Вторичная структура белка образована. Вторичная, третичная, четвертичная структуры белка

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Белки (протеины) составляют 50% от сухой массы живых организмов.


Белки состоят из аминокислот. У каждой аминокислоты есть аминогруппа и кислотная (карбоксильная) группа, при взаимодействии которых получается пептидная связь , поэтому белки еще называют полипептидами.

Структуры белка

Первичная - цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.


Вторичная - спираль. Удерживается водородными связями (слабыми).


Третичная - глобула (шарик). Четыре типа связей: дисульфидная (серный мостик) сильная, остальные три (ионные, гидрофобные, водородные) - слабые. Форма глобулы у каждого белка своя, от нее зависят функции. При денатурации форма глобулы меняется, и это сказывается на работе белка.


Четвертичная - имеется не у всех белков. Состоит из нескольких глобул, соединенных между собой теми же связями, что и в третичной структуре. (Например, гемоглобин.)

Денатурация

Это изменение формы глобулы белка, вызванное внешними воздействиями (температура, кислотность, соленость, присоединение других веществ и т.п.)

  • Если воздействия на белок слабые (изменение температуры на 1°), то происходит обратимая денатурация.
  • Если воздействие сильное (100°), то денатурация необратимая . При этом разрушаются все структуры, кроме первичной.

Функции белков

Их очень много, например:

  • Ферментативная (каталитическая) - белки-ферменты ускоряют химические реакции за счет того, что активный центр фермента подходит к веществу по форме, как ключ к замку ( , специфичность).
  • Строительная (структурная) - клетка, если не считать воду, состоит в основном из белков.
  • Защитная - антитела борются с возбудителями болезней (иммунитет).

Выберите один, наиболее правильный вариант. Вторичная структура молекулы белка имеет форму
1) спирали
2) двойной спирали
3) клубка
4) нити

Ответ


Выберите один, наиболее правильный вариант. Водородные связи между СО- и NН-группами в молекуле белка придают ей форму спирали, характерную для структуры
1) первичной
2) вторичной
3) третичной
4) четвертичной

Ответ


Выберите один, наиболее правильный вариант. Процесс денатурации белковой молекулы обратим, если не разрушены связи
1) водородные
2) пептидные
3) гидрофобные
4) дисульфидные

Ответ


Выберите один, наиболее правильный вариант. Четвертичная структура молекулы белка образуется в результате взаимодействия
1) участков одной белковой молекулы по типу связей S-S
2) нескольких полипептидных нитей, образующих клубок
3) участков одной белковой молекулы за счет водородных связей
4) белковой глобулы с мембраной клетки

Ответ


Установите соответствие между характеристикой и функцией белка, которую он выполняет: 1) регуляторная, 2) структурная
А) входит в состав центриолей
Б) образует рибосомы
В) представляет собой гормон
Г) формирует мембраны клеток
Д) изменяет активность генов

Ответ


Выберите один, наиболее правильный вариант. Последовательность и число аминокислот в полипептидной цепи – это
1) первичная структура ДНК
2) первичная структура белка
3) вторичная структура ДНК
4) вторичная структура белка

Ответ


Выберите три варианта. Белки в организме человека и животных
1) служат основным строительным материалом
2) расщепляются в кишечнике до глицерина и жирных кислот
3) образуются из аминокислот
4) в печени превращаются в гликоген
5) откладываются в запас
6) в качестве ферментов ускоряют химические реакции

Ответ


Выберите один, наиболее правильный вариант. Вторичная структура белка, имеющая форму спирали, удерживается связями
1) пептидными
2) ионными
3) водородными
4) ковалентными

Ответ


Выберите один, наиболее правильный вариант. Какие связи определяют первичную структуру молекул белка
1) гидрофобные между радикалами аминокислот
2) водородные между полипептидными нитями
3) пептидные между аминокислотами
4) водородные между -NH- и -СО- группами

Ответ


Выберите один, наиболее правильный вариант. Первичная структура белка образована связью
1) водородной
2) макроэргической
3) пептидной
4) ионной

Ответ


Выберите один, наиболее правильный вариант. В основе образования пептидных связей между аминокислотами в молекуле белка лежит
1) принцип комплементарности
2) нерастворимость аминокислот в воде
3) растворимость аминокислот в воде
4) наличие в них карбоксильной и аминной групп

Ответ


Перечисленные ниже признаки, кроме двух, используются для описания строения, функций изображенного органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) имеет структурные уровни организации молекулы
2) входит в состав клеточных стенок
3) является биополимером
4) служит матрицей при трансляции
5) состоит из аминокислот

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания ферментов. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) входят в состав клеточных мембран и органоидов клетки
2) играют роль биологических катализаторов
3) имеют активный центр
4) оказывают влияние на обмен веществ, регулируя различные процессы
5) специфические белки

Ответ



Рассмотрите рисунок с изображением полипептида и укажите (А) уровень его организации, (Б) форму молекулы и (В) вид взаимодействия, поддерживающий эту структуру. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) вторичная структура
3) третичная структура
4) взаимодействия между нуклеотидами
5) металлическая связь
6) гидрофобные взаимодействия
7) фибриллярная
8) глобулярная

Ответ



Рассмотрите рисунок с изображением полипептида. Укажите (А) уровень его организации, (Б) мономеры, которые его образуют, и (В) вид химических связей между ними. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) водородные связи
3) двойная спираль
4) вторичная структура
5) аминокислота
6) альфа-спираль
7) нуклеотид
8) пептидные связи

Ответ


Известно, что белки – нерегулярные полимеры, имеющие высокую молекулярную массу, строго специфичны для каждого вида организма. Выберите из приведенного ниже текста три утверждения, по смыслу относящиеся к описанию этих признаков, и запишите цифры, под которыми они указаны. (1) В состав белков входит 20 различных аминокислот, соединенных пептидными связами. (2) Белки имеют различное количество аминокислот и порядок их чередования в молекуле. (3) Низкомолекулярные органические вещества имеют молекулярную массу от 100 до 1000. (4) Они являются промежуточными соединениями или структурными звеньями - мономерами. (5) Многие белки характеризуются молекулярной массой от нескольких тысяч до миллиона и выше, в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка. (6) Каждый вид живых организмов имеет особый, только ему присущий набор белков, отличающий его от других организмов.

Ответ


Все перечисленные характеристики используют для описания функций белков. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) регуляторная
2) двигательная
3) рецепторная
4) образуют клеточные стенки
5) служат коферментами

Ответ

© Д.В.Поздняков, 2009-2019

В организме роль белков чрезвычайно велика. При этом такое название вещество может носить только после того, как приобретает заранее заложенную структуру. До этого момента это полипептид, всего лишь аминокислотная цепь, которая не может выполнять заложенных функций. В общем виде пространственная структура белков (первичная, вторичная, третичная и доменная) - это объемное их строение. Причем наиболее важны для организма вторичные, третичные и доменные структуры.

Предпосылки для изучения белковой структуры

Среди методов изучения строения химических веществ особенную роль играет рентгеноструктурная кристаллография. Посредством нее можно получить информацию о последовательности атомов в молекулярных соединениях и об их пространственной организации. Попросту говоря, рентгеновский снимок можно сделать и для отдельной молекулы, что стало возможным в 30-е годы XX века.

Именно тогда исследователи обнаружили, что многие белки имеют не только линейную структуру, но и могут располагаться в спиралях, клубках и доменах. А в результате проведения массы научных экспериментов выяснилось, что вторичная структура белка - это конечная форма для структурных белков и промежуточная для ферментов и иммуноглобулинов. Это значит, что вещества, которая в конечном итоге имеют третичную или четвертичную структуру, на этапе своего "созревания" должны пройти и этап спиралеобразования, свойственный вторичной структуре.

Образование вторичной белковой структуры

Как только завершился синтез полипептида на рибосомах в шероховатой сети клеточной эндоплазмы, начинает образовываться вторичная структура белка. Сам полипептид представляет собой длинную молекулу, занимающую много места и неудобную для транспорта и выполнения заложенных функций. Потому с целью уменьшения ее размеров и придания ей особенных свойств развивается вторичная структура. Это происходит путем образования альфа-спиралей и бета-слоев. Таким образом получается белок вторичной структуры, который в дальнейшем либо превратится в третичную и четвертичную, либо будет использоваться в таком виде.

Организация вторичной структуры

Как показали многочисленные исследования, вторичная структура белка представляет собой либо альфа-спираль, либо бета-слой, либо чередование участков с данными элементами. Причем вторичная структура - это способ скручивания и спиралеобразования белковой молекулы. Это хаотичный процесс, который происходит за счет водородных связей, возникающих между полярными участками аминокислотных остатков в полипептиде.

Альфа-спираль вторичной структуры

Поскольку в биосинтезе полипептидов участвуют только L-аминокислоты, то образование вторичной структуры белка начинается с закручивания спирали по часовой стрелке (правым ходом). На каждый спиральный виток приходится строго 3,6 остатков аминокислот, а расстояние вдоль спиральной оси составляет 0,54 нм. Это общие свойства для вторичной структуры белка, которые не зависят от вида аминокислот, участвовавших в синтезе.

Определено, что не вся полипептидная цепь спирализуется полностью. В ее структуре присутствуют линейные участки. В частности, молекула белка пепсина спирализована лишь на 30%, лизоцима - на 42%, а гемоглобина - на 75%. Это значит, что вторичная структура белка - это не строго спираль, а комбинирование ее участков с линейными или слоистыми.

Бета-слой вторичной структуры

Вторым типом структурной организации вещества является бета-слой, который представляет собой две и более нити полипептида, соединенные водородной связью. Последняя возникает между свободными CO NH2 группами. Таким образом соединяются, в основном, структурные (мышечные) белки.

Структура белков данного типа такова: одна нить полипептида с обозначением концевых участков А-В параллельно располагается вдоль другой. Единственный нюанс в том, что вторая молекула располагается антипараллельно и обозначается как В-А. Так образуется бета-слой, который может состоять из сколько угодно большого количества полипептидных цепочек, соединенных множественными водородными связями.

Водородная связь

Вторичная структура белка - связь, основанная на множественных полярных взаимодействиях атомов с различными показателями электроотрицательности. Наибольшую способность к образованию такой связи имеют 4 элемента: фтор, кислород, азот и водород. В белках присутствуют все, кроме фтора. Потому водородная связь может образоваться и образуется, давая возможность соединять полипептидные цепи в бета-слои и в альфа-спирали.

Наиболее легко объяснить возникновение водородной связи на примере воды, представляющей собой диполь. Кислород несет сильный отрицательный заряд, а из-за высокой поляризации О-Н связи водород считается положительным. В таком состоянии молекулы присутствуют в некой среде. Причем многие из них соприкасаются и сталкиваются. Тогда кислород от первой молекулы воды притягивает водород от другой. И так по цепочке.

Аналогичные процессы протекают и в белках: электроотрицательный кислород пептидной связи притягивает к себе водород из любого участка другого аминокислотного остатка, образуя водородную связь. Это слабое полярное сопряжение, для разрыва которого требуется потратить порядка 6,3 кДж энергии.

Для сравнения, самая слабая ковалентная связь в белках требует 84 кДж энергии для того, чтобы ее разорвать. Самая сильная ковалентная связь потребует 8400 кДж. Однако количество водородных связей в молекуле белка настолько огромно, что их суммарная энергия позволяет молекуле существовать в агрессивных условиях и сохранять свое пространственное строение. Благодаря этому существуют белки. Структура белков данного типа обеспечивает прочность, которая нужна для функционирования мышц, костей и связок. Настолько огромно значение вторичной структуры белков для организма.

Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты

Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид

При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

· копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;

· способность существовать в двух резонансных формах (кето- или енольной форме);

· транс-положение заместителей по отношению к С-N-связи;

· способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь (см. выше). Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

схема образования трипептида:

Уровни пространственной организации белков: вторичная структура белков: понятие об α-спирали и β-складчатом слое. Третичная структура белков: понятие о нативном белке и денатурации белка. Четвертичная структура белков на примере строения гемоглобина.

Вторичная структура белка. Под вторичной структурой белка понимают способ укладки полипептидной цепи в упорядоченную структуру. По конфигурации выделяют следующие элементы вторичной структуры: α -спираль и β -складчатый слой.

Модель строения α-спирали, учитывающая все свойства пептидной связи, была разработана Л. Полингом и Р. Кори (1949 - 1951 гг.).

На рисунке 3, а изображена схема α -спирали, дающая представление об основных ее параметрах. Полипептидная цепь сворачивается вα -спираль таким образом, что витки спирали регулярны, поэтому спиральная конфигурация имеет винтовую симметрию (рис. 3, б ). На каждый виток α -спирали приходится 3,6 аминокислотных остатка. Расстояние между витками или шаг спирали составляет 0,54 нм, угол подъема витка равен 26°. Формирование и поддержание α -спиральной конфигурации происходит за счет водородных связей, образующихся между пептидными группами каждого n -го и (п + 3)-го аминокислотных остатков. Хотя энергия водородных связей мала, большое количество их приводит к значительному энергетическому эффекту, в результате чего α -спиральная конфигурация довольно устойчива. Боковые радикалы аминокислотных остатков не участвуют в поддержании α -спиральной конфигурации, поэтому все аминокислотные остатки в α -спирали равнозначны.

В природных белках существуют только правозакрученные α -спирали.

β-Складчатый слой - второй элемент вторичной структуры. В отличие от α -спирали β -складчатый слой имеет линейную, а не стержневую форму (рис. 4). Линейная структура удерживается благодаря возникновению водородных связей между пептидными группировками, стоящими на разных участках полипептидной цепи. Эти участки оказываются сближенными на расстояние водородной связи между - С = О и HN - группами (0,272 нм).


Рис. 4. Схематичное изображение β -складчатого слоя (стрелками указан

о направление полипептидной цепи)

Рис. 3. Схема (а ) и модель (б ) α -спирали

Вторичная структура белка определяется первичной. Аминокислотные остатки в разной степени способны к образованию водородных связей, это и влияет на образование α -спирали или β -слоя. К спиралеобразующим аминокислотам относятся аланин, глутаминовая кислота, глутамин, лейцин, лизин, метионин и гистидин. Если фрагмент белка состоит главным образом из перечисленных выше аминокислотных остатков, то на данном участке сформируется α -спираль. Валин, изолейцин, треонин, тирозин и фенилаланин способствуют образованию β -слоев полипептидной цепи. Неупорядоченные структуры возникают на участках полипептидной цепи, где сконцентрированы такие аминокислотные остатки, как глицин, серии, аспарагиновая кислота, аспарагин, пролин.

Во многих белках одновременно имеются и α -спирали, и β -слои. Доля спиральной конфигурации у разных белков различна. Так, мышечный белок парамиозин практически на 100% спирализован; высока доля спиральной конфигурации у миоглобина и гемоглобина (75%). Напротив, у трипсина и рибонуклеазы значительная часть полипептидной цепи укладывается в слоистые β -структуры. Белки опорных тканей - кератин (белок волос), коллаген (белок кожи и сухожилий) - имеют β -конфигурацию полипептидных цепей.

Третичная структура белка. Третичная структура белка - это способ укладки полипептидной цепи в пространстве. Чтобы белок приобрел присущие ему функциональные свойства, полипептидная цепь должна определенным образом свернуться в пространстве, сформировав функционально активную структуру. Такая структура называется нативной. Несмотря на громадное число теоретически возможных для отдельной полипептидной цепи пространственных структур, сворачивание белка приводит к образованию единственной нативной конфигурации.

Стабилизируют третичную структуру белка взаимодействия, возникающие между боковыми радикалами аминокислотных остатков разных участков полипептидной цепи. Эти взаимодействия можно разделить на сильные и слабые.

К сильным взаимодействиям относятся ковалентные связи между атомами серы остатков цистеина, стоящих в разных участках полипептидной цепи. Иначе такие связи называются дисульфидными мостами; образование дисульфидного моста можно изобразить следующим образом:

Кроме ковалентных связей третичная структура белковой молекулы поддерживается слабыми взаимодействиями, которые, в свою очередь, разделяются на полярные и неполярные.

К полярным взаимодействиям относятся ионные и водородные связи. Ионные взаимодействия образуются при контакте положительно заряженных групп боковых радикалов лизина, аргинина, гистидина и отрицательно заряженной СООН-группы аспарагиновой и глутаминовой кислот. Водородные связи возникают между функциональными группами боковых радикалов аминокислотных остатков.

Неполярные или ван-дер-ваальсовы взаимодействия между углеводородными радикалами аминокислотных остатков способствуют формированию гидрофобного ядра (жирной капли) внутри белковой глобулы, т.к. углеводородные радикалы стремятся избежать соприкосновения с водой. Чем больше в составе белка неполярных аминокислот, тем большую роль в формировании его третичной структуры играют ван-дер-ваальсовы связи.

Многочисленные связи между боковыми радикалами аминокислотных остатков определяют пространственную конфигурацию белковой молекулы (рис. 5).


Рис. 5. Типы связей, поддерживающих третичную структуру белка:
а - дисульфидный мостик; б - ионная связь; в, г - водородные связи;
д - ван-дер-ваальсовы связи

Третичная структура отдельно взятого белка уникальна, как уникальна и его первичная структура. Только правильная пространственная укладка белка делает его активным. Различные нарушения третичной структуры приводят к изменению свойств белка и потере биологической активности.

Четвертичная стурктура белка. Белки с молекулярной массой более 100 кДа 1 состоят, как правило, из нескольких полипептидных цепей со сравнительно небольшой молекулярной массой. Структура, состоящая из определенного числа полипептидных цепей, занимающих строго фиксированное положение относительно друг друга, вследствие чего белок обладает той или иной активностью, называется четвертичной структурой белка. Белок, обладающий четвертичной структурой, называется эпимолекулой илимультимером , а составляющие его полипептидные цепи - соответственно субъединицами или протомерами . Характерным свойством белков с четвертичной структурой является то, что отдельная субъединица не обладает биологической активностью.

Стабилизация четвертичной структуры белка происходит за счет полярных взаимодействий между боковыми радикалами аминокислотных остатков, локализованных на поверхности субъединиц. Такие взаимодействия прочно удерживают субъединицы в виде организованного комплекса. Участки субъединиц, на которых происходят взаимодействия, называются контактными площадками.

Классическим примером белка, имеющего четвертичную структуру, является гемоглобин. Молекула гемоглобина с молекулярной массой 68 000 Да состоит из четырех субъединиц двух разных типов - α и β / α -Субъединица состоит из 141 аминокислотного остатка, a β - из 146. Третичная стурктура α - и β -субъединиц сходна, как и их молекулярная масса (17 000 Да). Каждая субъединица содержит простетическую группу - гем . Поскольку гем присутствует и в других белках (цитохромы, миоглобин), которые будут изучаться далее, хотя бы коротко обсудим структуру тема (рис. 6). Группировка гема представляет собой сложную копланарную циклическую систему, состоящую из центрального атома, который образует координационные связи с четырьмя остатками пиррола, соединенными метановыми мостиками (= СН -). В гемоглобине железо обычно находится в состоянии окисления (2+).

Четыре субъединицы - две α и две β - соединяются в единую структуру таким образом, что α -субъединицы контактируют только с β -субъединицами и наоборот (рис. 7).


Рис. 6. Структура гема гемоглобина


Рис. 7. Схематичное изображение четвертичной структуры гемоглобина:
Fe - гем гемоглобина

Как видно из рисунка 7, одна молекула гемоглобина способна переносить 4 молекулы кислорода. И связывание, и освобождение кислорода сопровождается конформационными изменениями структуры α - и β -субъединиц гемоглобина и их взаимного расположения в эпимолекуле. Этот факт свидетельствует о том, что четвертичная структура белка не является абсолютно жесткой.


Похожая информация.


П ЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ

Первичная структура белка несет информацию о его пространственной структуре.

1.Аминокислотные остатки в пептидной цепи белков чередуются не случайным образом, а распо-ложены в определенном порядке. Линейная после-довательность аминокислотных остатков в полипеп-тидной цепи называется первичной структурой белка.

2. Первичная структура каждого индивидуально-го белка закодирована в молекуле ДНК (участке, называемом геном) и реализуется в ходе транс-крипции (переписывания информации на мРНК) и трансляции (синтез пептидной цепи).

3. Каждый из 50 000 индивидуальных белков ор-ганизма человека имеет уникальную для данного индивидуального белка первичную структуру. Все молекулы индивидуального белка (например, аль-бумина) имеют одинаковое чередование амино-кислотных остатков, отличающее альбумин от лю-бого другого индивидуального белка.

4. Последовательность аминокислотных остат-ков в пептидной цепи можно рассматривать как
форму запи

си некоторой информации.

Эта информация диктует пространственную ук-ладку длинной линейной пептидной цепи в более компактную трехмерную структуру.

КОНФОРМАЦИЯ БЕЛКОВ

1. Линейные полипептидные цепи индивидуаль-ных белков за счет взаимодействия функциональ-ных групп аминокислот приобретают определен-ную пространственную трехмерную структуру, или конформацию. В глобулярных белках различают
два основных типа конформации пептидных цепей: вторичную и третичную структуры.

ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ

2. Вторичная структура белков - это пространст-венная структура, образующаяся в результате взаимодействий между функциональными груп- пами пептидного остова. При этом пептидная цепь может приобретать регулярные структуры двух типов: ос-спирали и р-структуры.

Рис. 1.2. Вторичная структура белка — а-спираль.

В ос-спирали водородные связи образуются между атомом кислорода карбоксильной группы и водородом амидного азота пептидного остова через 4 аминокислоты; боковые цепи аминокислотных остатков располагаются по периферии спирали, не участвуя в образовании водородных связей, фор-мирующих вторичную структуру (рис. 1.2).

Большие объемные остатки или остатки с одина-ковыми отталкивающимися зарядами препятству- ют формированию а-спирали.

Остаток пролина прерывает а-спираль благодаря его кольцевой структуре и невозможности образо-вания водородной связи из-за отсутствия водорода у атома азота в пептидной цепи.

B -Структура формируется между линейными областями одной полипептидной цепи, образуя при этом складки, или между разными полипеп-тидными цепями. Полипептидные цепи или их части могут формировать параллельные (N- и С-концы взаимодействующих пептидных цепей совпадают) или антипараллельные (N- и С-концы взаимодействующих пептидных цепей лежат в противоположных направлениях) р-структуры (рис. 1.3).

В белках также встречаются области с нерегу-лярной вторичной структурой, которые называ-ются беспорядочными клубками, хотя эти структу-ры не так сильно изменяются от одной молекулы белка к другой.

ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ

3. Третичная структура белка — это трехмерная пространственная структура, образующаяся за счет взаимодействий между радикалами аминокислот, которые могут располагаться на значительном рас-стоянии друг от друга в пептидной цепи.

Рис. 1.3. Антипараллельная (бета-структура.)


Гидрофобные радикалы аминокислот имеют тенденцию к объединению внутри глобулярной структуры белков с помощью так называемых гид- рофобных взаимодействий и межмолекулярных ван-дер-ваальсовых сил, образуя плотное гидро-фобное ядро. Гидрофильные ионизированные и неионизированные радикалы аминокислот в ос-новном расположены на поверхности белка и оп-ределяют его растворимость в воде.

Гидрофильные аминокислоты, оказавшиеся внут-ри гидрофобного ядра, могут взаимодействовать друг с другом с помощью ионных и водородных свя-зей (рис. 1.4).



Рис. 1.4. Типы связей, возникающие между радикалами аминокислот при формировании третичной структуры белка. 1 — ионная связь; 2 — водородная связь; 3 — гидрофобные взаимодействия; 4 — дисульфидная связь.



Рис. 1.5. Дисульфидные связи в структуре инсулина человека.

Ионные, водородные и гидрофобные связи отно-сятся к числу слабых: их энергия ненамного пре-вышает энергию теплового движения молекул при комнатной температуре.

Конформация белка поддерживается за счет воз-никновения множества таких слабых связей.

Конформационная лабильность белков — это спо-собность белков к небольшим изменениям кон-формации за счет разрыва одних и образования других слабых связей.

Третичная структура некоторых белков стабили-зирована дисульфидными связями, образующимися за счет взаимодействия SH-групп двух остатков цистеина.

Большинство внутриклеточных белков не имеет ковалентных дисульфидных связей. Их наличие характерно для секретируемых клеткой белков, на-пример дисульфидные связи имеются в молекулах инсулина, иммуноглобулинов.

Инсулин — белковый гормон, синтезирующийся в р-клетках поджелудочной железы. Секретируется клетками в ответ на повышение концентрации глю-козы в крови. В структуре инсулина имеются 2 ди-сульфидные связи, соединяющие 2 полипептидные А- и В-цепи, и 1 дисульфидная связь внутри А-цепи (рис. 1.5).

Особенности вторичной структуры белков ока-зывают влияние на характер межрадикальных вза-имодействий и третичную структуру.

4. Некоторый специфический порядок чередова-ния вторичных структур наблюдается во многих разных по структуре и функциям белках и носит название супервторичной структуры.

Такие упорядоченные структуры часто обозначают как структурные мотивы, которые имеют специфические названия: «а-спираль—поворот—а-спи-раль», «лейциновая застежка-молния», «цинковые пальцы», «структура Р-бочонка» и др.

По наличию а-спиралей и р-структур глобуляр-ные белки могут быть разделены на 4 категории:

1.В первую категорию включены белки, в кото-рых имеются только а-спирали, например миогло-бин и гемоглобин (рис. 1.6).

2. Во вторую категорию включены белки, в кото-рых имеются а-спирали и (3-структуры. При этом а- и (3-структуры часто образуют однотипные со-четания, встречающиеся в разных индивидуаль-ных белках.

Пример. Супервторичная структура типа Р-бочонка.



Фермент триозофосфатизомераза имеет супер-вторичную структуру типа Р-бочонка, где каждая (3-структура расположена внутри р-бочонка и свя-зана с а-спиральным участком полипептидной цепи, находящимся на поверхности молекулы (рис. 1.7, а).

Рис. 1.7. Супервторичная структура типа р-бочонка.

а — триозофосфатизомераза; б — домен пиру ватки назы.

Такая же супервторичная структура обнаружена в одном из доменов молекулы фермента пируваткиназы (рис. 1.7, б). Доменом называют часть молеку-лы, по структуре напоминающую самостоятель-ный глобулярный белок.

Еще один пример формирования супервторич-ной структуры, имеющей Р-структуры и ос-спира-ли. В одном из доменов лактатдегидрогеназы (ЛДГ) и фосфоглицераткиназы в центре располо-жены Р-структуры полипептидной цепи в виде скрученного листа и каждая р-структура связана с а-спиральным участком, расположенным на по-верхности молекулы (рис. 1.8).

Рис. 1.8. Вторичная структура, характерная для многих фер- ментов.

а -домен лактатдегидрогеназы; б— домен фосфоглицераткиназы.

3. В третью категорию включены белки, имею- щие только вторичную р-структуру. Такие структу-ры обнаружены в иммуноглобулинах, в ферменте супероксиддисмутазе (рис. 1.9).

Рис. 1.9. Вторичная структура константного домена им-муноглобулина (а)

и фермента супероксиддисмутазы (б).

4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное ко-личество регулярных вторичных структур. К таким белкам можно отнести небольшие богатые цисти-ном белки или металлопротеины.

В ДНК-связывающих белках имеются общие виды супервторичных структур: «ос-спираль—поворот— ос-спираль», «лейциновая застежка-молния», «цинко- вые пальцы». ДНК-связывающие белки содержат центр связывания, комплементарный участку ДНК с определенной нуклеотидной последовательностью. Эти белки участвуют в регуляции действия генов.

«а- Спираль—поворот—а-спираль»

Рис. 1.10. Связывание супервторичной

структуры «а-спи-раль—поворот—а-спираль»

в большой бороздке Д

Двуспиральная структура ДНК имеет 2 бороздки: большую и малую. Боль шая бороздка хорошо при-способлена для связывания белков, имеющих не-большие ос-спиральные участки.

В данный структурный мотив входят 2 ос-спирали: одна более короткая, другая более длинная, соеди-ненные поворотом полипептидной цепи (рис. 1.10).

Более короткая а-спираль располагается попе-рек бороздки ДНК, а более длинная а-спираль на-ходится в большой бороздке, образуя нековалент-ные специфические связи радикалов аминокислот с нуклеотидами ДНК.

Часто белки, имеющие такую структуру, образу-ют димеры, в результате олигомерный белок имеет 2 супервторичные структуры.

Они располагаются на определенном расстоянии друг от друга и выступают над поверхностью белка (рис. 1.11).

Две такие структуры могут связываться с ДНК в смежных областях больших бороздок

без значи-тельных изменений в структуре белков.

«Цинковый палец»

«Цинковый палец» — фрагмент белка, содержа-щий около 20 аминокислотных остатков (рис. 1.12).

Атом цинка связан с радикалами 4 аминокислот: 2 остатков цистеина и 2 — гистидина.

В некоторых случаях вместо остатков гистидина находятся остатки цистеина.

Рис. 1.12. Структура участка ДНК-связывающих

белков в форме «цинкового пальца».


Этот участок белка образует а-спираль, которая может специфично связываться с регуляторными участками большой бороздки ДНК.

Специфичность связывания индивидуального регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца».

«Лейциновая застежка-молния»

Взаимодействующие белки имеют а-спиральный участок, содержащий по крайней мере 4 ос-татка лейцина.

Лейциновые остатки расположены через 6 ами-нокислот один от другого.

Так как каждый виток а-спирали содержит 3,6-аминокислотного остатка, радикалы лейцина находятся на поверхности каждого второго витка.

Лейциновые остатки а-спирали одного белка могут взаимодействовать с лейциновыми остатка-ми другого белка (гидрофобные взаимодействия), соединяя их вместе (рис. 1.13).

Многие ДНК-связывающие белки взаимодейст-вуют с ДНК в виде олигомерных структур, где субъединицы связываются друг с другом «лейци-новыми застежками». Примером таких белков мо-гут служить гистоны.

Гистоны — ядерные белки, в состав которых вхо-дит большое количество положительно заряжен-ных аминокислот — аргинина и лизина (до 80%).

Молекулы гистонов объединяются в олигомер-ные комплексы, содержащие 8 мономеров с по-мощью «лейциновых застежек», несмотря на силь-ный положительный заряд этих молекул.

Резюме. Все молекулы индивидуального белка, имеющие идентичную первичную структуру, при-обретают в растворе одинаковую конформацию.

Таким образом, характер пространственной уклад-ки пептидной цепи определяется аминокислотным составом и чередованием аминокислотных остатков в цепи. Следовательно, конформация — такая же специфическая характеристика индивидуального белка, как и первичная структура.

В организме роль белков чрезвычайно велика. При этом такое название вещество может носить только после того, как приобретает заранее заложенную структуру. До этого момента это полипептид, всего лишь аминокислотная цепь, которая не может выполнять заложенных функций. В общем виде пространственная структура белков (первичная, вторичная, третичная и доменная) - это объемное их строение. Причем наиболее важны для организма вторичные, третичные и доменные структуры.

Предпосылки для изучения белковой структуры

Среди методов изучения строения химических веществ особенную роль играет рентгеноструктурная кристаллография. Посредством нее можно получить информацию о последовательности атомов в молекулярных соединениях и об их пространственной организации. Попросту говоря, рентгеновский снимок можно сделать и для отдельной молекулы, что стало возможным в 30-е годы XX века.

Именно тогда исследователи обнаружили, что многие белки имеют не только линейную структуру, но и могут располагаться в спиралях, клубках и доменах. А в результате проведения массы научных экспериментов выяснилось, что вторичная структура белка - это конечная форма для структурных белков и промежуточная для ферментов и иммуноглобулинов. Это значит, что вещества, которая в конечном итоге имеют третичную или четвертичную структуру, на этапе своего "созревания" должны пройти и этап спиралеобразования, свойственный вторичной структуре.

Образование вторичной белковой структуры

Как только завершился синтез полипептида на рибосомах в шероховатой сети клеточной эндоплазмы, начинает образовываться вторичная структура белка. Сам полипептид представляет собой длинную молекулу, занимающую много места и неудобную для транспорта и выполнения заложенных функций. Потому с целью уменьшения ее размеров и придания ей особенных свойств развивается вторичная структура. Это происходит путем образования альфа-спиралей и бета-слоев. Таким образом получается белок вторичной структуры, который в дальнейшем либо превратится в третичную и четвертичную, либо будет использоваться в таком виде.

Организация вторичной структуры

Как показали многочисленные исследования, вторичная структура белка представляет собой либо альфа-спираль, либо бета-слой, либо чередование участков с данными элементами. Причем вторичная структура - это способ скручивания и спиралеобразования белковой молекулы. Это хаотичный процесс, который происходит за счет водородных связей, возникающих между полярными участками аминокислотных остатков в полипептиде.

Альфа-спираль вторичной структуры

Поскольку в биосинтезе полипептидов участвуют только L-аминокислоты, то образование вторичной структуры белка начинается с закручивания спирали по часовой стрелке (правым ходом). На каждый спиральный виток приходится строго 3,6 остатков аминокислот, а расстояние вдоль спиральной оси составляет 0,54 нм. Это общие свойства для вторичной структуры белка, которые не зависят от вида аминокислот, участвовавших в синтезе.

Определено, что не вся полипептидная цепь спирализуется полностью. В ее структуре присутствуют линейные участки. В частности, молекула белка пепсина спирализована лишь на 30%, лизоцима - на 42%, а гемоглобина - на 75%. Это значит, что вторичная структура белка - это не строго спираль, а комбинирование ее участков с линейными или слоистыми.

Бета-слой вторичной структуры

Вторым типом структурной организации вещества является бета-слой, который представляет собой две и более нити полипептида, соединенные водородной связью. Последняя возникает между свободными CO NH2 группами. Таким образом соединяются, в основном, структурные (мышечные) белки.

Структура белков данного типа такова: одна нить полипептида с обозначением концевых участков А-В параллельно располагается вдоль другой. Единственный нюанс в том, что вторая молекула располагается антипараллельно и обозначается как В-А. Так образуется бета-слой, который может состоять из сколько угодно большого количества полипептидных цепочек, соединенных множественными водородными связями.

Водородная связь

Вторичная структура белка - связь, основанная на множественных полярных взаимодействиях атомов с различными показателями электроотрицательности. Наибольшую способность к образованию такой связи имеют 4 элемента: фтор, кислород, азот и водород. В белках присутствуют все, кроме фтора. Потому водородная связь может образоваться и образуется, давая возможность соединять полипептидные цепи в бета-слои и в альфа-спирали.

Наиболее легко объяснить возникновение водородной связи на примере воды, представляющей собой диполь. Кислород несет сильный отрицательный заряд, а из-за высокой поляризации О-Н связи водород считается положительным. В таком состоянии молекулы присутствуют в некой среде. Причем многие из них соприкасаются и сталкиваются. Тогда кислород от первой молекулы воды притягивает водород от другой. И так по цепочке.

Аналогичные процессы протекают и в белках: электроотрицательный кислород пептидной связи притягивает к себе водород из любого участка другого аминокислотного остатка, образуя водородную связь. Это слабое полярное сопряжение, для разрыва которого требуется потратить порядка 6,3 кДж энергии.

Для сравнения, самая слабая ковалентная связь в белках требует 84 кДж энергии для того, чтобы ее разорвать. Самая сильная ковалентная связь потребует 8400 кДж. Однако количество водородных связей в молекуле белка настолько огромно, что их суммарная энергия позволяет молекуле существовать в агрессивных условиях и сохранять свое пространственное строение. Благодаря этому существуют белки. Структура белков данного типа обеспечивает прочность, которая нужна для функционирования мышц, костей и связок. Настолько огромно значение вторичной структуры белков для организма.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»