Исследовательская работа "анализ лекарственных препаратов". Методы анализа лекарственных препаратов Физико химические методы анализа состава лекарственных препаратов

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Описание препарата

Список литературы

Введение

Среди задач фармацевтической химии -- таких, как моделирование новых лекарственных, средств и их синтез, изучение фармакокинетики и др. особое место занимает анализ качества лекарств, Сборником обязательных обшегосударственных стандартов и положений, нормирующих качество лекарственных средств, является Государственная фармакопея.

Фармакопейный анализ лекарственных средств включает в себя оценку качества по множеству показателей. В частности, устанавливается подлинность лекарственною средства, анализируется его чистота, проводится количественное определение, Первоначально для такого анализа применяли исключительно химические методы; реакции подлинности, реакции на содержание примесей и титрование при количественном определении.

Со временем не только повысился уровень технического развития фармацевтической отрасли, но и изменились требования к качеству лекарственных средств. В последние годы наметилась тенденция к переходу на расширенное использование физических и физико-химических методов анализа. В частности, широко применяются спектральные методы инфракрасная и ультрафиолетовая спектрофотометрия, спектроскопия ядерно-магнитного резонанса и др. Активно используются методы хроматографии (высокоэффективная жидкостная, газожидкостная, тонкослойная), электрофорез и др.

Изучение всех этих методов и их усовершенствование - одна из самых важных задач фармацевтической химии на сегодняшний день.

качество лекарственный фармакопейный спектральный

Методы качественного и количественного анализа

Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

Например, для открытия в растворе Fe +++ -ионов анализируемый раствор сначала подкисляют хлористоводородной кислотой, а затем прибавляют раствор гексацианоферрата (II) калия K4.В присутствии Fe+++ выпадает синий осадок гексацианоферрата (II) железа Fe43. (берлинская лазурь):

Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии OH- ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги:

В приведенных примерах растворы гексацианоферрата (II) калия и едкого натра являются соответственно реактивами на Fe+++ и NH4+ ионы.

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом; функциональных групп -- функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, -- молекулярным анализом.

Совокупность разнообразных химических, физических и физикохимических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы исследования качества лекарственных средств

В соответствии с ГФ XI методы исследования лекарственных средств подразделяются на физические, физико-химические и химические.

Физические методы. Включают методы определение температуры плавления, затвердевания, плотности (для жидких веществ), показателя преломления (рефрактометрия), оптического вращения (поляриметрия) и др.

Физико-химические методы. Их можно разделить на 3 основным группы: электрохимические (полярография, потенциометрия), хромато- графические и спектральным (УФ- и ИК-спектрофотометрия и фотоколориметрия).

Полярография - метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе. Электролиз исследуемых растворов проводится в электролизере, одним из электродов которой служит капельный ртутный электрод, а вспомогательным - ртутныш электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. Полученная полярографическая кривая (полярограмма) имеет вид волны. Вымота волны связана с концентрацией реагирующих веществ. Метод применяется для количественного определения многих органических соединений.

Потенциометрия - метод определения рН и потенциометрическое титрование.

Хроматография - процесс разделения смесей веществ, происходящий при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Разделение происходит благодаря различию тех или иныгх физико -химических свойств разделяемые веществ, приводящему к неодинаковому взаимодействию их с веществом неподвижной фазы, следовательно, к различию во времени удерживания слоя сорбента.

По механизму, лежащему в основе разделения, различают адсорбционную, распределительную и ионообменную хроматографию. По способу разделения и применяемой аппаратуре различают хроматографию на колонках, на бумаге в тонком слое сорбента, газовую и жидкостную хроматографию, высокоэффективную жидкостную хроматографию (ВЭЖХ) и др.

Спектральным методы основаны на избирательном поглощении электромагнитного излучения анализируемым веществом. Различают спектрофотометрические методы, основанным на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколориметрические методы, основанным на поглощении веществом немонохроматического излучения видимой части спектра.

Химические методы. Основаны на использовании химических реакций для идентификации лекарственные средств. Для неорганических лекарственных средств используют реакции на катионы и анионы, для органических - на функциональным группы, при этом применяются только такие реакции, которым сопровождаются наглядным внешним эффектом: изменением окраски раствора, выделением газов, выпадением осадков и т.д.

С помощью химических методов проводят определение численных показателей масел и эфиров (кислотное число, йодное число, число омыления), характеризующих их доброкачественность.

К химическим методам количественного анализа лекарственных веществ относятся гравиметрический (весовой) метод, титриметрические (объёмным) методы, включающие кислотно - основное титрование в водных и неводных средах, газометрический анализ и количественный элементный анализ.

Гравиметрический метод. Из неорганических лекарственных веществ этим методом можно определять сульфаты, переводя их в нерастворимым соли бария, и силикаты, предварительно прокаливая их до диоксида кремния. Возможно применение гравиметрии для анализа препаратов со - лей хинина, алкалоидов, некоторые витаминов и др.

Титриметрические методы. Это наиболее распространенным в фар - мацевтическом анализе методы, отличающиеся небольшой трудоемкостью и достаточно вымокой точностью. Титриметрические методы можно подразделить на осадительное титрование, кислотно - основное, окислительно - восстановительное, комплексиметрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельные элементов или функциональных групп, содержащихся в молекуле лекарственного вещества.

Осадительное титрование (аргентометрия, меркуриметрия, меркурометрия и др.).

Кислотно - основное титрование (титрование в водной среде, ацидиметрия - использование в качестве титранта кислоты, алкалиметрия - использование для титрования щелочи, титрование в смешанные растворителях, неводное титрование и др.).

Окислительно-восстановительное титрование (иодометрия, иодхлорометрия, броматометрия, перманганатометрия и др.).

Комплексиметрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трилоном Б или др. комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона.

Нитритометрия. Метод основан на реакциях первичных и вторичных ароматических аминов с нитритом натрия, которые используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия в кислой среде диазосоединение, а вторичным ароматические амины в этих условиях образуют нитрозосоединения.

Газометрический анализ. Имеет ограниченное применение в фармацевтическом анализе. Объектами этого анализа являются два газообразныгх препарата: кислород и циклопропан. Сущность газометрического определения заключается во взаимодействии газов с поглотительными растворами.

Количественный элементный анализ. Этот анализ используют для количественного определения органических и элементорганических со - единений, содержащих азот, галогены, серу, а также мы1шьяк, висмут, ртуть, сурьму и др. элементы.

Биологические методы контроля качества лекарственных веществ. Биологическую оценку качества ЛB проводят по их фармакологической активности или токсичности. Биологические микробиологические методы применяют в тех случаях, когда с помощью физических, химических и физико-химических методов нельзя сделать заключение о доброкачественности ЛC. Биологические испытания проводят на животных кошки, собаки, голуби, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи) и группах клеток (форменные элементы крови, штаммы микроорганизмов и др.). Биологическую активность устанавливают, как правило, путем сравнения действия испытуемых и стандартных образцов.

Испытаниям на микробиологическую чистоту подвергают не стерилизуемые в процессе производства ЛП (таблетки, капсулы, гранулы, растворы, экстракты, мази и др.). Эти испытания имеют своей целью определение состава и количества имеющейся в ЛФ микрофлоры. При этом устанавливается соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Испытание включает количественное определение жизнеспособных бактерий и грибов, выявление некоторых видов микроорганизмов, кишечной флоры и стафилококков. Испытание выполняют в асептических условиях в соответствии с требованиями ГФ XI (в. 2, с. 193) двухслойным агаровым методом в чашках Петри.

Испытание на стерильность основано на доказательстве отсутствия в ЛС жизнеспособных микроорганизмов любого вида и является одним из важнейших показателей безопасности ЛС. Этим испытаниям подвергаются все ЛП для парентерального введения, глазные капли, мази и т.д. Для контроля стерильности применяют биогликолевую и жидкую среду Сабуро, используя метод прямого посева на питательные среды. Если ЛС обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то используют метод мембранной фильтрации (ГФ, в. 2, с. 187).

Acidum acetylsalicylicum

Ацетилсалициловая кислота, или аспирин, представляет собой салициловый эфир уксусной кислоты.

Описание. Бесцветные кристаллы или белый кристаллический порошок без запаха, слабокислого вкуса. Во влажном воздухе постепенно гидролизуется с образованием уксусной и салициловой кислот. Мало растворим в воде, легко растворим в спирте, растворим в хлороформе, эфире, в растворах едких и углекислых щелочей.

Для разжижения массы прибавляют хлорбензол, реакционную смесь выливают в воду, выделившуюся ацетилсалициловую кислоту отфильтровывают и перекристаллизовывают из бензола, хлороформа, изопропилового спирта или других органических растворителе.

В готовом препарате ацетилсалициловой кислоты возможно присутствие остатков несвязанной салициловой кислоты. Количество салициловой кислоты как примеси регламентируется и устанавливается предел содержания салициловой кислоты в ацетилсалициловой Государственными фармакопеями разных стран.

Государственная Фармакопея СССР десятое издание 1968 г устанавливает допустимый предел содержания салициловой кислоты в ацетилсалициловой не более 0,05% в препарате.

Ацетилсалициловая кислота при гидролизе в организме распадается на салициловую и уксусную кислоты.

Ацетилсалициловая кислота как сложный эфир, образованный уксусной кислотой и фенолокислотой (вместо спирта), очень легко гидролизуется. Уже при стоянии во влажном воздухе она гидролизуется на уксусную и салициловую кислоты. В связи с этим фармацевтам часто приходится проверять, не гидролизовалась ли ацетилсалициловая кислота. Для этого очень удобна реакция с FeCl3: ацетилсалициловая кислота не дает окрашивания с FeCl3, тогда как салициловая кислота, образующаяся в результате гидролиза, дает фиолетовое окрашивание.

Клинико-фармакологическая группа : НПВС

Фармакологическое действие

Ацетилсалициловая кислота относится к группе кислотообразующих НПВП с обезболивающим, жаропонижающим и противовоспалительным свойствами. Механизм её действия заключается в необратимой инактивации ферментов циклооксигеназы, которые играют важную роль при синтезе простагландинов. Ацетилсалициловая кислота в дозах от 0.3 г до 1 г применяется для облегчения боли и состояний, которые сопровождаются жаром лёгкой степени, таких как простуда и грипп, для снижения температуры и облегчения боли в суставах и мышцах.

Он также используется для лечения острых и хронических воспалительных заболеваний, таких как ревматоидный артрит, болезнь Бехтерева, остеоартритах.

Ацетилсалициловая кислота угнетает агрегацию тромбоцитов путем блокирования синтеза тромбоксана А2 и применяется при большинстве сосудистых заболеваний в дозах от 75-300 мг в сутки.

Показания

ревматизм;

ревматоидный артрит;

инфекционно-аллергический миокардит;

лихорадка при инфекционно-воспалительных заболеваниях;

болевой синдром слабой и средней интенсивности различного генеза (в т.ч. невралгия, миалгия, головная боль);

профилактика тромбозов и эмболий;

первичная и вторичная профилактика инфаркта миокарда;

профилактика нарушений мозгового кровообращения по ишемическому типу;

в постепенно нарастающих дозах для продолжительной "аспириновой" десенсибилизации и формирования стойкой толерантности к НПВС у больных с "аспириновой" астмой и "аспириновой триадой".

Инструкция по применению и дозировка

Для взрослых разовая доза варьирует от 40 мг до 1 г, суточная - от 150 мг до 8 г; кратность применения - 2-6 раз в сутки. Запивать предпочтительнее молоком или щелочными минеральными водами.

Побочное действие

тошнота, рвота;

анорексия;

боли в эпигастрии;

возникновение эрозивно-язвенных поражений;

кровотечений из ЖКТ;

головокружение;

головная боль;

обратимые нарушения зрения;

шум в ушах;

тромбоцитопения, анемия;

геморрагический синдром;

удлинение времени кровотечения;

нарушение функции почек;

острая почечная недостаточность;

кожная сыпь;

отек Квинке;

бронхоспазм;

"аспириновая триада" (сочетание бронхиальной астмы, рецидивирующего полипоза носа и околоносовых пазух и непереносимости ацетилсалициловой кислоты и лекарственных средств пиразолонового ряда);

синдром Рейе (Рейно);

усиление симптомов хронической сердечной недостаточности.

Противопоказания

эрозивно-язвенные поражения ЖКТ в фазе обострения;

желудочно-кишечное кровотечение;

"аспириновая триада";

наличие в анамнезе указаний на крапивницу, ринит, вызванные приемом ацетилсалициловой кислоты и других НПВС;

гемофилия;

геморрагический диатез;

гипопротромбинемия;

расслаивающая аневризма аорты;

портальная гипертензия;

дефицит витамина К;

печеночная и/или почечная недостаточность;

дефицит глюкозо-6-фосфатдегидрогеназы;

синдром Рейе;

детский возраст (до 15 лет - риск развития синдрома Рейе у детей с гипертермией на фоне вирусных заболеваний);

1 и 3 триместры беременности;

период лактации;

повышенная чувствительность к ацетилсалициловой кислоте и другим салицилатам.

Особые указания

С осторожностью применяют у пациентов с заболеваниями печени и почек, при бронхиальной астме, эрозивно-язвенных поражениях и кровотечениях из ЖКТ в анамнезе, при повышенной кровоточивости или при одновременном проведении противосвертывающей терапии, декомпенсированной хронической сердечной недостаточности.

Ацетилсалициловая кислота даже в небольших дозах уменьшает выведение мочевой кислоты из организма, что может стать причиной острого приступа подагры у предрасположенных пациентов. При проведении длительной терапии и/или применении ацетилсалициловой кислоты в высоких дозах требуется наблюдение врача и регулярный контроль уровня гемоглобина.

Применение ацетилсалициловой кислоты в качестве противовоспалительного средства в суточной дозе 5-8 грамм ограничено в связи с высокой вероятностью развития побочных эффектов со стороны ЖКТ.

Перед хирургическим вмешательством, для уменьшения кровоточивости в ходе операции и в послеоперационном периоде следует отменить прием салицилатов за 5-7 дней.

Во время продолжительной терапии необходимо проводить общий анализ крови и исследование кала на скрытую кровь.

Применение ацетилсалициловой кислоты в педиатрии противопоказано, поскольку в случае вирусной инфекции у детей под влиянием ацетилсалициловой кислоты повышается риск развития синдрома Рейе. Симптомами синдрома Рейе являются длительная рвота, острая энцефалопатия, увеличение печени.

Длительность лечения (без консультации с врачом) не должна превышать 7 дней при назначении в качестве анальгезирующего средства и более 3 дней в качестве жаропонижающего.

В период лечения пациент должен воздерживаться от употребления алкоголя.

Форма выпуска, состав и упаковка

Таблетки 1 таб.

ацетилсалициловая кислота 325 мг

30 - контейнеры (1) - пачки.

50 - контейнеры (1) - пачки.

12 - блистеры (1) - пачки.

Фармакопейная статья. Экспериментальная часть

Описание. Бесцветные кристаллы или белый кристаллический порошок без запаха или со слабым запахом, слабокислого вкуса. Препарат устойчив в сухом воздухе, во влажном постепенно гидролизуется с образованием уксусной и салициловой кислот.

Растворимость. Мало растворим в воде, легко растворим в спирте, растворим в хлороформе, эфире, в растворах едких и углекислых щелочей.

Подлинность. 0 ,5 г препарата кипятят в течение 3 минут с 5 мл раствора едкого натра, затем охлаждают и подкисляют разведенной серной кислотой; выделяется белый кристаллический осадок. Раствор сливают в другую пробирку и добавляют к нему 2 мл спирта и 2 мл концентрированной серной кислоты; раствор имеет запах уксусноэтилового эфира. К осадку добавляют 1-2 капли раствора хлорида окисного железа; появляется фиолетовое окрашивание.

0,2 г препарата помещают в фарфоровую чашку, добавляют 0,5 мл концентрированной серной кислоты, перемешивают и добавляют 1-2 капли воды; ощущается запах уксусной кислоты. Затем добавляют 1-2 капли формалина; появляется розовое окрашивание.

Температура плавления 133-138° (скорость подъема температуры 4-6° в минуту).

Хлориды. 1,5 г препарата взбалтывают с 30 мл воды и фильтруют. 10 мл фильтрата должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Сульфаты . 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,02% в препарате).

Органические примеси . 0,5 г препарата растворяют в 5 мл концентрированной серной кислоты; окраска раствора не должна быть интенсивнее эталона № 5а.

Свободная салициловая кислота . 0,3 г препарата растворяют в 5 мл спирта и прибавляют 25 мл воды (испытуемый раствор). В один цилиндр помещают 15 мл этого раствора, в другой - 5 мл того же раствора. 0,5 мл 0,01% водного раствора салициловой кислоты, 2 мл спирта и доводят водой до 15 мл (эталонный раствор). Затем в оба цилиндра добавляют по 1 мл кислого 0,2% раствора железоаммониевых квасцов.

Окраска испытуемого раствора не должна быть интенсивнее эталонного раствора (не более 0,05% в препарате).

Сульфатная зола и тяжелые металлы . Сульфатная зола из 0,5 г препарата не должна превышать 0,1% и должна выдерживать испытание на тяжелые металлы (не более 0,001 % в препарате).

Количественное определение. Около 0,5 г препарата (точная навеска) растворяют в 10 мл нейтрализованного по фенолфталеину (5-6 капель) и охлажденного до 8-10° спирта. Раствор титруют с тем же индикатором 0,1 н. раствором едкого натра до розового окрашивания.

1 мл 0,1 н. раствора едкого натра соответствует 0,01802 г C9H8O4 которой в препарате должно быть не менее 99,5%.

Хранение. В хорошо укупоренной таре.

Противоревматическое, противовоспалительное, болеутоляющее, жаропонижающее средство.

Фармацевтическая химия -- наука, которая, базируясь на общих законах химических наук, исследует способы получения, строение, физические и химические свойства лекарственных веществ, взаимосвязь между их химической структурой и действием на организм; методы контроля качества лекарств и изменения, происходящие при их хранении.

Основными методами исследования лекарственных веществ в фармацевтической химии являются анализ и синтез -- диалектически тесно связанные между собой процессы, взаимно дополняющие друг друга. Анализ и синтез -- мощные средства познания сущности явлений, происходящих в природе.

Задачи, стоящие перед фармацевтической химией, решаются с помощью классических физических, химических и физико-химических методов, которые используются как для синтеза, так и для анализа лекарственных веществ.

Чтобы познать фармацевтическую химию, будущий провизор должен иметь глубокие знания в области общетеоретических химических и медико-биологических дисциплин, физики, математики. Необходимы также прочные знания в области философии, ибо фармацевтическая химия, как и другие химические науки, занимается изучением химической формы движения материи.

Фармацевтическая химия занимает центральное место среди других специальных фармацевтических дисциплин -- фармакогнозии, технологии лекарств, фармакологии, организации и экономики фармации, токсикологической химии и является своеобразным связующим звеном между ними.

Вместе с тем фармацевтическая химия занимает промежуточное положение между комплексом медико-биологических и химических наук. Объектом применения лекарств является организм больного человека. Исследованием процессов, происходящих в организме больного человека, и его лечением занимаются специалисты, работающие в области клинических медицинских наук (терапия, хирургия, акушерство и гинекология и т.д.), а также теоретических медицинских дисциплин: анатомии, физиологии и др. Многообразие применяемых в медицине лекарств требует совместной работы врача и провизора при лечении больного.

Являясь прикладной наукой, фармацевтическая химия базируется на теории и законах таких химических наук, как неорганическая, органическая, аналитическая, физическая, коллоидная химия. В тесной связи с неорганической и органической химией фармацевтическая химия занимается исследованием способов синтеза лекарственных веществ. Поскольку их действие на организм зависит как от химической структуры, так и от физико-химических свойств, фармацевтическая химия использует законы физической химии.

При разработке способов контроля качества лекарственных препаратов и лекарственных форм в фармацевтической химии применяют методы аналитической химии. Однако фармацевтический анализ имеет свои специфические особенности и включает три обязательных этапа: установление подлинности препарата, контроль его чистоты (установление допустимых пределов примесей) и количественное определение лекарственного вещества.

Развитие фармацевтической химии невозможно и без широкого использования законов таких точных наук, как физика и математика, так как без них нельзя познать физические методы исследования лекарственных веществ и различные способы расчета, применяемые в фармацевтическом анализе.

В фармацевтическом анализе используются разнообразные методы исследования: физические, физико-химические, химические, биологические. Применение физических и физико-химических методов требует соответствующих приборов и инструментов, поэтому данные методы называют также приборными, или инструментальными.

Использование физических методов основано на измерении физических констант, например, прозрачности или степени мутности, цветности, влажности, температуры плавления, затвердевания и кипения и др.

С помощью физико-химических методов измеряют физические константы анализируемой системы, которые изменяются в результате химических реакций. К этой группе методов относятся оптические, электрохимические, хроматографические.

Химические методы анализа основаны на выполнении химических реакций.

Биологический контроль лекарственных веществ осуществляют на животных, отдельных изолированных органах, группах клеток, на определенных штаммах микроорганизмов. Устанавливают силу фармакологического эффекта или токсичность.

Методики, используемые в фармацевтическом анализе, должны быть чувствительными, специфическими, избирательными, быстрыми и пригодными для экспресс-анализа в условиях аптеки.

Список литературы

1. Фармацевтическая химия: Учеб. пособие / Под ред. Л.П. Арзамасцева. М.: ГЭОТАР-МЕД, 2004.

2. Фармацевтический анализ лекарственных средств / Под общей редакцией В.А.

3. Шаповаловой. Харьков: ИМП «Рубикон», 1995.

4. Мелентьева Г.А., Антонова Л.А. Фармацевтическая химия. М.: Медицина, 1985.

5. Арзамасцев А.П. Фармакопейный анализ. М.: Медицина, 1971.

6. Беликов В.Г. Фармацевтическая химия. В 2 частях. Часть 1. Общая фармацевтическая химия: Учеб. для фармац. ин-тов и фак. мед. ин-тов. М.: Высш. шк., 1993.

7. Государственная фармакопея Российской федерации, Х издание - под. ред. Юргеля Н.В. Москва: “Научный центр экспертизы средств медицинского применения”. 2008.

8. Международная фармакопея, Третье издание, Т.2. Всемирная организация охраны здоровья. Женева. 1983, 364 с.

Размещено на Allbest.ru

...

Подобные документы

    Взаимодействие химических соединений с электромагнитным излучением. Фотометрический метод анализа, обоснование эффективности его использования. Исследование возможности применения фотометрического анализа в контроле качества лекарственных средств.

    курсовая работа , добавлен 26.05.2015

    Структура и функции контрольно-разрешительной системы. Проведение доклинических и клинических исследований. Регистрация и экспертиза лекарственных средств. Система контроля качества изготовления лекарственных средств. Валидация и внедрение правил GMP.

    реферат , добавлен 19.09.2010

    Особенности анализа полезности лекарств. Выписка, получение, хранение и учет лекарственных средств, пути и способы их введения в организм. Строгие правила учета некоторых сильнодействующих лекарственных средств. Правила раздачи лекарственных средств.

    реферат , добавлен 27.03.2010

    Внутриаптечный контроль качества лекарственных средств. Химические и физико-химические методы анализа, количественное определение, стандартизация, оценка качества. Расчет относительной и абсолютной ошибок в титриметрическом анализе лекарственных форм.

    курсовая работа , добавлен 12.01.2016

    Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.

    реферат , добавлен 16.09.2010

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Общая характеристика микозов. Классификация противогрибковых лекарственных средств. Контроль качества противогрибковых лекарственных средств. Производные имидазола и триазола, полиеновые антибиотики, аллиламины. Механизм действия противогрибковых средств.

    курсовая работа , добавлен 14.10.2014

    Российские нормативные документы, регламентирующие производство лекарственных средств. Структура, функции и основные задачи испытательной лаборатории по контролю качества лекарственных средств. Законодательные акты РФ об обеспечении единства измерений.

    методичка , добавлен 14.05.2013

    Изучение физико-химических методов анализа. Методы основанные на использовании магнитного поля. Теория методов по спектрометрии и фотоколореметрии в видимой области спектра. Спектрометрические и фотоколореметрические методы анализа лекарственных средств.

    курсовая работа , добавлен 17.08.2010

    Стабильность, как фактор качества лекарственных средств. Физические, химические и биологические процессы, протекающие при их хранении. Влияние условий получения на стабильность лекарств. Классификация групп ЛС. Срок годности и период переконтроля.

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 -10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 -10 -9 %; чувствительность спектрофотометрических методов Ю -3 -10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра - количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2-0,3)%.

Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.

Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001-0,01) г, т.е. с предельной относительной ошибкой 0,1-1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.

1.2 Ошибки, возможные при проведении фармацевтического анализа

При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).

Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.

Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.

Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.

Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).

Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект - индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2-3)%, ИК-спектрофотометрией ±(5-12)%, газо- жидкостцой хроматографией ±(3-3,5)%; полярографией ±(2-3)%; потенциометрией ±(0,3-1)%.

При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3-7)%.

Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20-30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.

Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3-6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.

1.3 Общие принципы испытаний подлинности лекарственных веществ

Испытание на подлинность - это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.

1.4 Источники и причины недоброкачественности лекарственных веществ

Основные источники технологических и специфических примесей - аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.

На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.

Технологические факторы - первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, - все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.

Вторая группа факторов - образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1-5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.

В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.

Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".

Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".

Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.

При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.

Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).

Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.

Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.

В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.

Фармакопейный тест на определение примесей тяжелых металлов - один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.

1.5 Общие требования к испытаниям на чистоту

Оценка степени чистоты лекарственного препарата - один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их

8-09-2015, 20:00


Другие новости

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ

Анализ сложных лекарственных форм

Ч. 1. Лекарственные формы аптечного производства

Учебное пособие

Для самостоятельной подготовки и руководство к лабораторным занятиям по фармацевтической химии для студентов фармацевтических факультетов вузов очной и заочной формы обучения

УДК 615.07 (071) ББК Р 282 Е 732

Е.В. Ермилова, В.В. Дудко, Т.В. Кадырова Анализ сложных лекарственных форм Ч. 1. Лекарственные формы аптечного производства: Уч. пособие. – Томск: Изд. 20012 . – 169 с.

Пособие содержит методики анализа лекарственных форм аптечного производства. В нем рассмотрены терминологии, классификации лекарственных форм, приведены нормативные документы, контролирующие качество лекарственных средств аптечного производства, указаны особенности внутриаптечного экспресс-анализа; подробно излагаются основные этапы анализа лекарственных форм, при этом, особое внимание уделяется химическому контролю.

Основная часть пособия посвящена изложению материала по анализу лекарственных форм: жидких (микстуры, стерильные) и твердых (порошки), приведены многочисленные примеры.

В приложение вынесены выписки из приказов, рефрактометрические таблицы, информация по индикаторам, формы отчетных журналов.

Для студентов фармацевтических факультетов высших учебных заведений.

Табл. 21. Илл. 27. Библиогр.: 18 назв.

Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации. . . . . . . . . . . . . . . . ………. 5 1.1.1. Термины, характеризующие лекарственные средства.. ….5 1.1.2. Термины, характеризующие лекарственные формы. . . ….5 1.2. Классификация лекарственных форм. . . . . . . . . . . . . . . . . . . . . . 7

1.3. Нормативные документы и требования к качеству лекарственных средств аптечного производства. . . . . . . . . . . . . …...7 1.4. Особенности экспресс-анализа лекарственных средств аптечного производства. . . . . . . . . . . . . . . . . . . . . . . . . . ……………8

1.4.1. Особенности определения подлинности экспресс-методом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ………..9

1.4.2. Особенности количественного экспресс-анализа. . . . . . . . …9

2.1. Органолептический и физический контроль. . . . . . . . . . . . . . . . . . 10 2.1.1. Органолептический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1.2. Физический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.Химический контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1.Испытания на подлинность. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.2.. Количественный анализ. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14

2.2.2.1. Способы выражения концентраций. . . . . . . . . . . . . . . . .15 2.2.2.2. Методы титриметрического анализа. . . . . . . . . . . . . . . 16 2.2.2.3. Расчет массы (объема) лекарственной формы и объема титранта для анализа. . . . . . . . . . . . . . . . . . . . . 17

2.2.2.4. Обработка результатов измерений. . . . . . . . . . . . . . . . . .19 2.2.2.5. Оформление результатов анализа. . . . . . . . . . . . . . . . . . 32

III. АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

Жидкие лекарственные формы . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1. Анализ микстур. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .33 3.2. Анализ стерильных лекарственных форм. . . . . . . . . . . . . . . . . . . . .59

Твердые лекарственные формы

3.3. Порошки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Вопросы контроля самоподготовки. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Тестовый контроль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Ответы тестового контроля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

ПРИЛОЖЕНИЯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Предисловие

Основой для написания учебного пособия явилась программа по фармацевтической химии для студентов фармацевтических вузов (факультетов)

М.: ГОУ ВУНМЦ, 2003 г.

Одной из составных частей фармацевтического анализа является анализ лекарственных средств аптечного и заводского производства, осуществляемый методами фармакопейного анализа, по требованиям различных указаний,

пособий, инструкций и т. п.

Учебное пособие посвящено методам исследования лекарственных форм

(микстуры, стерильные, порошки), изготавливаемых в аптеке, где используются все виды внутриаптечного контроля, но самым действенным является химический контроль, который дает возможность проверить соответствие изготовленной лекарственной формы рецептурной прописи, как по подлинности, так и по количественному содержанию. Приведенные методики определения подлинности и количественного содержания составлены таким образом, чтобы использовать оптимальные методы исследования, и на анализ затрачивалось минимальное количество лекарственного средства.

В основной части приведены многочисленные примеры использования рефрактометрии в количественном анализе лекарственных средств, так как этот метод широко используется в аптечной практике.

Предложенное учебное пособие способствует развитию у студентов химического аналитического мышления.

I. ВВЕДЕНИЕ В АНАЛИЗ ЛЕКАРСТВЕННЫХ ФОРМ

1.1. Термины, применяемые в фармации

1.1.1. Термины, характеризующие лекарственные средства

Лекарственные средства – вещества, применяемые для профилактики,

диагностики, лечения болезни, предотвращения беременности, полученные из

биологических технологий.

Лекарственное вещество - лекарственное средство, представляющее собой индивидуальное химическое соединение или биологическое вещество.

Лекарственный препарат - лекарственное средство в виде определенной

лекарственной формы.

Лекарственная форма - придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект.

1.1.2. Термины, характеризующие лекарственные формы

Порошки твердая лекарственная форма для внутреннего и наружного применения, состоящая из одного или нескольких измельченных веществ и обладающая свойством сыпучести.

Таблетки – дозированная лекарственная форма, получаемая прессованием лекарственных или смеси лекарственных и вспомогательных веществ, предназначенная для внутреннего, наружного, сублингвального,

имплантационного или парентерального применения.

Капсулы – дозированная лекарственная форма, состоящая из лекарственного средства, заключенного в оболочку.

Мази мягкая лекарственная форма, предназначенная для нанесения на кожу, раны или слизистые оболочки и состоящая из лекарственного вещества и основы.

Пасты - мази с содержанием порошкообразных веществ свыше 20-25%.

Суппозитории дозированная лекарственная форма, твердая при комнатной температуре и расплавляющаяся при температуре тела.

Растворы жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенных для инъекционного, внутреннего или наружного применения.

Капли жидкая лекарственная форма, предназначенная для внутреннего или наружного применения, дозируемая каплями.

Суспензии жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде.

Эмульсии однородная по внешнему виду лекарственная форма,

состоящая из взаимно нерастворимых тонко диспергированных жидкостей,

предназначенная для внутреннего, наружного или парентерального применения.

Экстракты – концентрированные извлечения из лекарственного растительного сырья. Различают жидкие экстракты (Extracta fluida); густые экстракты (Extracta spissa) – вязкие массы с содержанием влаги не более 25%;

сухие экстракты (Extracta sicca) – сыпучие массы с содержанием влаги не более

Настои лекарственная форма, представляющая собой водное извлечение из лекарственного растительного сырья или водный раствор сухих или жидких экстрактов (концентратов).

Отвары настои, отличающиеся режимом экстракции.

Аэрозоли лекарственная форма, в которой лекарственные и вспомогательные вещества находятся под давлением газа-вытеснителя

(пропеллента) в аэрозольном баллоне, герметически закрытом клапаном.

1.2. Классификация лекарственных форм

Классификацию лекарственных форм проводят в зависимости от:

1.2.1. Агрегатного состояния Твердые: порошки, таблетки, драже, гранулы и др.

Жидкие : истинные и коллоидные растворы, капли, суспензии, эмульсии,

линименты, и др.

Мягкие : мази, суппозитории, пилюли, капсулы и др.

Газообразные : аэрозоли, газы.

1.2.2. Количества лекарственных веществ

Однокомпонентные

Многокомпонентные

1.2.3. Места изготовления

Заводского

Аптечного

1.2.4. Способа изготовления

Растворы для инъекций Микстуры Глазные капли Отвары Настои Аэрозоли Настои

Гомеопатические средства и т. д.

1.3. Нормативные документы и требования к качеству

лекарственных средств аптечного производства

Вся производственная деятельность аптеки должна быть направлена на обеспечение высококачественного изготовления лекарственных средств.

Одним из важнейших факторов, определяющих качество лекарственных средств, изготовляемых в аптеке, является организация внутриаптечного контроля.

Внутриаптечный контроль – это комплекс мероприятий, направленных на своевременное выявление и предупреждение ошибок, возникающих в процессе изготовления, оформления и отпуска лекарств.

Лекарства аптечного производства подвергаются нескольким видам контроля в зависимости от характера лекарственной формы.

Система внутриаптечного контроля качества лекарственных средств предусматривает проведение предупредительных мероприятий, приемочного, органолептического, письменного, опросного, физического, химического контроля и контроля при отпуске.

Согласно инструкции Министерства здравоохранения Российской Федерации «О контроле качества лекарственных средств, изготовляемых в аптеках» (Приказ № 214 от 16 июля 1997 г.), все лекарственные средства подвергаются внутриаптечному контролю: органолептическому, письменному и контролю при отпуске – обязательно, опросному и физическому – выборочно, а химическому – в соответствии с пунктом 8 данного приказа (смотри приложение).

1.4. Особенности экспресс-анализа лекарственных средств

аптечного производства

Необходимость внутриаптечного контроля обусловлена соответствующими высокими требованиями к качеству лекарственных средств, изготовляемых в аптеках.

Поскольку изготовление и отпуск лекарственных препаратов в аптеках ограничивается сжатыми сроками, оценку их качества осуществляют экспресс– методами.

Основные требования, предъявляемые к экспресс-анализу, расход минимальных количеств лекарственных средств при достаточной точности и чувствительности, простота и быстрота выполнения по возможности без разделения ингредиентов, возможность проведения анализа без изъятия приготовленного лекарственного препарата.

Если не удается выполнить анализ без разделения компонентов, то используют те же принципы разделения, что и при макро-анализе.

1.4.1. Особенности определения подлинности экспресс – методом

Основное отличие определения подлинности экспресс - методом от макро-анализа заключается в использовании малых количеств исследуемых смесей без их разделения.

Анализ выполняют капельным методом в микро-пробирках, фарфоровых чашках, на часовых стеклах, при этом расходуется от 0,001 до 0,01 г порошка или 1 5 капель исследуемой жидкости.

Для упрощения анализа достаточно проведение одной реакции для вещества, причем наиболее простой, например, для атропина сульфата достаточно подтвердить наличие сульфат-иона, для папаверина гидрохлорида – хлорид - иона классическими методами.

1.4.2. Особенности количественного экспресс-анализа

Количественный анализ может быть выполнен титриметрическими или физико-химическими методами.

Титриметрический экспресс-анализ отличается от макро - методов расходом меньших количеств анализируемых препаратов: 0,05 0,1 г порошка или 0,5 2 мл раствора, причем точную массу порошка можно отвешивать на ручных весах; для повышения точности можно использовать разбавленные растворы титрантов: 0,01 0,02 моль/л.

Навеску порошка или объем жидкой лекарственной формы берут с таким расчетом, чтобы на определение расходовалось 1 3 мл раствора титранта.

Из физико-химических методов в аптечной практике широко используется экономичный метод рефрактометрии при анализе концентратов,

полуфабрикатов и других лекарственных форм.

II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА

2.1. Органолептический и физический контроль

2.1.1. Органолептический контроль

Органолептический контроль заключается в проверке лекарственной формы по следующим показателям: внешний вид («Описание»), запах,

однородность, отсутствие механических примесей. На вкус проверяются выборочно, а лекарственные формы, приготовленные для детей – все.

Однородность порошков, гомеопатических тритураций, мазей, пилюль,

суппозиториев проверяется до разделения массы на дозы в соответствии с требованиями действующей Государственной фармакопеи. Проверка осуществляется выборочно у каждого фармацевта в течение рабочего дня с учетом видов лекарственных форм. Результаты органолептического контроля регистрируются в журнале.

2.1.2. Физический контроль

Физический контроль заключается в проверке общей массы или объема лекарственной формы, количества и массы отдельных доз (не менее трех доз),

входящих в данную лекарственную форму.

При этом проверяются:

Каждая серия фасовки или внутриаптечной заготовки в количестве не менее трех упаковок;

Лекарственные формы, изготовленные по индивидуальным рецептам (требованиям), выборочно в течение рабочего дня с учетом всех видов лекарственных форм, но не менее 3% от количества лекарственных форм, изготовленных за день;

Вступление

1.2 Ошибки, возможные при проведении фармацевтического анализа

1.3 Общие принципы испытаний подлинности лекарственных веществ

1.4 Источники и причины недоброкачественности лекарственных веществ

1.5 Общие требования к испытаниям на чистоту

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 -10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 -10 -9 %; чувствительность спектрофотометрических методов Ю -3 -10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.


Физико-химические или инструментальные методы анализа

Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выполнения аналитической реакции.

Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фармацевтической, металлургической, полупроводниковой, атомной и других отраслей промышленности, требовавших повышения чувствительности методов до 10-8 - 10-9 %, их селективности и экспрессности, что позволило бы управлять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.

Ряд современных физико-химических методов анализа позволяют одно­временно в одной и той же пробе выполнять как качественный, так и количественный анализ компонентов. Точность анализа современных физико-химических методов сопоставима с точностью классических методов, а в некоторых, например в кулонометрии, она существенно выше.

К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего значения и применяются там, где нет ограничений в скорости выполнения анализа и требуется высокая его точность при высоком содержании анализируемого компонента.

Классификация физико-химических методов анализа

В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, величина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:

Электрохимические;

Оптические и спектральные;

Хроматографические.

Электрохимические методы анализа основаны на измерении электрических параметров: силы тока, напряжения, равновесных электродных потенциалов, электрической проводимости, количе-ства электричества, величины которых пропорциональны содержанию вещества в анализируемом объекте.

Оптические и спектральные методы анализа основаны на измерении параметров, характеризующих эффекты взаимодействия электромагнитного излучения с веществами: интенсивности излучения возбужденных атомов, поглощения монохроматического излучения, показателя преломления света, угла вращения плоскости поляризованного луча света и др.

Все эти параметры являются функцией концентрации вещества в анали­зируемом объекте.

Хроматографические методы - это методы разделения однородных многокомпонентных смесей на отдельные компоненты сорбционными методами в динамических условиях. В этих условиях компоненты распределяются между двумя несмешивающимися фазами: подвижной и неподвижной. Распределение компонентов основано на различии их коэффициентов распределения между подвижной и неподвижной фазами, что при- водит к различным скоростям переноса этих компонентов из неподвижной в подвижную фазу. После разделения количественное содержание каждого из компонентов может быть определено различными методами анализа: классическими или инструментальными.

Молекулярно-абсорбционный спектральный анализ

Молекулярно-абсорбционный спектральный анализ включает в себя спектрофотометрический и фотоколориметрический виды анализа.

Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества.

Фотоколориметрический анализ базируется на сравнении интенсивности окрасок исследуемого окрашенного и стандартного окрашенного растворов определенной концентрации.

Молекулы вещества обладают определенной внутренней энергией Е, составными частями которой являются:

Энергия движения электронов Еэл находящихся в электростати-ческом поле атомных ядер;

Энергия колебания ядер атомов друг относительно друга Е кол;

Энергия вращения молекулы Е вр

и математически выражается как сумма всех указанных выше энергий:

При этом, если молекула вещества поглощает излучение, то ее первона­чальная энергия Е 0 повышается на величину энергии поглощенного фотона, то есть:

Из приведенного равенства следует, что чем меньше длина волны л, тем больше частота колебаний и, следовательно, больше Е, то есть энергия, сообщенная молекуле вещества при взаимодействии с электромагнитным излучением. Поэтому характер взаимодействия лучевой энергии с веществом в зависимости от длины волны света л будет различен.

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн разбивают на области: ультрафиолетовая (УФ) примерно 10-380 нм, видимая 380-750 нм, инфракрасная (ИК) 750-100000 нм.

Энергии, которую сообщают молекуле вещества излучения УФ- и види­мой части спектра, достаточно, чтобы вызвать изменение электронного состояния молекулы.

Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

Законы поглощения излучения

В основе спектрофотометрических методов анализа лежат два основных закона. Первый из них - закон Бугера - Ламберта, второй закон - закон Бера. Объединенный закон Бугера - Ламберта - Бера имеет следующую формулировку:

Поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.

Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:

Величину lg I /I 0 называют оптuческой плотностью поглощающего вещества и обозначают буквами D или А. Тогда закон можно записать так:

Отношение интенсивности потока монохроматического излучения, про­шедшего через испытуемый объект, к интенсивности первоначального потока излучения называется прозрачностью, или пропусканием, раствора и обозначается буквой Т: Т = I /I 0

Это соотношение может быть выражено в процентах. Величина Т, характеризующая пропускание слоя толщиной 1 см, называется коэффициентом пропускания. Оптическая плотность D и пропускание Т связаны между собой соотношением

D и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при определенной длине волны и толщине поглощаю­щего слоя.

Зависимость D(С) имеет прямолинейный характер, а Т(С) или Т(l) - экспоненциальный. Это строго соблюдается только для монохроматических потоков излучений.

Величина коэффициента погашения К зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в сантиметрах, то он называется молярным коэффициентом погашения, обозначается символом е и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.

Величина молярного коэффициента светопоглощения зависит:

От природы растворенного вещества;

Длины волны монохроматического света;

Температуры;

Природы растворителя.

Причины несоблюдения закона Бyгера - Ламберта - Бера.

1. Закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.

2. В растворах могут протекать различные процессы, которые изменяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.

3. Светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:

Степень ионизации слабого электролита;

Форма существования ионов, что приводит к изменению светопоглощения;

Состав образующихся окрашенных комплексных соединений.

Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена.

Визуальная колориметрия

Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

Цвета видимого излучения:

К визуальным методам относятся:

- метод стандартных серий;

- метод колориметрического титрования, или дублирования;

- метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине слоя).

Метод колориметрического титрования (дублирования) основан на сравнении окраски анализируемого раствора с окраской другого раствора - контрольного. Контрольный раствор содержит все компоненты исследуемого раствора, за исключением определяемого вещества, и все использовавшиеся при подготовке пробы реактивы. К нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого растворов уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания отличается от описанных выше визуальных колориметрических методов, в которых подобие окрасок стандартного и испытуемого растворов достигается изменением их концентрации. В методе уравнивания подобие окрасок достигается изменением толщины слоев окрашенных растворов. Для этой цели при определении концентрации веществ используют колориметры сливания и погружения.

Достоинства визуальных методов колориметрического анализа:

Техника определения проста, нет необходимости в сложном дорогостоящем оборудовании;

Глаз наблюдателя может оценивать не только интенсивность, но и оттенки окраски растворов.

Недостатки:

Необходимо готовить стандартный раствор или серии стандартных растворов;

Невозможно сравнивать интенсивность окраски раствора в присутствии других окрашенных веществ;

При длительном сравнивании интенсивности окраски глаз человека утомляется, и ошибка определения увеличивается;

Глаз человека не столь чувствителен к небольшим изменениям оптической плотности, как фотоэлектрические устройства, вследствие это­го невозможно обнаружить разницу в концентрации примерно до пяти относительных процентов.

Фотоэлектроколориметрические методы

Фотоэлектроколориметрия применяется для измерения поглощения света или пропускания окрашенными растворами. Приборы, используемые для этой цели, называются фотоэлектроколориметрами (ФЭК).

Фотоэлектрические методы измерения интенсивности окраски связаны с использованием фотоэлементов. В отличие от приборов, в которых сравнение окрасок производится визуально, в фотоэлектроколориметрах приемником световой энергии является прибор - фотоэлемент. В этом приборе световая энергия преобразует в электрическую. Фотоэлементы позволяют проводить колориметрические определения не только в видимой, но также в УФ- и ИК-областях спектра. Измерение световых потоков с помощью фотоэлектрических фотометров более точно и не зависит от особенностей глаза наблюдателя. Применение фотоэлементов позволяет автоматизировать определение концентрации веществ в химическом контроле технологических процессов. Вследствие этого фотоэлектрическая колориметрия значительно шире используется в практике заводских лабораторий, чем визуальная.

На рис. 1 показан обычный порядок расположения узлов в приборах для измерения пропускания или поглощения растворов.

Рис.1 Основные узлы приборов для измерения поглощения излучения: 1 - источник излучения; 2 - монохроматор; 3 - кюветы для растворов; 4 - преобразователь; 5 - индикатор сигнала.

Фотоколориметры в зависимости от числа используемых при измерениях фотоэлементов делятся на две группы: однолучевые (одноплечие) - приборы с одним фотоэлементом и двухлучевые (двуплечие) - с двумя фотоэлементами.

Точность измерений, получаемая на однолучевых ФЭК, невелика. В заводских и научных лабораториях наиболее широкое распространение получил фотоэлектрические установки, снабженные двумя фотоэлементами. В основу конструкции этих приборов положен принцип уравнивания интенсивности двух световых пучков при помощи переменной щелевой диафрагмы, то есть принцип оптической компенсации двух световых потоков путем изменений раскрытия зрачка диафрагмы.

Принципиальная схема прибора представлена на рис. 2. Свет от лампы накаливания 1 с помощью зеркал 2 разделяется на два параллельных пучка. Эти световые пучки проходят через светофильтры 3, кюветы с растворами 4 и попадают на фотоэлементы 6 и 6", которые включены на гальванометр 8 по дифференциaльнoй схеме. Щелевая диафрагма 5 изменяет интенсивность светового потока, падающего на фотоэлемент 6. Фотометрический нейтральный клин 7 служит для ослабления светового потока, падающего на фотоэлемент 6".

Рис.2. Схема двухлучевого фотоэлектроколориметра

Определение концентрации в фотоэлектроколориметрии

Для определения концентрации анализируемых веществ в фотоэлектроколориметрии применяют:

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов;

Метод определения по среднему значению молярного коэффициента светопоглощения;

Метод градуировочного графика;

Метод добавок.

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов

Для определения готовят эталонный раствор определяемогo вещества известной концентрации, которая приближается к концентрацииисследуемого раствора. Определяют оптическую плотность этого раствора при определенной длине волны D эт. Затем определяют оптическую плотность исследуемого раствора D х при той же длине волны и при той же толщине слоя. Сравнивая значения оптических плотностей исследуемого и эталонного растворов, находят неизвестную концентрацию определяемого вещества.

Метод сравнения применим при однократных анализах и требует обязательного соблюдения основного закона светопоглощения.

Метод градуировочноro графика. Для определения концентрации вещества этим методом готовят серию из 5-8 стандартных растворов различной концентрации. При выборе интервала концентраций стандартных растворов руководствуются следующими положениями:

* он должен охватывать область возможных измерений концентрации исследуемого раствора;

* оптическая плотность исследуемого раствора должна соответствовать примерно середине градуировочной кривой;

* желательно, чтобы в этом интервале концентраций соблюдался основной закон светопоглощения, то есть график зависимости был прямолинейным;

* величина оптической плотности должна находиться в пределах 0,14… 1,3.

Измеряют оптическую плотность стандартных растворов и строят график зависимости D(С) . Определив D х исследуемого раствора, по градуировочному графику находят С х (рис. 3).

Этот метод позволяет определить концентрацию вещества даже в тех случаях, когда основной закон светопоглощения не соблюдается. В таком случае готовят большое количество стандартных растворов, отличающихся по концентрации не более чем на 10 %.

Рис. 3. Зависимость оптической плотности раствора от концентрации (калибровочная кривая)

Метод добавок - это разновидность метода сравнения, осно-ванный на сравнении оптической плотности исследуемого раствора и того же раствора с добавкой известно количества определяемого вещества.

Применяют его для устранения мешающего влияния посторонних примесей, определения малых количеств анализируемого вещества в присутствии больших количеств посторонних веществ. Метод требует обязательного соблюдения основного закона свето-поглощения.

Спектрофотометрия

Это метод фотометрического анализа, в котором определение содержания вещества производят по поглощению им монохроматического света в видимой, УФ- и ИК-областях спектра. В спектрофотометрии, в отличие от фотометрии, монохроматизация обеспечивается не светофильтрами, а монохроматорами, позволяющими непрерывно изменять длину волны. В качестве монохроматоров используют призмы или дифракционные решетки, которые обеспечивают значительно более высокую монохроматичность света, чем светофильтры, поэтому точность спектрофотометрических определений выше.

Спектрофотометрические методы, по сравнению с фотоколориметрическими, позволяют решать более широкий круг задач:

* проводить количественное определение веществ в широком интервал длин волн (185-1100 нм);

* осуществлять количественный анализ многокомпонентных систем (одновременное определение нескольких веществ);

* определять состав и константы устойчивости светопоглощающих комплексных соединений;

* определять фотометрические характеристики светопоглощающих соединений.

В отличие от фотометров монохроматором в спектрофо-тометрах служит призма или дифракционная решетка, позволяя-ющая непрерывно менять длину волны. Существуют приборы для измерений в видимой, УФ- и ИК-областях спектра. Принципи-альная схема спектрофотометра практически не зависит от спектральной области.

Спектрофотометры, как и фотометры, бывают одно- и двулучевые. В двулучевых приборах световой поток каким-либо способом раздваивают или внутри монохроматора, или по выходе из него: один поток затем проходит через испытуемый раствор, другой - через растворитель.

Однолучевые приборы особенно удобны при выполнении количественных определений, основанных на измерении оптической плотности при одной длине волны. В этом случае простота прибора и легкость эксплуатации представляют существенное преимущество. Большая скорость и удобство измерения при работе с двулучевыми приборами полезны в качественном анализе, когда для получения спектра оптическая плотность должна быть измерена в большом интервале длин волн. Кроме того, двулучевое устройство легко приспособить для автоматической записи непрерывно меняющейся оптической плотности: во всех современных регистрирующих спектрофото-метрах для этой цели используют именно двулучевую систему.

И одно-, и двулучевые приборы пригодны для измерений видимого и УФ-излучений. В основе ИК-спектрофотометров, выпускаемых промышленностью, всегда лежит двулучевая схема, поскольку их обычно используют для развертки и записи большой области спектра.

Количественный анализ однокомпонентных систем проводится теми же методами, что и в фотоэлектроколориметрии:

Методом сравнения оптических плотностей стандартного и исследуемого растворов;

Методом определения по среднему значению молярного коэффициента светопоглощения;

Методом градуировочного графика,

и не имеет никаких отличительных особенностей.

Спектрофотометрия в качественном анализе

Качественный анализ в ультрафиолетовой части спектра. Ультрафиолетовые спектры поглощения обычно имеют две-три, иногда пять и более полос поглощения. Для однозначной идентификации исследуемого вещества записывают его спектр поглощения в различных растворителях и сравнивают полученные данные с соответствующими спектрами сходных веществ известного состава. Если спектры поглощения исследуемого вещества в разных paстворителях совпадают со спектром известного вещества, то можно с большой долей вероятности сделать заключение об идентичности химического состава этих соединений. Для идентификации неизвестного вещества по его спектру поглощения необходимо располагать достаточным количеством спектров поглощения органических и неорганических веществ. Существуют атласы, в которых приведены спектры поглощения очень многих, в основном органических веществ. Особенно хорошо изучены ультрафиолетовые спектры аромати-ческих углеводородов.

При идентификации неизвестных соединений следует также обратить внимание на интенсивность поглощения. Очень многие органические соединения обладают полосами поглощения, максимумы которых расположены при одинаковой длине волны л, но интенсивность их различна. Например, в спектре фенола наблюдается полоса поглощения при л = 255 нм, для которой молярный коэффициент поглощения при максимуме поглощения е mах = 1450. При той же длине волны ацетон имеет полосу, для которой е mах = 17.

Качественный анализ в видимой части спектра. Идентификацию окрашенного вещества, например красителя, также можно проводить, сравнивая его спектр поглощения в видимой части со спектром сходного красителя. Спектры поглощения большинства красителей описаны в специальных атласах и руководствах. По спектру поглощения красителя можно сделать заключение о чистоте красителя, потому что в спектре примесей имеется ряд полос поглощения, которые отсутствуют в спектре красителя. По спектру поглощения смеси красителей можно также сделать заключение о составе смеси, особенно если в спектрах компонентов смеси имеются полосы поглощения, расположенные в разных областях спектра.

Качественный анализ в инфракрасной области спектра

Поглощение ИК-излучения связано с увеличением колебательной и вращательной энергий ковалентной связи, если оно приводит к изменению дипольного момента молекулы. Это значит, что почти все молекулы с ковалентными связями в той или иной мере способны к поглощению в ИК-области.

Инфракрасные спектры многоатомных ковалентных соединений обычно очень сложны: они состоят из множества узких полос поглощения и сильно отличаются от обычных УФ- и видимых спектров. Различия вытекают из природы взаимодействия поглощающих молекул и их окружения. Это взаимодействие (в конденсированных фазах) влияет на электронные переходы в хромофоре, поэтому линии поглощения уширяются и стремятся слиться в широкие полосы поглощения. В ИК -спектре, наоборот, частота и коэффициент поглощения, соответствующие отдельной связи, обычно мало меняются с изменением окружения (в том числе с изменением остальных частей молекулы). Линии тоже расширяются, но не настолько, чтобы слиться в полосу.

Обычно по оси ординат при построении ИК-спектров откладывают пропускание в процентах, а не оптическую плотность. При таком способе построения полосы поглощения выглядят как впадины на кривой, а не как максимумы на УФ-спектрах.

Образование инфракрасных спектров связано с энергией колебаний молекул. Колебания могут быть направлены вдоль валентной связи между атомами молекулы, в таком случае они называются валентными. Различают симметричные валентные колебания, в которых атомы колеблются в одинаковых направлениях, и асиммeтpичныe валентные колебания, в которых атомы колеблются в противоположных направлениях. Если колебания атомов происходят с изменением угла между связями, они называются деформационными. Такое разделение весьма условно, потому что при валентных колебаниях происходит в той или иной степени деформация углов и наоборот. Энергия деформационных колебаний обычно меньше, чем энергия валентных колебаний, и полосы поглощения, обусловленные деформационными колебаниями, располагаются в области более длинных волн.

Колебания всех атомов молекулы обусловливают полосы поглощения, индивидуальные для молекул данного вещества. Но среди этих колебаний можно выделить колебания групп атомов, которые слабо связаны с колебаниями атомов остальной части молекулы. Полосы поглощения, обусловленные такими колебаниями, называют характеристическими полосами. Они наблюдаются, как правило, в спектрах всех молекул, в которых имеются данные группы атомов. Примером характеристических полос могут служить полосы 2960 и 2870 см -1 . Первая полоса обусловлена асимметричными валентными колебаниями связи С-Н в метильной группе СН 3 , а вторая - симметричными валентными колебаниями связи С-Н этой же группы. Такие полосы с небольшим отклонением (±10 см -1) наблюдаются в спектрах всех насыщенных углеводородов и вообще в спектре всех молекул, в которых имеются СН 3 - группы.

Другие функциональные группы могут влиять на положение характеристической полосы, причем разность частот может составлять до ±100 см -1 , но такие случаи немногочисленны, и их можно учитывать на основании литературных данных.

Качественный анализ в инфракрасной области спектра проводится двумя способами.

1. Снимают спектр неизвестного вещества в области 5000-500 см -1 (2 - 20 мк) и отыскивают сходный спектр в специальных каталогах или таблицах. (или при помощи компьютерных баз данных)

2. В спектре исследуемого вещества отыскивают характеристические полосы, по которым можно судить о составе вещества.

Подобные документы

    Изучение физико-химических методов анализа. Методы основанные на использовании магнитного поля. Теория методов по спектрометрии и фотоколореметрии в видимой области спектра. Спектрометрические и фотоколореметрические методы анализа лекарственных средств.

    курсовая работа , добавлен 17.08.2010

    Рефрактометрия как один из методов идентификации химических соединений, их количественного и структурного анализа, определения физико-химических параметров. Актуальность рефрактометрии для анализа лекарственных веществ для среднестатистической аптеки.

    курсовая работа , добавлен 02.06.2011

    Общее понятие о стероидах - производных ряда углеводородов, главным образом прегнана, андростана, эстрана. Лекарственные формы стероидных препаратов, их физико-химические свойства. Начало применения глюкокортикоидов в качестве лекарственных средств.

    дипломная работа , добавлен 02.02.2016

    Изучение номенклатуры лекарственных средств как источника информации для провизора. Информация о физико-химических свойствах препаратов. Длительность терапевтического эффекта. Лингвистический анализ номенклатуры ЛС. Закон о лекарственных средствах.

    курсовая работа , добавлен 12.02.2015

    Классификация лекарственных форм и особенности их анализа. Количественные методы анализа однокомпонентных и многокомпонентных лекарственных форм. Физико-химические методы анализа без разделения компонентов смеси и после предварительного их разделения.

    реферат , добавлен 16.11.2010

    Взаимодействие химических соединений с электромагнитным излучением. Фотометрический метод анализа, обоснование эффективности его использования. Исследование возможности применения фотометрического анализа в контроле качества лекарственных средств.

    курсовая работа , добавлен 26.05.2015

    Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат , добавлен 19.09.2010

    Внутриаптечный контроль качества лекарственных средств. Химические и физико-химические методы анализа, количественное определение, стандартизация, оценка качества. Расчет относительной и абсолютной ошибок в титриметрическом анализе лекарственных форм.

    курсовая работа , добавлен 12.01.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Физико-химические процессы, возникающие при неправильном хранении лекарственных средств. Специфика химических, биологических процессов при воздействии различных факторов. Зависимость стабильности лекарственных веществ от условий хранения и получения.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»