 2 3 ⏟ 2 × 2

В ⏟ 3 × 2 × А ⏟ 2 × 3 = 1 0 0 1 1 1 × 1 2 1 0 1 2 = 1 × 1 + 0 × 0 1 × 2 + 0 × 1 1 × 1 + 0 × 2 0 × 1 + 1 × 0 0 × 2 + 1 × 1 0 × 1 + 1 × 2 1 × 1 + 1 × 0 1 × 2 + 1 × 1 1 × 1 + 1 × 2 = 1 2 1 0 1 2 1 3 3 ⏟ 3 × 3

Произведение А В и В А найдены, но являются матрицами разных размеров: А В не равна В А.

Свойства умножения матриц

Свойства умножения матриц:

  • (А В) С = А (В С) - ассоциативность умножения матриц;
  • А (В + С) = А В + А С - дистрибутивность умножения;
  • (А + В) С = А С + В С - дистрибутивность умножения;
  • λ (А В) = (λ А) В
Пример 1

Проверяем свойство №1: (А В) С = А (В С) :

(А × В) × А = 1 2 3 4 × 5 6 7 8 × 1 0 0 2 = 19 22 43 50 × 1 0 0 2 = 19 44 43 100 ,

А (В × С) = 1 2 3 4 × 5 6 7 8 1 0 0 2 = 1 2 3 4 × 5 12 7 16 = 19 44 43 100 .

Пример 2

Проверяем свойство №2: А (В + С) = А В + А С:

А × (В + С) = 1 2 3 4 × 5 6 7 8 + 1 0 0 2 = 1 2 3 4 × 6 6 7 10 = 20 26 46 58 ,

А В + А С = 1 2 3 4 × 5 6 7 8 + 1 2 3 4 × 1 0 0 2 = 19 22 43 50 + 1 4 3 8 = 20 26 46 58 .

Произведение трех матриц

Произведение трех матриц А В С вычисляют 2-мя способами:

  • найти А В и умножить на С: (А В) С;
  • либо найти сначала В С, а затем умножить А (В С) .
​​​​​Пример 3

Перемножить матрицы 2-мя способами:

4 3 7 5 × - 28 93 38 - 126 × 7 3 2 1

Алгоритм действий:

  • найти произведение 2-х матриц;
  • затем снова найти произведение 2-х матриц.

1). А В = 4 3 7 5 × - 28 93 38 - 126 = 4 (- 28) + 3 × 38 4 × 93 + 3 (- 126) 7 (- 28) + 5 × 38 7 × 93 + 5 (- 126) = 2 - 6 - 6 21

2). А В С = (А В) С = 2 - 6 - 6 21 7 3 2 1 = 2 × 7 - 6 × 2 2 × 3 - 6 × 1 - 6 × 7 + 21 × 2 - 6 × 3 + 21 × 1 = 2 0 0 3 .

Используем формулу А В С = (А В) С:

1). В С = - 28 93 38 - 126 7 3 2 1 = - 28 × 7 + 93 × 2 - 28 × 3 + 93 × 1 38 × 7 - 126 × 2 38 × 3 - 126 × 1 = - 10 9 14 - 12

2). А В С = (А В) С = 7 3 2 1 - 10 9 14 - 12 = 4 (- 10) + 3 × 14 4 × 9 + 3 (- 12) 7 (- 10) + 5 × 14 7 × 9 + 5 (- 12) = 2 0 0 3

Ответ: 4 3 7 5 - 28 93 38 - 126 7 3 2 1 = 2 0 0 3

Умножение матрицы на число

Определение 2

Произведение матрицы А на число k - это матрица В = А k того же размера, которая получена из исходной умножением на заданное число всех ее элементов:

b i , j = k × a i , j

Свойства умножения матрицы на число:

  • 1 × А = А
  • 0 × А = нулевая матрица
  • k (A + B) = k A + k B
  • (k + n) A = k A + n A
  • (k × n) × A = k (n × A)
Пример 4

Найдем произведение матрицы А = 4 2 9 0 на 5.

5 А = 5 4 2 9 0 5 × 4 5 × 2 5 × 9 5 × 0 = 20 10 45 0

Умножение матрицы на вектор

Определение 3

Чтобы найти произведение матрицы и вектора, необходимо умножать по правилу «строка на столбец»:

  • если умножить матрицу на вектор-столбец число столбцов в матрице должно совпадать с числом строк в векторе-столбце;
  • результатом умножения вектора-столбца является только вектор-столбец:

А В = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а m 1 а m 2 ⋯ а m n b 1 b 2 ⋯ b 1 n = a 11 × b 1 + a 12 × b 2 + ⋯ + a 1 n × b n a 21 × b 1 + a 22 × b 2 + ⋯ + a 2 n × b n ⋯ ⋯ ⋯ ⋯ a m 1 × b 1 + a m 2 × b 2 + ⋯ + a m n × b n = c 1 c 2 ⋯ c 1 m

  • если умножить матрицу на вектор-строку, то умножаемая матрица должна быть исключительно вектором-столбцом, причем количество столбцов должно совпадать с количеством столбцов в векторе-строке:

А В = а а ⋯ а b b ⋯ b = a 1 × b 1 a 1 × b 2 ⋯ a 1 × b n a 2 × b 1 a 2 × b 2 ⋯ a 2 × b n ⋯ ⋯ ⋯ ⋯ a n × b 1 a n × b 2 ⋯ a n × b n = c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋯ ⋯ ⋯ ⋯ c n 1 c n 2 ⋯ c n n

Пример 5

Найдем произведение матрицы А и вектора-столбца В:

А В = 2 4 0 - 2 1 3 - 1 0 1 1 2 - 1 = 2 × 1 + 4 × 2 + 0 × (- 1) - 2 × 1 + 1 × 2 + 3 × (- 1) - 1 × 1 + 0 × 2 + 1 × (- 1) = 2 + 8 + 0 - 2 + 2 - 3 - 1 + 0 - 1 = 10 - 3 - 2

Пример 6

Найдем произведение матрицы А и вектора-строку В:

А = 3 2 0 - 1 , В = - 1 1 0 2

А В = 3 2 0 1 × - 1 1 0 2 = 3 × (- 1) 3 × 1 3 × 0 3 × 2 2 × (- 1) 2 × 1 2 × 0 2 × 2 0 × (- 1) 0 × 1 0 × 0 0 × 2 1 × (- 1) 1 × 1 1 × 0 1 × 2 = - 3 3 0 6 - 2 2 0 4 0 0 0 0 - 1 1 0 2

Ответ: А В = - 3 3 0 6 - 2 2 0 4 0 0 0 0 - 1 1 0 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Умноже́ниема́триц - одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́ниемма́триц .

Произведением матрицы размеровна матрицуразмеровназывается матрицаразмеров, элементы которой вычисляются по формуле

Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матрицсогласована . В частности, умножение всегда выполнимо, если оба сомножителя - квадратные матрицы одного и того же порядка.

Найти произведения матриц AB и BA , если

и

Р е ш е н и е: Имеем


назад в содержание

(38)87.Какие операции называют коммутативными? Покажите на примерах, что умножение матриц не коммутативно.

Коммутативность = Перестановочность.

Обычные числа переставлять можно: , а матрицы в общем случае не перестановочны : .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример: Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так. Например, для матриц, и возможно как умножение , так и умножение

назад в содержание

(39)88.Что такое единичная и обратная матрицы? Как строится (по Гауссу) обратная матрица?

Пусть a – квадратная матрица порядка n. Обратной к ней матрице называется такая матрица A -1 , что A -1 *A=E (здесь A -1 и E – квадратные матрицы того же порядка, причём E – единичная матрица).

Это определение вовсе не подразумевает, что обратная матрица существует для любой матрицы A.

(0 0) – эта строка приводит к тому, что первая строка произведения этой матрицы на любую другую состоит из одних нулей (в единичной матрице это не так)

Определения с википедии:

    Обратная матрица - такая матрица A −1 , при умножении на которую, исходная матрица A даёт в результате единичную матрицу E :

    Единичная матрица - квадратная матрица, элементы главной диагонали которой равны единице поля, а остальные равны нулю.

Нахождение обратной матрицы методом Гаусса.

Исходная матрица А.

Определение. Произведением двух матриц А и В называется матрица С , элемент которой, находящийся на пересечении i -й строки и j -го столбца, равен сумме произведений элементов i -й строки матрицы А на соответствующие (по порядку) элементы j -го столбца матрицы В .

Из этого определения следует формула элемента матрицы C :

Произведение матрицы А на матрицу В обозначается АВ .

Пример 1. Найти произведение двух матриц А и B , если

,

.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

На схеме серые стрелки показывают, элементы какой строки матрицы А на элементы какого столбца матрицы В нужно перемножить для получения элементов матрицы С , а линиями цвета элемента матрицы C соединены соответствующие элементы матриц A и B , произведения которых складываются для получения элемента матрицы C .

В результате получаем элементы произведения матриц:



Теперь у нас есть всё, чтобы записать произведение двух матриц:

.

Произведение двух матриц АВ имеет смысл только в том случае, когда число столбцов матрицы А совпадает с числом строк матрицы В .

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

В произведении матриц АВ число строк равно числу строк матрицы А , а число столбцов равно числу столбцов матрицы В .

Пример 2. Найти число строк и столбцов матрицы C , которая является произведением двух матриц A и B следующих размерностей:

а) 2 Х 10 и 10 Х 5;

б) 10 Х 2 и 2 Х 5;

Пример 3. Найти произведение матриц A и B , если:

.

A B - 2. Следовательно, размерность матрицы C = AB - 2 X 2.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 5. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 2, число столбцов в матрице B C = AB - 2 X 1.

Вычисляем элементы матрицы C = AB .

Произведение матриц запишется в виде матрицы-столбца: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 6. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 3, число столбцов в матрице B - 3. Следовательно, размерность матрицы C = AB - 3 X 3.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 7. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 1, число столбцов в матрице B - 1. Следовательно, размерность матрицы C = AB - 1 X 1.

Вычисляем элемент матрицы C = AB .

Произведение матриц является матрицей из одного элемента: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Программная реализация произведения двух матриц на С++ разобрана в соответствующей статье в блоке "Компьютеры и программирование".

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу. Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n -ая степень матрицы путём умножения матрицы на саму себя n раз:

Пример 8. Дана матрица . Найти A ² и A ³ .

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица

Найти произведение данной матрицы и транспонированной матрицы , произведение транспонированной матрицы и данной матрицы.

Свойства произведения двух матриц

Свойство 1. Произведение любой матрицы А на единичную матрицу Е соответствующего порядка как справа, так и слева, совпадает с матрицей А, т.е. АЕ = ЕА = А.

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

на единичную матрицу справа и слева.

Решение. Так как матрица А содержит три столбца, то требуется найти произведение АЕ , где

-
единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :



Получается, что АЕ = А .

Теперь найдём произведение ЕА , где Е – единичная матрица второго порядка, так как матрица А содержит две строки. Найдём элементы произведения С = ЕА :

Это одна из самых распространенных операций с матрицами. Матрица, которая получается после умножения, называется произведением матриц.

Произведением матрицы A m × n на матрицу B n × k будет матрица C m × k такая, что элемент матрицы C , находящийся в i -ой строке и j -ом столбце, то есть элемент c ij равен сумме произведений элементов i -ой строки матрицы A на соответствующие элементы j -ого столбца матрицы B .

Процесс умножения матриц возможен только в случае, когда число столбцов первой матрицы равно числу строк второй матрицы.

Пример:
Можно ли умножить матрицу на матрицу ?

m = n , значит, умножать данные матрицы можно.

Если же матрицы поменять местами, то, при таких матрицах, умножение уже не будет возможно.

m n , таким образом, выполнять умножение нельзя:

Довольно часто можно встретить задания с подвохом, когда ученику предлагается умножить матрицы , умножение которых заведомо невозможно.

Обратите внимание, что иногда можно умножать матрицы и так, и так. К примеру, для матриц, и возможно как умножение MN , так и умножение NM.

Это не очень сложное действие. Умножение матриц лучше понимать на конкретных примерах, т.к. только определение может сильно запутать.

Начнем с самого простого примера:

Необходимо умножить на . Первым делом приведем формулу для данного случая:

- здесь хорошо прослеживается закономерность.

Умножить на .

Формула для этого случая: .

Умножение матриц и результат:

В результате получена т.н. нулевая матрица.

Очень важно помнить, что здесь не работает «правило перестановки мест слагаемых» так как почти всегда MN NM . Поэтому, производя операцию умножения матриц их ни в коем случае нельзя менять местами.

Теперь рассмотрим примеры умножения матриц третьего порядка:

Умножить на .

Формула очень похожа на прошлые:

Решение матрицы: .

Это тоже самое умножение матриц, только вместо второй матрицы берется простое число. Как можно догадаться, такое умножение выполнять гораздо проще.

Пример умножения матрицы на число:

Тут все понятно - для того, чтобы умножить матрицу на число , необходимо каждый элемент матрицы последовательно умножить на указанное число. В данном случае - на 3.

Еще один полезный пример:

- умножение матрицы на дробное число.

Первым делом покажем то, чего делать не надо:

При умножении матрицы на дробное число не нужно вносить дробь в матрицу, так как это в первую очередь только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем.

И, тем более, не нужно делить каждый элемент матрицы на -7:

.

Что стоит сделать в данном случае - это внести минус в матрицу:

.

Если бы у вас был пример, когда все элементы матрицы делились бы на 7 без остатка, то тогда можно (и нужно!) было бы поделить.

В данном примере можно и нужно умножить все элементы матрицы на ½, т.к. каждый элемент матрицы делится на 2 без остатка.

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление - это частный случай умножения.


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»