Гидраты природных газов. Газогидраты перспективы разработки

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Мировые запасы сланцевого газа оцениваются приблизительно в 200 трлн куб м, традиционного газа (в том числе и нефтяного попутного) - в 300 трлн куб м... Но это лишь ничтожно малая часть от общего количества природного газа на Земле: его основная часть находится в виде газовых гидратов на дне океанов . Такие гидраты представляют собой клатраты молекул природного газа (прежде всего гидрат метана). Кроме дна океанов, газовые гидраты существуют во многолетнемерзлых породах.

Запасы газовых гидратов на дне океанов определить точно пока сложно, однако, по средней оценке, там находится порядка 100 квадриллионов куб м метана (при приведении его к атмосферному давлению). Таким образом, запасы газа в виде гидратов на дне мирового океана в сто раз больше, чем сланцевого и традиционного газа вместе взятого.

Газовые гидраты имеют различный состав, это химические соединения клатратного типа (так называемый решетчатый клатрат), когда в полость кристаллической решетки «хозяина» (воды) могут внедриться посторонние атомы или молекулы («гости»). В быту самым известным клатратом является медный купорос (сульфат меди), который имеет ярко-синий цвет (такой цвет - только у кристаллогидрата, безводный сульфат меди имеет белый цвет).

Кристаллогидратами являются и газовые гидраты. На дне океанов, где по каким-то причинам осуществлялся выход природного газа, природный газ не поднимается на поверхность, а химически связывается с водой, образуя кристаллогидраты. Этот процесс возможен на большой глубине, где высокое давление , или в условиях вечной мерзлоты, где всегда отрицательная температура .

Газовые гидраты (в частности, гидрат метана) - это твердое, кристаллическое вещество. В 1 объеме газового гидрата содержится 160-180 объемов чистого природного газа. Плотность газового гидрата составляет примерно 0,9 г/кубический сантиметр, что меньше плотности воды и льда. Они легче воды и должны были бы всплыть, а затем газовый гидрат при снижении давления бы распался на метан и воду, и весь бы улетучился. Однако этого не происходит.

Этому препятствуют осадочные породы дна океана - именно на них и происходит гидратообразование. Взаимодействуя с осадочными породами дна, гидрат не может всплыть. Так как дно не пологое, а изрезанное, то постепенно образцы газовых гидратов совместно с осадочными породами опускаются вниз, и образуют совместные залежи. Зона гидратообразования идет на дне, где природный газ поступает из источника. Процесс образования залежи такого типа длится длительное время, и газовые гидраты в «чистом» виде не существуют, им обязательно сопутствуют горные породы. В итоге получается газогидратное месторождение - скопление газогидратных пород на дне океана.

Для образования газовых гидратов необходимы либо низкие температуры, либо высокие давления. Образование гидрата метана при атмосферном давлении становится возможным только при температуре -80 °C. Такие морозы возможны (и то весьма редко) только в Антарктиде, но в метастабильном состоянии газовые гидраты могут существовать при атмосферном давлении и при более высоких температурах. Но эти температуры все равно должны быть отрицательными - ледяная корка, образующаяся при распаде верхнего слоя , защищает в дальнейшем гидраты от распада, что и имеет место в районах вечной мерзлоты.

Впервые с газовыми гидратами столкнулись при разработке обычного, на первый взгляд, Мессояхского месторождения (Ямало-Ненецкий автономный округ) в 1969 году, из которого по стечению ряда факторов удалось извлечь природный газ непосредственно из газовых гидратов - порядка 36% объема добытого из него газа имело гидратное происхождение.

Кроме этого, реакция разложения газового гидрата является эндотермической , то есть энергия при разложении поглощается из внешней среды. Причем энергии необходимо затратить много: гидрат, если он начинает разлагаться, самостоятельно охлаждается и его разложение прекращается.

При температуре в 0 °C гидрат метана будет стабильным при давлении в 2,5 МПа. Температура воды вблизи дна морей и океанов составляет строго +4 °C - при таких условиях вода имеет наибольшую плотность. При этой температуре необходимое для стабильного существования гидрата метана давление будет уже вдвое выше, чем при 0 °C и составит 5 МПа. Соответственно, гидрат метана может залегать только при глубине водоема более 500 метров , так как приблизительно 100 метров воды соответствуют давлению в 1 МПа.

Кроме «природных» газовых гидратов, образование газовых гидратов является большой проблемой в магистральных газопроводах , расположенных в условиях умеренного и холодного климата, поскольку газовые гидраты способны забить газопровод и снизить его пропускную способность. Для того, чтобы этого не происходило, в природный газ добавляют небольшое количество ингибитора гидратообразования, в основном применяют метиловый спирт, диэтиленгликоль, триэтиленгликоль, иногда - растворы хлоридов (в основном поваренную соль или дешевый хлорид кальция). Или же просто используют подогрев, не допуская охлаждения газа до температуры начала гидратообразования.

С учетом огромных запасов газовых гидратов, интерес к ним в настоящее время весьма велик - ведь если не считать 200-мильной экономической зоны, океан является нейтральной территорией и любая страна может начать добычу природного газа из природных ископаемых такого типа . Поэтому вполне вероятно, что природный газ из газовых гидратов - топливо недалекого будущего, если удастся разработать рентабельный способ его добычи.

Однако добыча природного газа из гидратов - задача еще более сложная, чем добыча сланцевого газа, которая основывается на гидроразрыве пласта горючего сланца. Добывать газовые гидраты его в традиционном смысле нельзя: слой гидратов расположен на океанском дне, и просто пробурить скважину - недостаточно. Необходимо разрушить гидраты .

Это можно сделать либо понизив каким-то способом давление (первый способ), либо нагреть чем-то породу (второй способ). Третий способ предполагает сочетание обоих действий. После этого необходимо собрать выделившийся газ. Также недопустимо попадание метана в атмосферу, ибо метан - сильный парниковый газ, действующий примерно в 20 сильнее, чем газ углекислый. Теоретически возможно применение ингибиторов (тех же, что используются в газопроводах), однако реально стоимость ингибиторов оказывается слишком высокой для их практического применения.

Привлекательность добычи гидратного газа для Японии состоит в том, что согласно ультразвуковым исследованиям, запасы газовых гидратов в океане рядом с Японией оцениваются в диапазоне от 4 до 20 трлн куб м. Немало месторождений гидратов и в других областях океана. В частности, огромные запасы гидратов имеются на дне Черного моря (по примерным подсчетам, 30 трлн куб м) и даже на дне озера Байкал.

Первопроходцем в добыче природного газа из гидратов выступила японская компания Japan Oil, Gas and Metal National Corporarion. Япония - высокоразвитая страна, но чрезвычайно бедна природными ресурсами, и является крупнейшим импортером природного газа в мире, потребности в котором после аварии на АЭС «Фукусима» только возросли.

Для экспериментальной добычи метангидратов с помощью бурового судна японские специалисты выбрали вариант снижения давления (декомпрессию) . Пробная добыча природного газа из гидратов была успешно осуществлена примерно в 80 км к югу от полуострова Ацуми, где глубина моря составляет порядка километра. Японское исследовательское судно «Тикю» приблизительно год (с февраля 2012 года) осуществляла бурение трех пробных скважин глубиной 260 метров (не считая глубины океана). С помощью специальной технологии разгерметизации газовые гидраты разлагались.

Хотя пробная добыча длилась всего 6 дней (с 12 до 18 марта 2013 года), при том, что планировалась двухнедельная добыча (помешала плохая погода), было добыто 120 тыс куб м природного газа (в среднем 20 тыс куб м в сутки). Министерство экономики, торговли и промышленности Японии охарактеризовало результаты добычи как «впечатляющие», выход намного превысил ожидания японских специалистов.

Полномасштабное промышленное освоение месторождения планируется начать в 2018-2019 году после «разработки соответствующих технологий». Будут ли рентабельны эти технологии и появятся ли они - покажет время. Слишком уж много технологических проблем будет необходимо решить. Кроме добычи газа, также необходимо будет его сжимать либо сжижать , что потребует мощного компрессора на судне или криогенной установки. Поэтому добыча газовых гидратов, вероятно, будет стоить дороже, чем сланцевого газа, себестоимость добычи которого составляет 120-150 долл за тыс куб м. Для сравнения: себестоимость традиционного газа с традиционных месторождений не превышает 50 долл за тыс куб м.

Николай Блинков

Газовые гидраты – это твердые растворы, растворителем которых является кристаллическая решетка состоящая из молекул воды. Внутри воды размещаются молекулы «растворенного газа», размеры которых определяют возможность образования гидратов только из метана, этана, пропана и изобутана. Для образования газовых гидратов необходимы низкие температуры и давления, сочетания которых возможно в пластовых условиях лишь в районах развития мощной толщи многолетней мерзлоты.

По различным оценкам, запасы земных углеводородов в гидратах составляют от 1,8·10 5 до 7,6·10 9 км³. Сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.

Образование газовых гидратов

Газовые гидраты подразделяются на техногенные (искусственные) и природные (естественные). Все известные газы при определенных давлениях и температурах образуют кристаллогидраты, структура которых зависит от состава газа, давления и температуры. Гидраты могут стабильно существовать в широком диапазоне давлений и температур. Например, гидрат метана существует при давлениях от 2*10 -8 до 2*10 3 MPa и температурах от 70 до 350 K.

Некоторые свойства гидратов уникальны. Например, один объем воды при переходе в гидратное состояние связывает 207 объемов метана. При этом ее удельный объем возрастает на 26% (при замерзании воды ее удельный объем возрастает на 9%). 1 м 3 гидрата метана при P=26 атм и Т=0°С содержит 164 объема газа. При этом на долю газа приходится 0.2 м 3 , на воду 0,8 м 3 . Удельный объем метана в гидрате соответствует давлению порядка 1400 атм. Разложение гидрата в замкнутом объеме сопровождается значительным повышением давления. На рисунке 3.1.1 дана диаграмма условий существования гидрата некоторых компонентов природного газа в координатах давление-температура.

Рисунок 3.1.1 - Кривые газо-гидрато-образования для некоторых компонентов природного газа.

Для образования газогидрата необходимы следующие три условия:

1. Благоприятные термобарические условия. Образованию газогидратов благоприятствует сочетание низкой температуры и высокого давления.

2. Наличие гидратообразующего вещества. К гидратообразующим веществам относятся метан, этан, пропан, двуокись углерода и др.

3. Достаточное количество воды. Воды не должно быть ни слишком мало, ни слишком много.

Для предотвращения газогидратообразования достаточно исключить одно из трёх условий.

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

· массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла;

· вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла;

· гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/м³).

Ускоренному образованию газовых гидратов способствуют следующие явления:

· Турбулентность. Образование газовых гидратов активно протекает на участках с высокими скоростями потока среды. При перемешивании газа в трубопроводе, технологическом резервуаре, теплообменнике и т.п. интенсивность газогидратообразования возрастает.

· Центры кристаллизации. Центр кристаллизации представляет собой точку, в которой имеются благоприятные условия для фазового превращения, в данном случае – образования твердой фазы из жидкой.

· Свободная вода. Наличие свободной воды не является обязательным условием для гидратообразования, однако интенсивность этого процесса в присутствии свободной воды значительно возрастает. Кроме того, поверхность раздела фаз вода-газ является удобным центром кристаллизации для образования газогидратов.

Строение гидратов

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы. Эти полости могут занимать молекулы газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H 2 O, где М - молекула газа-гидрато-образователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидрато-образователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС - соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I (англ. sI), КС-II (англ. sII), в то время как остальные являются метастабильными.

Таблица 3.2.1 - Некоторые структуры клатратных каркасов газовых гидратов.

Рисунок 3.2.1 - Кристаллические модификации газогидратов.

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса - Платтеу. Основные положения данной теории:

· решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида;

· в каждой молекулярной полости может находиться не более одной молекулы-гостя;

· взаимодействие молекул-гостей пренебрежимо мало;

· к описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса - Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы(метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Состав и свойства воды

Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды) - 361,13 млн км 2 . На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % - ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть находится в реках, озёрах и болотах, и 0,001 % в облаках (образуются из взвешенных в воздухе частиц льда и жидкой воды). Бо́льшая часть земной воды - солёная, непригодная для сельского хозяйства и питья. Доля пресной составляет около 2,5 %, причём 98,8 % этой воды находится в ледниках и грунтовых водах. Менее 0,3 % всей пресной воды содержится в реках, озёрах и атмосфере, и ещё меньшее количество (0,003 %) находится в живых организмах.

Исключительно важна роль воды в возникновении и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Вода является важнейшим веществом для всех живых существ на планете Земля.

Химический состав воды

Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеет цвета (в малом объёме), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях). Составляет приблизительно около 0,05 массы Земли.

Состав воды можно выяснить с помощью реакции разложения электрическим током. Образуется два объема водорода на один объем кислорода (объем газа пропорционален количеству вещества):

2H 2 O = 2H 2 + O 2

Вода состоит из молекул. Каждая молекула содержит два атома водорода, соединенные ковалентными связями с одним атомом кислорода. Угол между связями около 105º.

Газогидрат - это ледяная масса с заключенным в нем углеводородным газом, чаще всего - метаном, или это смесь воды и метана в определенных концентрациях, способная при определенных термобарических условиях образовать лед. Газогидрат, например, образуется при 0 по Цельсию и при давлении 25 атмосфер. Если температура выше, то для образования газогидрата необходимо увеличение давления воды. Именно поэтому газогидраты встречаются в основном в океанах и морях на глубинах от 300 до 1200 метров.

Основным элементом газогидрата является кристаллическая ячейка из молекул воды, внутри которой размещена молекула горючего газа. Ячейки образуют плотную кристаллическую решетку, похожую на лед.

Впервые газогидраты были обнаружены в середине 70-х годов двадцатого века канадскими рыбаками. Нередко при поднятии с глубин тралов с рыбой в них оказывались крупные куски похожего на снег испачканного донным илом вещества. Кому-то пришло в голову поджечь этот глубоководный "снег". И он загорелся!

Существует теория согласно которой в определенное время, в связи с различными флюктуационными явлениями возникают условия, когда газ высвобождается из кристаллической ячейки воды, образует вакуумные ямы с большой потенциальной энергией, куда, проваливаясь, исчезают корабли, самолеты и все, что движется над и по морю. Если учесть, что в районе Бермудского треугольника на дне океана находится большая (1500-2010 м) газогидратная залежь с метановым газом, то загадку Бермудского треугольника можно считать разгаданой

Гидрат метана – газовое топливо будущего

Несмотря на развитие альтернативных источников энергии, ископаемые виды топлива по-прежнему сохраняют и, в обозримом будущем, будут сохранять главную роль в топливном балансе планеты. По прогнозам экспертов ExxonMobil, потребление энергоресурсов в ближайшие 30 лет на планете возрастет наполовину. Так как продуктивность известных месторождений углеводородов снижается, новые крупные месторождения открываются все реже, а использование угля наносит ущерб экологии. Однако скудеющие запасы обычных углеводородов можно компенсировать.

Те же эксперты ExxonMobil не склонны драматизировать ситуацию.

Во-первых, технологии добычи нефти и газа развиваются. Сегодня в Мексиканском заливе, например, нефть добывают с глубины 2,5-3 км под поверхностью воды, такие глубины были немыслимы 15 лет назад.

Во-вторых, развиваются технологии переработки сложных видов углеводородов (тяжелых и высокосернистых нефтей) и нефтяных суррогатов (битумы, нефтяные пески). Это позволяет возвращаться к традиционным районам добычи и возобновлять на них работу, а также начинать добычу в новых районах. Например, в Татарстане, при поддержке компании Shell, начинается добыча, так называемой «тяжелой нефти». В Кузбассе разрабатываются проекты по добыче метана из угольных пластов.

Третье направление поддержания уровня добычи углеводородов связано с поиском путей использования нетрадиционных их видов. Среди перспективных новых видов углеводородного сырья ученые выделяют гидрат метана, запасы которого на планете, по ориентировочным оценкам, составляют не менее 250 триллионов кубических метров (по энергетической ценности это в 2 раза больше ценности всех имеющихся на планете запасов нефти, угля и газа вместе взятых).

Гидрат метана - это супрамолекулярное соединение метана с водой. Ниже приведена модель гидрата метана на молекулярном уровне. Вокруг молекулы метана образуется решетка молекул воды (льда). Соединение устойчиво при низкой температуре и повышенном давлении. Например, гидрат метана стабилен при температуре 0 °C и давлении порядка 25 бар и выше. Такое давление имеет место на глубине океана около 250 м. При атмосферном давлении гидрат метана сохраняет устойчивость при температуре −80 °C.

Если гидрат метана нагревается, либо повышается давление, соединение распадается на воду и природный газ (метан). Из одного кубического метра гидрата метана при нормальном атмосферном давлении можно получить 164 кубических метра природного газа.

По оценкам Департамента Энергетики США, запасы гидрата метана на планете огромны. Однако, до сих пор это соединение практически не используется как энергетический ресурс. Департамент разработал и реализует целую программу (программа R&D) по поиску, оценке и коммерциализации добычи гидрата метана.

Неслучайно, что именно США готовы выделять значительные средства на разработку технологий добычи гидрата метана. Природный газ занимает в топливном балансе страны почти 23%. Большую часть природного газа США получают по газопроводам из Канады. В 2007 году потребление природного газа в стране составило 623 млрд. куб. м. К 2030 году оно может вырасти на 18-20%. Используя месторождения обычного природного газа в США, Канаде и на шельфе невозможно обеспечить такой уровень добычи.


По мере того как лозунг «XXI век – век газа» проникает в общественное сознание, растет интерес и к такому нетрадиционному источнику газа, как залежи газогидратов.

Мировой энергетический рынок оперирует цифрами запасов нефти и газа в тех или иных регионах. На них, собственно, и базируется мировая конъюнктура спроса и предложения на углеводородное сырье. Сотни экспертов неустанно анализируют сроки выработки невосполнимых ресурсов. 20 лет? Ну, хорошо, 30 лет. Что потом? За счет чего будет формироваться энергетический баланс планеты? Какие альтернативные нефти и газу энергоносители будут представлять коммерческий интерес не в столь отдаленном будущем? Один из ответов, похоже, уже есть. Метан газогидратных залежей. На суше уже выявлено несколько месторождений и проведена пробная добыча в зонах вечной мерзлоты России, Канады и Аляски. Геофизики разных стран, занимающиеся изучением газовых гидратов, пришли к выводу, что запасы газового гидрата в сотни раз превышают запасы нефти и природного газа. «Планета буквально напичкана газогидратами», – уверенно заявляют многие. Если прогнозируемые запасы газа на планете составляют от 300 до 600 трлн кубометров, то прогнозные запасы газового гидрата – более 25 000 трлн кубометров. На них человечество, абсолютно не ограничивая потребление энергии, может безбедно жить сотни лет.

Газовые гидраты (или газогидраты) – молекулы газа, чаще всего метана, «вделанные» в ледяную или водяную кристаллическую решетку. Газовый гидрат образуется при высоких давлениях и низких температурах, поэтому в природе встречается либо в осадках глубоководных морских акваторий, либо в сухопутной зоне вечной мерзлоты, на глубине несколько сотен метров ниже уровня моря. В процессе формирования этих соединений при низких температурах в условиях повышенного давления молекулы метана преобразуются в кристаллы гидратов с образованием твердого вещества, по консистенции похожего на рыхлый лед. В результате молекулярного уплотнения один кубометр природного метан-гидрата в твердом состоянии содержит около 164 м 3 метана в газовой фазе и 0,87 м 3 воды. Как правило, под ними находятся немалые запасы подгидратного газа. Предполагается весь спектр – от крупных пространственных полей массивных скоплений до рассеянного состояния, включая любые иные, доселе не известные формы.

Предположение о том, что на глубине нескольких сотен метров ниже морского дна находится зона, содержащая газогидраты, впервые было высказано российскими океанологами. Позднее оно было подтверждено геофизиками многих стран. С конца 1970-х годов в рамках международных океанологических программ начались целенаправленные исследования океанического дна на поиски газогидратов. Регионально-геофизические, сейсмические, геоморфологические, акустические исследования сопровождались бурением в общей сложности нескольких тысяч скважин на глубине воды в пределах до 7 000 м, из которых было отобрано 250 км керна. В результате этих работ, организованных научными институтами и университетскими лабораториями разных стран, на сегодня детально исследованы первые сотни метров дна Мирового океана суммарной площадью 360 млн км 2 . В итоге обнаружены многочисленные свидетельства наличия газогидратов в придонной части осадочной толщи океанов, преимущественно вдоль восточной и западной окраин Тихого океана, а также восточных окраин Атлантического океана. Однако, в основном, эти свидетельства основываются на косвенных данных, полученных по результатам сейсмики, анализов, каротажа и др. К фактически же доказанным можно отнести лишь несколько крупных скоплений, наиболее известное из которых расположено в зоне океанической гряды Блейка у юго-восточного побережья США. Там в виде единого протяженного поля на глубине воды 2,5–3,5 км может содержаться около 30 трлн м 3 метана.

Несмотря на наличие в океане большого количества газогидратов, в качестве альтернативного источника природного газа они могут рассматриваться только в отдаленной перспективе. Мнение нефтяников, выраженное в докладе компании Chevron сенату США в 1998 году, звучит еще более жестко. Оно сводится к тому, что в пределах океана газогидраты находятся преимущественно в рассеянном состоянии или в небольших концентрациях и не представляют коммерческого интереса. К такому же заключению пришли и геологи российского «Газпрома».

Есть и другие точки зрения. Если поднять газогидраты из глубины моря на поверхность, то можно наблюдать поразительный эффект – газогидраты начнут пузыриться, шипеть и на глазах распадаться. Впервые российские ученые увидели такую картину в 70-е годы прошлого века, когда во время экспедиции в Охотское море со дна на палубу корабля были подняты первые образцы «ледяного газа». Самое интересное, что при «таянии» газогидрата твердое вещество, минуя жидкую фазу, переходит в газ, который таит в себе огромную энергию. Если этот газ выпустить на волю сразу, он может вызвать экологическую катастрофу. Но если его обуздать, польза будет великая. Ведь энергетические запасы газогидратов намного выше, чем залежи нефти и газа. Так считают многие исследователи.

Согласно имеющимся на сегодняшний день подсчётам, ориентировочное количество метана, содержащегося в виде кристаллогидратов в донных отложениях Мирового океана и в вечной мерзлоте, составляет не менее 250 000 трлн м 3 . В пересчете на традиционные виды топлива это более чем вдвое превышает количество имеющихся на планете запасов нефти, угля и газа вместе взятых.

Природные газогидраты сохраняют стабильность или при очень низких температурах в условиях вечномерзлых пород на суше, или в режиме сочетания низкой температуры и высокого давления, который присутствует в придонной части осадочной толщи глубоководных районов Мирового океана. Установлено, что зона стабильности газогидратов (ЗСГ) в условиях открытого океана простирается начиная с глубины воды примерно 450 м и далее под океаническим дном до уровня геотермального градиента осадочных пород. Для обнаружения газогидратов используются геофизические методы, а также бурение осадочных пород. Гораздо реже газогидраты встречаются вблизи морского дна (на глубине нескольких метров от его поверхности) в пределах газовыделяющих структур, похожих на грязевые вулканы. Так происходит, например, на Черном, Каспийском, Средиземном и Охотском морях. Мощность ЗСГ повсеместно составляет примерно несколько сотен метров. Потенциальные ресурсы метана находятся не только в пределах ЗСГ в твердом виде, но и запечатаны под ней в естественном газовом состоянии. По большинству оценок, в океанах содержится примерно вдвое больше метана, чем во всех других видах горючих ископаемых, обнаруженных на материках и в пределах шельфовой зоны. Правда, есть и скептики, которые считают эту оценку сильно завышенной. Вопрос, однако, не только в количестве метана.

Главное – какая часть этого газа пребывает не в рассеянном состоянии, а сконцентрирована в скопления, достаточно крупные для обеспечения рентабельности их разработки. На сегодня нет четкого представления о форме нахождения газогидратов в океане.

В отличие от океанических, скопления газогидратов на суше и в зоне прилегающего шельфа рассматриваются в ракурсе вполне реальной перспективы. Впервые газогидратная залежь на суше была открыта в 1964 г. в России на месторождении Мессояха в Западной Сибири. Там же на протяжении первой половины 1970-х гг. проводилась и первая в мире опытная добыча. Позднее аналогичные залежи были обнаружены в районе дельты реки Маккензи в Канаде. Первые крупномасштабные исследования скоплений газогидратов на суше и прилегающем шельфе проводились под эгидой Департамента по энергетике США в 1982–1991 гг. За десятилетие было установлено присутствие залежей твердого метана на Аляске, изучено 15 зон скопления газогидратов на шельфе, проведено моделирование процессов депрессирования гидратных соединений и термального извлечения газообразного метана. На месторождении Прадхо Бей на Аляске была осуществлена пробная добыча метана. Ресурсы газа газогидратных залежей in situ на суше и шельфе США оценены в 6 000 трлн м 3 . Это значит, что извлекаемые запасы, даже при коэффициенте извлечения не более 1 % составляют 60 трлн м 3 , что вдвое больше, чем суммарные доказанные запасы всех традиционных месторождений газа США.

В самые последние годы, после опубликования результатов программы геологической службы США, интерес к залежам газогидратов на суше резко вырос и географически расширился. В 1995 г. японское правительство инициировало аналогичную программу на шельфе страны. По утверждению японских геологов, к настоящему времени степень изученности выявленных ресурсов приближается к той стадии, когда их можно переводить в категорию запасов. В 1998 г. в Канаде в дельте реки Маккензи была пробурена экспериментальная скважина Mallik , по данным которой было установлено наличие протяженного поля скоплений газогидратов, их суммарный массив оценен в 4 млрд м 3 /км 2 . Эти исследования проводятся Japan Petroleum Exploration Co ., Ltd . и рядом японских промышленных компаний с участием геологической службы США, Канады и нескольких университетов. С 1996 г. исследования шельфовой зоны и картирование выявленных скоплений, под эгидой правительства и силами государственной газовой компании страны ведутся в Индии. Европейский Союз принял решение о создании специальных фондов по финансированию аналогичных программ, а в США интерес к газогидратным залежам приобрел законодательный статус: в 1999 г. Конгресс США одобрил специальный акт, касающийся разработки широкомасштабной программы поисков и разработки метангидратных залежей на суше и шельфах страны.

Добыча газогидратов пока не имеет стандартных промышленных технологий. Некоторые эксперты считают, что Россия – самая богатая страна по залежам природного газа, его запасов хватит еще на 200–250 лет, так что промышленная добыча газогидратов пока не является для нашей страны задачей первостепенной важности.

Метан из газогидратных залежей – энергоноситель будущего, которое, по самым оптимистичным оценкам, наступит не ранее второго десятилетия XXI в. Вообще надежным показателем степени перспективности всякого нового направления служат крупные иностранные компании: интерес, который они начинают проявлять к той или иной области нефтегазового бизнеса, обычно является первым симптомом появления новых тенденций. Не случайно в реестре большинства компаний за последние годы выросла доля активов, связанных с газом; именно крупные нефтяные компании ведут массированное наступление на глубоководный шельф; закономерно и то, что в новом, пока мало коммерческом направлении, связанном с переработкой природного газа в жидкое топливо (Gas to liquids , GTL ) фигурируют компании ARCO , BP , Amoco , Chevron , Exxon , Shell и другие. А вот к природным газогидратам нефтяные компании пока интереса не проявляют.

Между тем, представители экологических организаций предупреждают, что активное использование метана, извлекаемого из гидратов, ещё более усугубит ситуацию с потеплением климата, поскольку метан оказывает более сильный «парниковый» эффект, чем углекислый газ. Кроме того, некоторые учёные высказывают опасения, что добыча гидратов метана на морском дне может привести к непредсказуемым изменениям его геологической структуры.

Установлено, что из одного литра «твердого топлива» можно получить 168 литров газа. Поэтому в ряде стран, таких как США, Япония, Индия, уже разработаны национальные программы исследования промышленного использования газовых гидратов в качестве перспективного источника энергии. Так, индийская национальная программа нацелена на широкомасштабное исследование месторождений природных газовых гидратов, находящихся в пределах континентального склона вокруг полуострова Индостан. Индийское правительство выделило значительные средства для реализации этой программы. В соответствии с ней Индия намеривается начать промышленную добычу природного газа из газовых гидратов.

Генеральный директорат по углеводородам (DGH ) является пионером разведки на газогидраты в Индии. Съемки, проведенные Директоратом в 1997 г. на Восточном побережье и в Андаманской глубоководной области, привели к обнаружению наиболее перспективных на газогидраты районов (рис. 1.2). Общие прогнозные ресурсы газа с учетом газогидратов на индийских шельфах оцениваются в 40–120 трлн м 3 . Особенно перспективными считаются Андаманские острова, где запасы гидратного и свободного газа оцениваются в 6 трлн м 3 .

Рис. 1.2. Карта перспективных по газогидратоносности районов шельфа Индии

Некоторые участки, находящиеся на глубинах 1 300–1 500 м, предназначены для бурения в первую очередь, не только для проверки наличия газогидратов, но и свободного газа.

Правительство Индии разработало национальную программу по газогидратам (НПГ), нацеленную на разведку и освоение ресурсов газогидратов в стране. Директорат – активный участник этой программы. Глава Директората является координатором технического комитета НПГ. Пересмотрены данные сейсмосъемок морской части Сауратры и всего западного и восточного побережья Индии в целях определения лучших районов для дальнейших исследований на газогидраты; были определены также две «модельные лабораторные зоны», по одной на каждое побережье. В рамках НПГ в этих зонах Национальным институтом океанографии собрана дополнительная информация, которая позволит подобрать места для бурения и получения керна. Имеется соглашение о международном сотрудничестве между Индией и консорциумом, объединяющим японские, американские, канадские и немецкие компании.

О возможном присутствии газогидратов в осадках оз. Байкал впервые заговорили в 1992 г. на основании результатов российско-американской глубинной сейсмической экспедиции, исследовавшей Южную и Центральную котловины озера. Сейсмический сигнал, известный как BSR (Bottom Simulating Reflector – кажущаяся отражающая граница), был зафиксирован в сейсмических профилях на глубине нескольких сотен метров осадочных пород и позволил предположить присутствие слоя газогидратов. Сигнал появляется в осадках на обширной территории севернее и южнее дельты р. Селенга. В 1998 г. газогидраты удалось найти на глубине 120 м в районе Южной котловины в ходе осуществления программы «Байкал-бурение» под руководством академика РАН М. Кузьмина. Находка подтвердила присутствие газогидратов в толще донных отложений оз. Байкал на глубине нескольких сотен метров (рис. 1. 3). Месторождение газогидратов в пресной воде является уникальным.

Рис. 1.3. Газогидраты в осадках озера Байкал

Хотя газогидраты были неоднократно обнаружены в областях выброса газов в океане, распределение и, в особенности, объем залежей, содержащихся в данных структурах, изучены еще недостаточно. Требуется проведение тщательных исследований участков выброса газов. Озеро Байкал очень хорошо подходит для выполнения этой работы, поскольку здесь можно проводить исследования летом с кораблей и зимой со льда, что позволяет выбрать наиболее подходящее место для экспериментов и подробно исследовать выбранный район.

Поддонные участки газогидратов в оз. Байкал – превосходная экспериментальная база для оценки количества и пространственного размещения газогидратов в структурах данного типа. Для проведения исследований необходимо получить образцы более глубоких осадочных слоев и применять комплексно несколько физических методов. Воды оз. Байкал считаются очень чистыми. Если внешнее загрязнение и существует, то оно контролируемо и имеет ограниченный характер. Сейчас стало ясно, что загрязнение озера метаном вызывается также естественными процессами. Необходимо оценить содержание метана в воде.

В США намерены в течение ближайшего десятилетия приступить к освоению нового, практически неисчерпаемого источника энергии – гидратов метана. Для этого в Мексиканский залив направляется исследовательский корабль, оснащенный буровым оборудованием, который должен произвести предварительную геологическую разведку. В ходе экспедиции предполагается собрать образцы из двух крупнейших залежей гидратов в регионе. В дальнейшем учёные будут проводить эксперименты, чтобы разработать технологию извлечения метана из кристаллов и транспортировки его на поверхность.

Многие страны, ищущие альтернативные источники ископаемого топлива, инвестируют в исследования газогидратов миллионы долларов. Кроме США, активные работы в этой области ведут Япония, Индия и Корея. Добывать газогидраты легче на суше, чем на дне океана. Еще в 2003 г. группа ученых и представителей нефтяных компаний из Канады, Японии, Индии, Германии и США доказала возможность их добычи из вечной мерзлоты на севере Канады. Аналогичные эксперименты проводятся на Аляске.

Свойства природного газа в определенных условиях образовывать твердые соединения активно используются в сфере новых технологий. Норвежские исследователи, например, разработали технологию преобразования природного газа в газогидрат, позволяющую транспортировать его без использования трубопроводов и хранить в наземных хранилищах при нормальном давлении (газ при этом преобразуют в замороженный гидрат и смешивают с охлажденной нефтью до консистенции жидкой глины). Выход на коммерческий уровень завода по переработке природного газа в газонефтяную смесь планируется уже в ближайшие годы. Предлагается также использовать газовые гидраты как химическое сырье для опреснения морской воды и разделения газовых смесей.

Несмотря на привлекательность использования газогидратов в качестве топлива, разработка новых месторождений может привести к ряду негативных последствий. Неизбежное выделение метана из ГГЗ в атмосферу усилит парниковый эффект. Проходка нефтяных и газовых скважин через гидратсодержащие слои под морским дном может вызвать оттаивание гидратов и деформации скважин, что повышает риск аварийных ситуаций на платформах. Строительство и эксплуатация глубоководных добывающих платформ в районах распространения гидратсодержащих слоев, где имеется уклон морского дна, чреваты образованием подводных оползней, которые могут уничтожить платформу.

В настоящее время во многих странах уделяется большое внимание изучению природных газовых гидратов – и как перспективных источников газа, и как фактора, осложняющего морскую добычу нефти и газа. При наличии в России значительных запасов «традиционного» газа поиск нетрадиционных энергоносителей и разработка методов их освоения могут показаться неактуальными. Однако начало разработки газогидратных месторождений может стать и началом нового этапа передела мирового газового рынка, в результате которого позиции России окажутся заметно ослабленными.

Таким образом, можно сделать следующие выводы:

· газовые гидраты являются единственным не разрабатываемым источником природного газа на Земле, который может составить реальную конкуренцию традиционным месторождениям. Значительные потенциальные ресурсы газа в гидратных залежах надолго обеспечат человечество высококачественным энергетическим сырьем;

· освоение газогидратных месторождений требует разработки новых, гораздо более эффективных по сравнению с существующими технологий разведки, добычи, транспортировки и хранения газа, которые смогут применяться и на традиционных газовых месторождениях, в том числе на тех, отработка которых сейчас нерентабельна;

· добыча газа из гидратных залежей способна очень быстро изменить ситуацию на газовом рынке, что может повлиять на экспортные возможности России.

Некоторые дополнительные сведения о газовых гидратах

В связи с тем, что газовые гидраты начали рассматриваться в геологической литературе сравнительно недавно, целесообразно дать краткую сводку о составе этого класса веществ и условиях их образования.

Газовые гидраты – это кристаллические, макроскопически льдоподобные вещества,

образующиеся при сравнительно низких (но не обязательно отрицательных по шкале Цельсия) температурах из воды и газа при достаточно высоких давлениях. Гидраты относятся к нестехиометрическим соединениям и описываются общей формулой М×nН 2 О, где М - молекула газа-гидратообразователя. Помимо индивидуальных гидратов известны двойные и смешанные (в состав которых входит несколько газов). Большинство компонентов природного газа (кроме Н 2 , He, Ne, n‑С 4 Н 10 и более тяжелых алканов) способно к образованию индивидуальных гидратов. Молекулы воды слагают в гидратах полиэдрический каркас (то есть решетку «хозяина»), где имеются полости, которые могут занимать молекулы газов. Равновесные параметры гидратов разного состава отличаются, но для образования любого гидрата при более высокой температуре требуется более высокая равновесная концентрация (давление) газа-гидратообразователя.

Сравнительно низкая температура при достаточно высоком гидростатическом давлении на морском дне при глубинах воды начиная с 300–400 м и более предопределяет возможность существования газовых гидратов в верхней части поддонного разреза. Это обстоятельство возбудило к субмаринным гидратам живой интерес геологов сразу же после регистрации в СССР в 1969 г. открытия В. Г. Васильевым, Ю. Ф. Макогоном, Ф. А. Требиным и А. А. Трофимуком «Свойства природных газов находиться в земной коре в твердом состоянии и образовывать газогидратные залежи». Интерес к субмаринным газовым гидратам определяется, прежде всего, тем, что они рассматриваются как резерв углеводородного сырья. Предполагается, что газогидратоносными отложениями могут экранироваться залежи «нормального» газа и нефти. Гидраты газа рассматриваются также как компонент геологической среды, чувствительный к ее техногенным изменениям. Локальные изменения представляют интерес в инженерной геологии, глобальные – с позиций экологии. В первом случае имеется в виду специфика физико-механических свойств гидратсодержащих грунтов и их очевидное изменение при техногенном разложении гидратов, во втором – возможности усиления на Земле парникового эффекта при выделении метана из гидратов в атмосферу в связи с антропогенным изменением климата.

Термобарическая зона, в которой гидраты газа могут существовать, занимает практически все глубоководные акватории Мирового океана и значительную часть приполярных шельфов и имеет толщину в сотни метров. Однако гидраты в этой зоне встречаются отнюдь не повсеместно. Известно более 40 субмаринных районов, где наблюдались сами гидраты газа или их геофизические и геохимические признаки. К косвенным признакам газовых гидратов относят высокое содержание газа в породе, аномальные хлорность и изотопный состав поровых вод. Известны сейсморазведочные признаки присутствия гидратов. Из них наибольшее значение имеет специфический отражающий горизонт BSR, отождествляемый подошвой зоны стабильности газовых гидратов. Все субмаринные районы, где наблюдались гидраты, и районы с их признаками (за исключением нескольких площадей на арктическом шельфе США и Канады) располагаются на континентальных и островных склонах, подножиях, а также в глубоководье внутренних и окраинных морей в пределах осадочно-породных бассейнов, имеющих быстро формирующийся осадочный чехол сравнительно большой мощности. Эту приуроченность можно объяснить с помощью фильтрационной или седиментационной моделей гидратообразования.



Газогидраты - относительно новый и потенциально обширный источник природного газа. Они представляют собой молекулярные соединения воды и метана, существующие при низких температурах и высоком давлении. За внешнее сходство газогидраты стали называть «горящим льдом». В природе газогидраты встречаются либо в зонах вечной мерзлоты, либо на глубоководье, что изначально создает трудные условия для их разработки.

В 2013 году Япония первой в мире провела успешную экспериментальную добычу метана из газогидратов на море. Это достижение заставляет пристальнее приглядеться к перспективам разработки газогидратов.Можно ли после «неожиданного» наступления сланцевой революции ожидать газогидратную революцию?

Предварительные оценки запасов газогидратов в мире свидетельствуют о том, что они на порядок превышают запасы конвенционального природного газа.Но, во-первых, они носят весьма приблизительный характер; во-вторых, лишь небольшая часть из них может быть добыта при текущем уровне развития технологий. И даже эта часть потребует огромных издержек и может быть связана с непредвиденными экологическими рисками. Тем не менее ряд стран, таких как США, Канада и страны азиатского региона, которые отличаются высокими ценами на природный газ и растущим спросом на него, проявляют большую заинтересованность в развитии разработки газогидратов и продолжают активно исследовать данное направление.

Эксперты отмечают высокую неопределенность в отношении будущего газогидратов и считают, что их промышленная разработка начнется не ранее чем через 10-20 лет, но упускать из виду этот ресурс нельзя.

Что такое газогидраты?

Газовые гидраты (клатраты) представляют собой твердые кристаллические соединения низкомолекулярных газов, таких как метан, этан, пропан, бутан и др., с водой. Внешне они напоминают снег или рыхлый лед. Они устойчивы при низких температурах и повышенном давлении; при нарушении указанных условий газогидраты легко распадаются на воду и газ. Самым распространенным природным газом-гидратообразователем является метан.

Техногенные и природные газогидраты

Различают техногенные и природные газовые гидраты. Техногенные гидраты могут образовываться в системах добычи конвенционального природного газа (в призабойной зоне, в стволах скважин и т.д.) и при его транспортировке. В технологических процессах добычи и транспортировки конвенционального природного газа образование газогидратов рассматривается как нежелательное явление, что предполагает дальнейшее совершенствование методов их предупреждения и ликвидации. В то же время техногенные газогидраты могут быть использованы для хранения больших
объемов газа, в технологиях очистки и разделения газов, для опреснения морской воды и в аккумулировании энергии для целей охлаждения и кондиционирования.

Природные гидраты могут формировать скопления или находиться в рассеянном состоянии. Они встречаются в местах, сочетающих низкие температуры и высокое давление, таких как глубоководье (придонные области глубоких озер, морей и океанов) и зона вечной мерзлоты (арктический регион). Глубина залегания газогидратов на морском дне составляет 500-1 500 м, а в арктической зоне - 200-1 000 м.

Особое значение с точки зрения перспектив разработки месторождений газогидратов имеет наличие нижнего пласта свободного природного газа или свободной воды:

Свободный газ. В этом случае разработка газогидратных месторождений происходит способом, схожим с добычей конвенционального газа. Добыча свободного газа из нижнего пласта вызывает снижение давления в гидратонасыщенном пласте и разрушает границу между ними. Газ, полученный из газогидратов, дополняет газ, полученный из нижнего пласта. Это наиболее перспективное направление разработки месторождений газогидратов. Свободная вода. Когда под газогидратным месторождением находится вода, снижение давления в зоне гидратов может быть достигнуто за счет ее извлечения. Этот способ технически реализуем, но менее экономически привлекателен по сравнению с первым. Отсутствие нижнего слоя. Перспективы разработки газогидратных месторождений, снизу и сверху окруженных непроницаемыми осадочными породами, остаются туманными

Оценки ресурсов природных газогидратов в мире.

Оценки мировых ресурсов газогидратов с самого начала, а именно с 1970-х годов, носили противоречивый и отчасти спекулятивный характер. В 1970-1980-х годах они находились на уровне 100-1 000 квадрлн. куб. м, в 1990-х годах - снизились до 10 квадрлн. куб. м, а в 2000-е годы - до 100-1 000 трлн. куб. м.

Международное энергетическое агентство (МЭА) в 2009 году привело оценку в 1 000-5 000 трлн. куб. м, хотя значительный разброс сохраняется. Например, ряд текущих оценок указывают на наличие ресурсов газогидратов в 2 500-20 000 трлн. куб. м. Тем не менее даже с учетом значительного снижения оценок ресурсы газогидратов остаются на порядок выше ресурсов конвенционального природного газа, оцененных на уровне 250 трлн. куб. м (МЭА оценивает запасы конвенционального природного газа в 468 трлн. куб. м).

К примеру, возможные ресурсы газогидратов в США по типу месторождений показывает Рисунок (в сравнении с ресурсами природного газа). «Газогидратная пирамида» также отражает потенциал добычи газа из газогидратных месторождений различного типа. На вершине пирамиды находятся хорошо разведанные месторождения в Арктике вблизи существующей инфраструктуры, подобные месторождению Маллик в Канаде. Далее следуют менее изученные газогидратные образования со сходными геологическими характеристиками (на Северном склоне Аляски), но требующие развития инфраструктуры. По последним оценкам, технически извлекаемые ресурсы газогидратов Северного склона Аляски составляют 2,4 трлн. куб. м газа. Вслед за арктическими запасами расположены глубоководные месторождения средней и высокой насыщенности. Так как стоимость их разработки потенциально крайне высока, наиболее перспективным регионом для этого считается Мексиканский залив, где уже создана инфраструктура нефте- и газодобычи. Масштаб этих ресурсов пока не очень хорошо известен, но Служба управления минеральными ресурсами США ведет их изучение.

Рис 1 «Газогидратнаяпирамида»

У подножия пирамиды (Рисунок 2) обозначены скопления газогидратов, которые характеризуются крайне неравномерным распределением в больших объемах мелкозернистых и недеформированных осадочных пород. Типичный пример такого скопления - глубоководное месторождение у хребта Блейк (побережье американского штата Каролина). При текущем уровне развития технологий их разработка не представляется возможной.

В промышленном масштабе

В промышленном масштабе добыча метана из газогидратных залежей нигде в мире не ведется, и запланирована она только в Японии - на 2018-2019 годы. Тем не менее ряд стран реализуют исследовательские программы. Наиболее активны здесь США, Канада и Япония.

Дальше всех в изучении потенциала разработки залежей газогидратов продвинулась Япония. В начале 2000-х годов страна начала реализацию программы по освоению газогидратов. Для ее поддержки по решению государственных органов был организован исследовательский консорциум MH21, нацеленный на создание технологической основы промышленной разработки залежей газогидратов. В феврале 2012 года Японская национальная корпорация по нефти, газу и металлам (JOGMEC) начала пробное бурение скважин в Тихом океане, в 70 км к югу от полуострова Ацуми, для получения гидратов метана. А в марте 2013 года Япония (первой в мире) приступила к тестовому извлечению метана из газогидратов в открытом море. По оценке JOGMEC, с имеющимися запасами метангидратов на шельфе страны Япония может покрыть свои потребности в природном газе на 100 лет вперед.

В области освоения газогидратов Япония развивает научное сотрудничество с Канадой, США и другими странами. В Канаде действует обширная исследовательская программа; совместно с японскими специалистами проводилось бурение скважин в устье реки Маккензи (месторождение Маллик). Исследовательские проекты газогидратов США сосредоточены в зоне вечной мерзлоты на Аляске и на глубоководье в Мексиканском заливе.

Менее масштабные, но тем не менее заметные исследования газогидратов проводят такие страны, как Южная Корея, Китай и Индия. Южная Корея занимается оценкой газогидратного потенциала в Японском море. Исследования показали, что наиболее перспективно для дальнейшей разработки месторождение Уллеунг. Индия создала свою национальную исследовательскую программу по газогидратам в середине 1990-х годов. Главным объектом ее исследований является месторождение Кришна-Годавари в Бенгальском заливе.

Китайская программа по газогидратам включает исследования шельфа Южно-Китайского моря вблизи провинции Гуандун и вечной мерзлоты на плато Цинхай в Тибете.Ряд других стран, в числе которых Норвегия, Мексика, Вьетнам и Малайзия, такжепроявляют интерес к исследованиям газогидратов. Исследовательские программы по изучению газогидратов есть и в Европейском союзе: например, в 2000-е годы действовала программа HYDRATECH (Техника оценки метангидратов на европейскомшельфе) и программа HYDRAMED (Геологическая оценка газогидратов в Средиземном море). Но европейские программы отличает акцент на научных и экологических вопросах.

Газогидраты в России

Россия обладает собственными месторождениями газогидратов. Их наличие подтверждено на дне озера Байкал, Черного, Каспийского и Охотского морей, а также на Ямбургском, Бованенковском, Уренгойском, Мессояхском месторождениях. Разработка газогидратов на этих месторождениях не велась, а их наличиерассматривалось как фактор, усложняющий разработку конвенционного газа (в случае его наличия). Также высказываются предположения, подтверждаемые теоретической аргументацией, о наличии большого числа месторождений газогидратов на всей площади арктического шельфа России.

Геологические исследования газогидратов начались в СССР еще в 1970-е годы. В современной России в основном проводятся лабораторные исследования газогидратов: например, создание технологий предотвращения их образования в газотранспортных системах или определение их физических, химических и иных свойств. Среди центров изучения газогидратов в России можно отметить МГУ, Сибирское отделение РАН, ООО «Газпром ВНИИГАЗ», Университет нефти и газа им. Губкина.

В 2003 году прикладные исследования по оценке газогидратного потенциала в России инициировало ОАО «Газпром». Предварительные оценки «Газпрома ВНИИГАЗ» указывают на наличие в стране ресурсов газогидратов в 1 100 трлн. куб. м. В середине 2013 года появилась информация о том, что Дальневосточный геологический институт РАН предложил «Роснефти» изучить возможность добычи газовых гидратов на шельфе Курил, оценивая их потенциал в 87 трлн. куб. м. Специализированные государственные программы по исследованию и добыче газогидратов по примеру отмеченных выше стран в России отсутствуют. В Генеральной схеме развития газовой отрасли до 2030 года газогидраты упоминаются
лишь один раз в контексте ожидаемых направлений научно-технического прогресса.

В целом разработка газогидратов в России из подтвержденных месторождений представляется перспективной после значительного удешевления технологии и только в районах с уже существующей газотранспортной инфраструктурой.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»