Динамика относительного движения. Динамика системы Общие теоремы динамики механической системы

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики
  • Абсолютно твердое тело (твердое тело, тело) – это материальное тело, расстояние между любыми точками в котором не изменяется.
  • Материальная точка – это тело, размерами которого по условиям задачи можно пренебречь.
  • Свободное тело – это тело, на перемещение которого не наложено никаких ограничений.
  • Несвободное (связанное) тело – это тело, на перемещение которого наложены ограничения.
  • Связи – это тела, препятствующие перемещению рассматриваемого объекта (тела или системы тел).
  • Реакция связи — это сила, характеризующая действие связи на твердое тело. Если считать силу, с которой твердое тело действует на связь, действием, то реакция связи является противодействием. При этом сила - действие приложена к связи, а реакция связи приложена к твердому телу.
  • Механическая система – это совокупность взаимосвязанных между собой тел или материальных точек.
  • Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.
  • Сила – это векторная величина, характеризующая механическое действие одного материального тела на другое.
    Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
  • Линия действия силы – это прямая, вдоль которой направлен вектор силы.
  • Сосредоточенная сила – сила, приложенная в одной точке.
  • Распределенные силы (распределенная нагрузка) – это силы, действующие на все точки объема, поверхности или длины тела.
    Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
    Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
  • Внешняя сила – это сила, действующая со стороны тела, не принадлежащего рассматриваемой механической системе.
  • Внутренняя сила – это сила, действующая на материальную точку механической системы со стороны другой материальной точки, принадлежащей рассматриваемой системе.
  • Система сил – это совокупность сил, действующих на механическую систему.
  • Плоская система сил – это система сил, линии действия которых лежат в одной плоскости.
  • Пространственная система сил – это система сил, линии действия которых не лежат в одной плоскости.
  • Система сходящихся сил – это система сил, линии действия которых пересекаются в одной точке.
  • Произвольная система сил – это система сил, линии действия которых не пересекаются в одной точке.
  • Эквивалентные системы сил – это такие системы сил, замена которых одна на другую не изменяет механического состояния тела.
    Принятое обозначение: .
  • Равновесие – это состояние, при котором тело при действии сил остается неподвижным или движется равномерно прямолинейно.
  • Уравновешенная система сил – это система сил, которая будучи приложена к свободному твердому телу не изменяет его механического состояния (не выводит из равновесия).
    .
  • Равнодействующая сила – это сила, действие которой на тело эквивалентно действию системы сил.
    .
  • Момент силы – это величина, характеризующая вращающую способность силы.
  • Пара сил – это система двух параллельных равных по модулю противоположно направленных сил.
    Принятое обозначение: .
    Под действием пары сил тело будет совершать вращательное движение.
  • Проекция силы на ось – это отрезок, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой оси.
    Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
  • Проекция силы на плоскость – это вектор на плоскости, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой плоскости.
  • Закон 1 (закон инерции). Изолированная материальная точка находится в покое либо движется равномерно и прямолинейно.
    Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
  • Закон 2. Твердое тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю и направлены в противоположные стороны по общей линии действия.
    Эти две силы называются уравновешивающимися.
    Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
  • Закон 3. Не нарушая состояния (слово «состояние» здесь означает состояние движения или покоя) твердого тела, можно добавлять и отбрасывать уравновешивающиеся силы.
    Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
    Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
  • Закон 4. Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке, равна по модулю диагонали параллелограмма, построенного на этих силах, и направлена вдоль этой
    диагонали.
    По модулю равнодействующая равна:
  • Закон 5 (закон равенства действия и противодействия) . Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны по одной прямой.
    Следует иметь в виду, что действие - сила, приложенная к телу Б , и противодействие - сила, приложенная к телу А , не уравновешиваются, так как они приложены к разным телам.
  • Закон 6 (закон отвердевания) . Равновесие нетвердого тела не нарушается при его затвердевании.
    Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
  • Закон 7 (закон освобождаемости от связей). Несвободное твердое тело можно рассматривать как свободное, если его мысленно освободить от связей, заменив действие связей соответствующими реакциями связей.
    Связи и их реакции
  • Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
  • Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
  • Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
  • Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
  • Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.

Кинематика

Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

    Основные понятия кинематики
  • Закон движения точки (тела) – это зависимость положения точки (тела) в пространстве от времени.
  • Траектория точки – это геометрическое место положений точки в пространстве при ее движении.
  • Скорость точки (тела) – это характеристика изменения во времени положения точки (тела) в пространстве.
  • Ускорение точки (тела) – это характеристика изменения во времени скорости точки (тела).
    Определение кинематических характеристик точки
  • Траектория точки
    В векторной системе отсчета траектория описывается выражением: .
    В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
    В естественной системе отсчета траектория задается заранее.
  • Определение скорости точки в векторной системе координат
    При задании движения точки в векторной системе координат отношение перемещения к интервалу времени называют средним значением скорости на этом интервале времени: .
    Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): .
    Вектор средней скорости направлен вдоль вектора в сторону движения точки, вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки.
    Вывод: скорость точки – векторная величина, равная производной от закона движения по времени.
    Свойство производной: производная от какой либо величины по времени определяет скорость изменения этой величины.
  • Определение скорости точки в координатной системе отсчета
    Скорости изменения координат точки:
    .
    Модуль полной скорости точки при прямоугольной системе координат будет равен:
    .
    Направление вектора скорости определяется косинусами направляющих углов:
    ,
    где — углы между вектором скорости и осями координат.
  • Определение скорости точки в естественной системе отсчета
    Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: .
    Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях определяется только одной проекцией .
    Кинематика твердого тела
  • В кинематике твердых тел решаются две основные задачи:
    1) задание движения и определение кинематических характеристик тела в целом;
    2) определение кинематических характеристик точек тела.
  • Поступательное движение твердого тела
    Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
    Теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения .
    Вывод: поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки .
  • Вращательное движение твердого тела вокруг неподвижной оси
    Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
    Положение тела определяется углом поворота . Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит радиана.)
    Закон вращательного движения тела вокруг неподвижной оси .
    Угловую скорость и угловое ускорение тела определим методом дифференцирования:
    — угловая скорость, рад/с;
    — угловое ускорение, рад/с².
    Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М , то точка М будет описывать вокруг точки С окружность радиуса R . За время dt происходит элементарный поворот на угол , при этом точка М совершит перемещение вдоль траектории на расстояние .
    Модуль линейной скорости:
    .
    Ускорение точки М при известной траектории определяется по его составляющим :
    ,
    где .
    В итоге, получаем формулы
    тангенциальное ускорение: ;
    нормальное ускорение: .

Динамика

Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

    Основные понятия динамики
  • Инерционность — это свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.
  • Масса — это количественная мера инерционности тела. Единица измерения массы — килограмм (кг).
  • Материальная точка — это тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.
  • Центр масс механической системы — геометрическая точка, координаты которой определяются формулами:

    где m k , x k , y k , z k — масса и координаты k -той точки механической системы, m — масса системы.
    В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
  • Момент инерции материального тела относительно оси – это количественная мера инертности при вращательном движении.
    Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
    .
    Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
  • Сила инерции материальной точки — это векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения:
  • Сила инерции материального тела — это векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс: ,
    где — ускорение центра масс тела.
  • Элементарный импульс силы — это векторная величина , равная произведению вектора силы на бесконечно малый промежуток времени dt :
    .
    Полный импульс силы за Δt равен интегралу от элементарных импульсов:
    .
  • Элементарная работа силы — это скалярная величина dA , равная скалярному прои

Теорема о движении центра масс. Дифференциальные уравнения движения механической системы. Теорема о движении центра масс механической системы. Закон сохранения движения центра масс.

Теорема об изменении количества движения. Количество движения материальной точки. Элементарный импульс силы. Импульс силы за конечный промежуток времени и его проекции на координатные оси. Теорема об изменении количества движения материальной точки в дифференциальной и конечной формах.

Количество движения механической системы; его выражение через массу системы и скорость ее центра масс. Теорема об изменении количества движения механической системы в дифференциальной и конечной формах. Закон сохранения количества движения механической

(Понятие о теле и точке переменной массы. Уравнение Мещерского. Формула Циолковского.)

Теорема об изменении момента количества движения. Момент количества движения материальной точки относительно центра и относительно оси. Теорема об изменении момента количества движения материальной точки. Центральная сила. Сохранение момента количе­ства движения материальной точки в случае центральной силы. (Понятие о секторной скорости. Закон площадей.)

Главный момент количеств движения или кинетический момент механической системы относительно центра и относительно оси. Кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента механической системы. (Теорема об изменении кинетического момента механической системы в относительном движении по отношению к центру масс.)

Теорема об изменении кинетической энергии. Кинетическая энергия материальной точки. Элементарная работа силы; аналитическое выра­жение элементарной работы. Работа силы на конечном перемещении точки ее приложения. Работа силы тяжести, силы упругости и силы тяготения. Теорема об изменении кинетической энергии материальной точки в дифференциальной и конечной формах.

Кинетическая энергия механической системы. Формулы для вычисления кинетической энергии твердого тела при поступательном движении, при вращении вокруг неподвижной оси и в общем случае движения (в частности, при плоскопараллельном движении). Теорема об изменении кинетической энергии механической системы в дифференциальной и конечной формах. Равенство нулю суммы работ внутренних сил в твердом теле. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.

Понятие о силовом поле. Потенциальное силовое поле и силовая функция. Выражение проекций силы через силовую функцию. Поверхности равного потенциала. Работа силы на конечном перемещении точки в потенциальном силовом поле. Потенциальная энергия. Примеры потенциальных силовых полей: однородное поле тяжести и поле тяготения. Закон сохранения механической энергии.

Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Физический маятник. Дифференциальные уравнения плоского движения твердого тела.

Принцип Даламбера. Принцип Даламбера для материальной точки; сила инерции. Принцип Даламбера для механической системы. Приведение сил инерции точек твердого тела к центру; главный вектор и главный момент сил инерции.

(Определение динамических реакций подшипников при вращении твердого тела вокруг неподвижной оси. Случай, когда ось вращения является главной центральной осью инерции тела.)

Принцип возможных перемещений и общее уравнение динамики. Связи, налагаемые на механическую систему. Возможные (или виртуальные) перемещения материальной точки и механической системы. Число степеней свободы системы. Идеальные связи. Принцип возможных перемещений. Общее уравнение динамики.

Уравнения движения системы в обобщенных координатах (уравнения Лагранжа). Обобщенные координаты системы; обобщенные ско­рости. Выражение элементарной работы в обобщенных координатах. Обобщенные силы и их вычисление; случай сил, имеющих потенциал. Условия равновесия системы в обобщенных координатах. Дифференциальные уравнения движения системы в обобщенных координатах или уравнения Лагранжа 2-го рода. Уравнения Лагранжа в случае потенциальных сил; функция Лагранжа (кинетический потенциал).

Понятие об устойчивости равновесия. Малые свободные колебания механической системы с одной степенью свободы около положения устойчивого равновесия системы и их свойства.

Элементы теории удара. Явление удара. Ударная сила и ударный импульс. Действие ударной силы на материальную точку. Теорема об изменении количества движения механической системы при ударе. Прямой центральный удар тела о неподвижную поверхность; упругий и неупругий удары. Коэффициент восстановления при ударе и его опытное определение. Прямой центральный удар двух тел. Теорема Карно.

СПИСОК ЛИТЕРАТУРЫ

Основной

Бутенин Н. В., Лунц Я- Л., Меркин Д. Р. Курс теоретической механики. Т. 1, 2. М., 1985 и предыдущие издания.

Добронравов В. В., Никитин Н. Н. Курс теоретической механики. М., 1983.

Старжинский В. М. Теоретическая механика. М., 1980.

Тарг С. М. Краткий курс теоретической механики. М., 1986 и предыдущие издания.

Яблонский А. А., Никифорова В. М. Курс теоретической механики. Ч. 1. М., 1984 и предыдущие издания.

Яблонский А. А. Курс теоретической механики. Ч. 2. М., 1984 и предыдущие издания.

Мещерский И. В. Сборник задач по теоретической механике. М., 1986 и предыдущие издания.

Сборник задач по теоретической механике/Под ред. К. С. Колесникова. М., 1983.

Дополнительной

Бать М. И., Джанелидзе Г. Ю., Кельзон А. С. Теоретическая механика в примерах и задачах. Ч. 1, 2. М., 1984 и предыдущие издания.

Сборник задач по теоретической механике/5ражничен/со Н. А., Кан В. Л., Минцберг Б. Л. и др. М., 1987.

Новожилов И. В., Зацепин М. Ф. Типовые расчеты по теоретиче­ской механике на базе ЭВМ. М., 1986,

Сборник заданий для курсовых работ по теоретической механике /Под ред. А. А. Яблонского. М., 1985 и предыдущие издания (содержит примеры решения задач).

Использование ОЗМС при решении задач связано с определенными трудностями. Поэтому обычно устанавливают дополнительные соотношения между характеристиками движения и сил, которые более удобны для практического применения. Такими соотношениями являются общие теоремы динамики. Они, являясь следствиями ОЗМС, устанавливают зависимости между быстротой изменения некоторых специально введенных мер движения и характеристиками внешних сил.

Теорема об изменении количества движения. Введем понятие вектора количества движения (Р. Декарт) материальной точки (рис. 3.4):

Я і = т V г (3.9)

Рис. 3.4.

Для системы вводим понятие главного вектора количества движения системы как геометрической суммы:

Q = Y, m " V r

В соответствии с ОЗМС: Хю,-^=я) , или X

R (E) .

С учетом, того /w, = const получим: -Ym,!" = R (E) ,

или в окончательном виде

дО/ді = А (Е (3.11)

т.е. первая производная по времени главного вектора количества движения системы равна главному вектору внешних сил.

Теорема о движении центра масс. Центром масс системы называют геометрическую точку, положение которой зависит от т, и т.е. от распределения масс /г/, в системе и определяется выражением радиуса-вектора центра масс (рис. 3.5):

где г с - радиус-вектор центра масс.

Рис. 3.5.

Назовем = т с массой системы. После умножения выраже-

ния (3.12) на знаменатель и дифференцирования обеих частей полу-

ценного равенства будем иметь: г с т с = ^т.У. = 0, или 0 = т с У с.

Таким образом, главный вектор количества движения системы равен произведению массы системы и скорости центра масс. Используя теорему об изменении количества движения (3.11), получим:

т с дУ с /ді = А (Е) , или

Формула (3.13) выражает теорему о движении центра масс: центр масс системы движется как материальная точка, обладающая массой системы, на которую действует главный вектор внешних сил.

Теорема об изменении момента количества движения. Введем понятие момента количества движения материальной точки как векторное произведение ее радиуса-вектора и количества движения:

к о, = бл х т, У , (3.14)

где к ОІ - момент количества движения материальной точки относительно неподвижной точки О (рис. 3.6).

Теперь определим момент количества движения механической системы как геометрическую сумму:

К() = X ко, = ЩУ, ? О-15>

Продифференцировав (3.15), получим:

Ґ сік --- х т і У. + г ю х т і

Учитывая, что = У Г У і х т і У і = 0, и формулу (3.2), получим:

сіК а /с1ї - ї 0 .

На основании второго выражения в (3.6) окончательно будем иметь теорему об изменении момента количества движения системы:

Первая производная по времени от момента количества движения механической системы относительно неподвижного центра О равна главному моменту внешних сил, действующих на эту систему, относительно того же центра.

При выводе соотношения (3.16) предполагалось, что О - неподвижная точка. Однако можно показать, что и в ряде других случаев вид соотношения (3.16) не изменится, в частности, если при плоском движении моментную точку выбрать в центре масс, мгновенном центре скоростей или ускорений. Кроме этого, если точка О совпадает с движущейся материальной точкой, равенство (3.16), записанное для этой точки обратится в тождество 0 = 0.

Теорема об изменении кинетической энергии. При движении механической системы изменяется как «внешняя», так и внутренняя энергия системы. Если характеристики внутренних сил, главный вектор и главный момент, не сказываются на изменении главного вектора и главного момента количества ускорений, то внутренние силы могут входить в оценки процессов энергетического состояния системы. Поэтому при рассмотрении изменений энергии системы приходится рассматривать движения отдельных точек, к которым приложены также и внутренние силы.

Кинетическую энергию материальной точки определяют как величину

Т^туЦг. (3.17)

Кинетическая энергия механической системы равна сумме кинетических энергий материальных точек системы:

Заметим, что Т > 0.

Определим мощность силы, как скалярное произведение вектора силы на вектор скорости:

Дифференциальные уравнения движения системы.

Применяем второй (основной) закон динамики, получим

Аналогичного вида уравнения получим для любой точки системы, т.е. всего для рассматриваемой системы будет иметь nтаких уравнений (k= 1, 2….n). Эта система уравнений представляет собойдифференциальные уравнения движения механической системы в векторной форме.

Проектируя равенства (2) на какие-нибудь координатные оси, получим систему дифференциальных уравнений движения системы в проекциях на эти оси.

В результате интегрирования системы дифференциальных уравнений (что очень сложно) получить законы движений каждой точки системы. Гораздо удобнее определять некоторые сумарные характеристики движения всей системы в целом, а по ним, если требуется, найти и соответствующие параметры движения отжельных точек системы.

Такими характеристиками являются меры движения системы: количество движения, момент количества движения, кинетическая инергия.

Приче м каждая из этих мер для системы определяется как сумма соответствующих мер движения всех ее точек.

Соответственно и воздействия на систему рассматриваются суммарно (главный вектор и главный момент приложенных к системе сил, суммы работ и т.п.).

Зависсимость между мерами движения системы и мерами воздействия на нее выражают общие теоремы системы материальных точек.

Общие теоремы динамики системы являются следствиями системы уравнений (2).

2) Масса системы. Центр масс.

Механическая система – это система материальных точек, каждая из которых имеет определенную массу и занимает в данный момент времени определенное положение в пространстве.

Для удобства решения задач динамики механические системы желательно некоторые обобщенные (т.е. суммарные) характеристики, которые бы отражали и массу системы, и ее «геометрию масс», т.е. расположение в пространстве материальных точек системы.

Масса системы М равна арифметической сумме масс всех точек или тел, образующих систему:

Центром масс механической системы называют геометрическую точку С, радиус вектор которой

где радиус- вектор точек, образующих систему.

Массы точек механической системы

М – масса системы.

Центр масс системы явл не материальной точкой, а геометрической. Он может не совпадать ни с одной материальной точкой системы. Центр масс системы характеризует распределение масс в системе.

Теорема о движении центра масс механической системы.

Теорема: Центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все действующие на систему внешние силы.

Где - ускорение центра масс.

Главный вектор внешних сил.

Проецируя обе части уравнения на координатные оси, получим:

где ,,- координаты центра масс.

Из теоремы о движения центра масс можно получить следующие важные следствия, которые выражают закон сохранения центра масс механической системы.

Если геометрическая система всех внешних сил, действующих на систему, равна 0 () то это значит, чтоили, т.е. центр масс этой системы движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое () то он и останется в покое т.е ().

Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось Х равна 0 , тоилит.е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент, то и в любой последующий момент времени это значение сохранится, а следовательно координатацентра масс системы не изменится т.е.=const.

Теоремы об изменении количества движения точки и системы

Определение: количеством движения материальной точки называется векторная величина ,равная произведению массы точки на вектор ее скорости. Векторприложен к движущейся точке.

Определение: Количеством движения механической системы называется вектор, равный геометрической сумме количеств движения всех точек системы.

Вектор является свободным вектором. Как правило скорости всех точек системы различны и поэтому непосредственное суммирование векторов в правой части равенства является затруднительным.

Воспользуемся формулой для определения центра масс механической системы (1)

Или запишем в виде

дифференциируя обе части выражения по времени получим:

Сравнивая формулы (4) и (5) получим, что количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Вектор является обобщенной векторной характеристикой движения всей механической системы. В общем случае движение системы ее количество движения можно рассматривать как характеристику поступательной части движения системы вместе с центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения будет равно 0. Например количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Запишем второй закон динамики для материальной точки: учитывая чтополучим(7)

В каждый момент времени производная по времени от количества движения точки равна действующей на точку силе.

Если обе части равенства (7) умножить на dt , то получимвекторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времениdt эту величинуназывают элементарным импульсом силы, т.е.

Общие теоремы динамики - это теорема о движении центра масс механической системы, теорема об изменении количества движения, теорема об изменении главного момента количества движения (кинетического момента) и теорема об изменении кинетической энергии механической системы.

Теорема о движении центра масс механической системы

Теорема о движении центра масс.
Произведение массы системы на ускорение ее центра масс равно векторной сумме всех действующих на систему внешних сил:
.

Здесь M - масса системы:
;
a C - ускорение центра масс системы:
;
v C - скорость центра масс системы:
;
r C - радиус вектор (координаты) центра масс системы:
;
- координаты (относительно неподвижного центра) и массы точек, из которых состоит система.

Теорема об изменении количества движения (импульса)

Количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс или сумме количества движения (сумме импульсов) отдельных точек или частей, составляющих систему:
.

Теорема об изменении количества движения в дифференциальной форме.
Производная по времени от количества движения (импульса) системы равна векторной сумме всех действующих на систему внешних сил:
.

Теорема об изменении количества движения в интегральной форме.
Изменение количества движения (импульса) системы за некоторый промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени:
.

Закон сохранения количества движения (импульса).
Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма проекций внешних сил на какую либо ось равна нулю, то проекция количества движения системы на эту ось будет постоянной.

Теорема об изменении главного момента количества движения (теорема моментов)

Главным моментом количества движения системы относительно данного центра O называется величина , равная векторной сумме моментов количеств движения всех точек системы относительно этого центра:
.
Здесь квадратные скобки обозначают векторное произведение.

Закрепленные системы

Следующая ниже теорема относится к случаю, когда механическая система имеет неподвижную точку или ось, которая закреплена относительно инерциальной системы отсчета. Например тело, закрепленное сферическим подшипником. Или система тел, совершающая движение вокруг неподвижного центра. Это также может быть неподвижная ось, вокруг которой вращается тело или система тел. В этом случае, под моментами следует понимать моменты импульса и сил относительно закрепленной оси.

Теорема об изменении главного момента количества движения (теорема моментов)
Производная по времени от главного момента количества движения системы относительно некоторого неподвижного центра O равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения главного момента количества движения (момента импульса).
Если сумма моментов всех приложенных к системе внешних сил относительно данного неподвижного центра O равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Если сумма моментов внешних сил относительно некоторой неподвижной оси равна нулю, то момент количества движения системы относительно этой оси будет постоянным.

Произвольные системы

Следующая далее теорема имеет универсальный характер. Она применима как к закрепленным системам, так и к свободно движущимся. В случае закрепленных систем нужно учитывать реакции связей в закрепленных точках. Она отличается от предыдущей теоремы тем, что вместо закрепленной точки O следует брать центр масс C системы.

Теорема моментов относительно центра масс
Производная по времени от главного момента количества движения системы относительно центра масс C равна сумме моментов всех внешних сил системы относительно того же центра.

Закон сохранения момента импульса.
Если сумма моментов всех приложенных к системе внешних сил относительно центра масс C равна нулю, то главный момент количества движения системы относительно этого центра будет постоянным. То есть все его проекции на оси координат будут сохранять постоянные значения.

Момент инерции тела

Если тело вращается вокруг оси z с угловой скоростью ω z , то его момент количества движения (кинетический момент) относительно оси z определяется по формуле:
L z = J z ω z ,
где J z - момент инерции тела относительно оси z .

Момент инерции тела относительно оси z определяется по формуле:
,
где h k - расстояние от точки массой m k до оси z .
Для тонкого кольца массы M и радиуса R или цилиндра, масса которого распределена по его ободу,
J z = M R 2 .
Для сплошного однородного кольца или цилиндра,
.

Теорема Штейнера-Гюйгенса.
Пусть Cz - ось, проходящая через центр масс тела, Oz - параллельная ей ось. Тогда моменты инерции тела относительно этих осей связаны соотношением:
J Oz = J Cz + M a 2 ,
где M - масса тела; a - расстояние между осями.

В более общем случае :
,
где - тензор инерции тела.
Здесь - вектор, проведенный из центра масс тела в точку с массой m k .

Теорема об изменении кинетической энергии

Пусть тело массы M совершает поступательное и вращательное движение с угловой скоростью ω вокруг некоторой оси z . Тогда кинетическая энергия тела определяется по формуле:
,
где v C - скорость движения центра масс тела;
J Cz - момент инерции тела относительно оси, проходящей через центр масс тела параллельно оси вращения. Направление оси вращения может меняться со временем. Указанная формула дает мгновенное значение кинетической энергии.

Теорема об изменении кинетической энергии системы в дифференциальной форме.
Дифференциал (приращение) кинетической энергии системы при некотором ее перемещении равно сумме дифференциалов работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Теорема об изменении кинетической энергии системы в интегральной форме.
Изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил:
.

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»