Конструктивные решения стен. Выбор конструктивного решения системы утепления наружных стен при реконструкции Конструктивные решения криволинейных наружных стен

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.


Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторонувнутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

[ наружные стены дома, технология, классификация, каменщик, дизайн и кладка несущих стен ]

Быстрый переход:

  • Температурно-усадочные и осадочные швы
  • Классификация наружных стен
  • Конструкции одно- и многослойных стен
  • Панельные бетонные стены и их элементы
  • Проектирование панелей несущих и самонесущих однослойных стен
  • Бетонные панели трехслойной конструкции
  • Методы решения основных задач проектирования стен в бетонных панельных конструкциях
  • Вертикальные стыки и Связи панелей наружных стен с внутренними
  • Тепло и изоляционная способность стыков, виды стыков
  • Композиционные и декоративные особенности панельных стен

Конструкции наружных стен крайне разнообразны; они определяются строительной системой здания, материалом стен и их статической функцией.

Общие требования и классификация конструкций

Рис.2.Деформационные швы

Рис.3.Детали устройстватемпературныхшвов вкирпичных и панельных зданиях

Температурно-усадочные швы устраивают во избежание образования в трещин и перекосов, вызываемых концентрацией усилий от воздействия переменных температур и усадки материала (каменной кладки, монолитных или сборных бетонных конструкций и др.). Температурно-усадочные швы рассекают конструкции только наземной части здания. Расстояния между температурно-усадочными швами назначают в соответствии с климатическими условиями и физико-механическими свойствами стеновых материалов. Для наружных стен из глиняного кирпича на растворе марки М50 и более расстояния между температурно-усадочными швами 40-100 м принимают по СНиП «Каменные и армокаменные конструкции», для наружных стен из бетонных панелей 75-150 м по ВСН32-77, Госгражданстрой «Инструкция по проектированию конструкций панельных жилых зданий». При этом наименьшие расстояния относятся к наиболее суровым климатическим условиям.

В зданиях с продольными несущими стенами швы устраивают в зоне примыкания к поперечным стенам или перегородкам, в зданиях с поперечными несущими стенами швы часто устраивают в виде двух спаренных стен. Наименьшая ширина шва составляет 20 мм. Швы необходимо защищать от продувания, промерзания и сквозных протечек с помощью металлических компенсаторов, герметизации, утепляющих вкладышей. Примеры конструктивных решений температурно-усадочных швов в кирпичных и панельных стенах даны на рис. 3.

Осадочные швы следует предусматривать в местах резких перепадов этажности здания (осадочные швы первого типа), а также при значительной неравномерности деформаций основания по протяженности здания, вызванной спецификой геологического строения основания (осадочные швы второго типа). Осадочные швы первого типа назначают для компенсации различий вертикальных деформаций наземных конструкций высокой и низкой частей здания, в связи с чем их устраивают аналогично температурно-усадочным только в наземных конструкциях. Конструкция шва в бескаркасных зданиях предусматривает устройство шва скольжения в зоне опирания перекрытия малоэтажной части здания на стены многоэтажной, в каркасных - шарнирное опи-рание ригелей малоэтажной части на колонны многоэтажной. Осадочные швы второго типа разрезают здание на всю высоту - от конька до подошвы фундамента. Такие швы в бескаркасных зданиях конструируют в виде парных поперечных стен, в каркасных - парных рам. Номинальная ширина осадочных швов первого и второго типа 20 мм.Особенности проектирования сейсмостойких здании, а также зданий, строящихся на просадочных, подрабатываемых и вечномерзлых грунтах, рассмотрены в отдельном разделе.

Рис.4.Наружныестены виды

Конструкции наружных стен классифицируют по признакам:

  • статической функции стены, определяемой ее ролью в конструктивной системе здания;
  • материала и технологии возведения, щ деляемых строительной системой здания;
  • конструктивного решения - в виде однослойной или слоистой ограждающей конструкции.

По статической функции различают несущие, самонесущие или ненесущие конструкции стен (рис. 4).Г

Несущие стены помимо вертикальной нагрузки от собственной массы воспринимая передают фундаментам нагрузки от смежных конструкций: перекрытий, перегородок, крыш и пр.

Самонесущие стены воспринимают вертикальную нагрузку только от собственной массы (включая нагрузку от балконов, эркеров, парапетов и других элементов стены) и передают ее на фундаменты непосредственно либо через цокольные панели, рандбалки, ростверк или другие конструкции.

Таблица 1.Конструкциинаружных стениих применение

1 - кирпич; 2 - мелкий блок; 3, 4 - утеплитель и воздушный прослоек; 5 - легкий бетон; 6 - автоклавный ячеистый бетон; 7 - конструктивный тяжелый или легкий бетон; 8 - бревно; 9 - конопатка; 10 - брус; 11 - деревянный каркас; 12 - пароизоляция; 13 - воздухонепроницаемый слой; 14 - обшивка из досок, водостойкой фанеры, ДСП или др.; 15 - обшивка из неорганических листовых материалов; 16 - металлический или асбестоцементный каркас; 17 - вентилируемый воздушный прослоек

Наружные стены могут быть однослойной или слоистой конструкции. Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича, деревянных бревен или брусьев. В слоистых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево; функции долговечности - бетон, камень, дерево или листовой материал (алюминиевые сплавы, эмалированная сталь, асбестоцемент или др.); функции теплоизоляции - эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции - рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции-различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть включен воздушный прослоек. Замкнутый-для повышения ее сопротивления теплопередаче, вентилируемый -для защиты помещения от радиационного перегрева либо для уменьшения деформаций наружного облицовочного стены.

Конструкции одно- и многослойных стен могут быть выполнены полносборными или в традиционной технике.

Основные типы конструкций наружных стен и области их применения приведены втабл. 1.

Назначение статической функции наружной стены, выбор материалов и конструкций осуществляют с учетом требований СНиП «Противопожарные нормы проектирования зданий и сооружений». Согласно этим нормам, несущие стены, как правило, должны быть несгораемыми. Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 ч допускается только в одно-двухэтажных домах. Предел огнестойкости несгораемых конструкций стен должен составлять не менее 2 ч, в связи с чем их необходимо выполнять из каменных или бетонных материалов. Высокие требования к огнестойкости несущих стен, а также колонн и столбов обусловлены их ролью в сохранности здания или сооружения. Повреждение при пожаре вертикальных несущих конструкций может привести к обрушению всех опирающихся на них конструкций и здания в целом.

Ненесущие наружные стены проектируют несгораемыми или трудносгораемыми с существенно меньшими пределами огнестойкости (0,25-0,5 ч), так как разрушение этих конструкций от воздействия огня приводит только к локальным повреждениям здания.

Несгораемые ненесущие наружные стены следует применять в жилых домах выше 9 этажей, при меньшей этажности допускается применение трудносгораемых конструкций.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250X120X65 или 250Х X 120x88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1 1/2; 2; 2 1/2 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640 и 770 мм.

Конструктивная толщина стены из пиленого камня или легкобетонных мелких блоков, унифицированные размеры которых составляют 390X190X188 мм, при кладке в один камень равна 390 и в 1 /2 г - 490 мм.

Толщину стен из небетонных материалов с эффективными утеплителями в некоторых случаях принимают больше полученной по теплотехническому расчету из-за конструктивных требований: увеличение размеров сечения стены может оказаться необходимым для устройства надежной изоляции стыков и сопряжений с заполнением проемов.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

Конструктивное решение включает строительную и конструктивную системы, а также конструктивную схему.

Строительная система здания определяется материалом, наиболее массовой конструкцией и технологией возведения несущих элементов (монолитный железобетон).

Конструктивная схема представляет собой схематичный вариант конструктивной системы относительно продольных и поперечных осей.

Несущая КС железобетонного здания состоит из фундамента, опирающихся на него вертикальных несущих элементов (колонн и стен) и объединяющих их в единую пространственную систему горизонтальных элементов (плит перекрытий и покрытия).

В зависимости от типа вертикальных несущих элементов (колонны и стены) конструктивные системы разделяют на:

Колонные (каркасные), где основным несущим вертикальным элементом являются колонны;

Стеновые (бескаркасные), где основным несущим элементом являются стены;

Колонно-стеновые, или смешанные, где вертикальными несущими элементами являются колонны и стены.

а - колонная КС; б - стеновая КС; в - смешанная КС;

1 - плита перекрытия; 2 - колонны; 3 - стены

Рисунок 5.1. Фрагменты планов зданий

Нижние этажи часто решают в одной конструктивной системе, а верхние - в другой. Конструктивная система таких зданий является комбинированной.

Конструктивные схемы в стеновых КС определяются взаимным расположением стен, а в колонных КС - взаимным расположением межколонных балок (рис. 5.5) относительно поперечных и продольных осей здания. Схемы бывают поперечные, продольные и перекрестные. В реальных монолитных зданиях конструктивные схемы обычно перекрестные (рис. 5.5, в, г; 6.2, а). Чисто поперечные и продольные схемы (рис. 6.1, б, в) рассматриваются при разделении пространственной КС на две независимые (рис. 6.1, б, в и 6.2, б, в) с целью упрощения расчетов.



Конструктивные решения гражданских зданий из сборных железобетонных конструкций

Гражданские здания (жилые и общественные) могут возводиться в монолитном, сборно-монолитном и сборном исполнении.

Монолитные – здания возводятся из монолитного бетона в опалубке различного вида.

Сборно-монолитные – сочетание сборных элементов и монолитного бетона, например колонны и стены здания сборные, а перекрытия монолитные.

Сборные здания возводятся или монтируются из крупных элементов заводской готовности.

По этажности гражданские здания подразделяются на малоэтажные (высотой до 3-х этажей), многоэтажные (от 4 до 8-ми этажей), здания повышенной этажности (от 9 до 25 этажей) и высотные (свыше 25 этажей).

По конструктивной системе гражданские здания бывают:

Колонные (каркасные);

Стеновые (безкаркасные);

Смешанные.

В зданиях с несущими стенами нагрузку от перекрытий и крыши воспринимают стены: продольные, поперечные или и те и другие одновременно.

Каркасные здания имеют несущий каркас из сборных железобетонных колонн и ригелей. В зданиях с полным каркасом колонны устанавливаются во всех точках пересечения осей планировочной схемы.

В зданиях с неполным каркасом колонны располагаются только внутри здания. Наружные стены выполняются несущими или самонесущими, как правило, из каменной кладки.

Крупнопанельное здание собирается из крупноразмерных плоскостных сборных железобетонных элементов: стеновых панелей, панелей междуэтажных перекрытий и покрытий.

Конструктивная схема здания крупнопанельного здания принимается в зависимости от архитектурной компоновки, членения фасада здания, геологических особенностей основания и других факторов. Существуют следующие конструктивные схемы крупнопанельных зданий:

1. Бескаркасная схема:

С продольными несущими стенами.

С поперечными несущими стенами.

С продольными и поперечными несущими стенами.

2. Каркасно-панельная схема:

Полным каркасом.

С неполным каркасом.

Бескаркасная схема наиболее широко применяется при проектировании гражданских зданий высотой не более 16 этажей. Пространственная жесткость таких зданий обеспечивается совместной работой стен и плит перекрытий, соединяемых между собой при помощи сварки закладных деталей. При большей высоте по условиям обеспечения жесткости целесообразно выполнять каркасные здания с центральным ядром жесткости.

Каркасно-панельная схема применяется при проектировании многоэтажных общественных и производственных зданий. Несущей конструкцией является железобетонный каркас, стеновые панели в этом случае выполняют только ограждающие функции и являются навесными.

Железобетонный каркас может быть с поперечными ригелями, с продольными ригелями и безригельным (с безбалочными перекрытиями) – в этом случае плиты перекрытий опираются непосредственно на колонны.

В сборно-монолитных крупно-панельных зданиях выше 20-22 этажей для воспринятия нагрузок внутри каркаса устраивается ядро жесткости из монолитного бетона, как правило, для этой цели используется лифтовый узел. После возведения шахты вокруг устанавливаются сборные конструкции каркасного или панельного здания, которые жестко соединяются с ядром жесткости.

Здания объемно-блочной конструкции подразделяются на три основные конструктивные схемы:

1. Панельно-блочная – сочетание несущих объемных блоков с плоскими панелями плит перекрытий и навесными или самонесущими панелями наружных стен.

2. Каркасно-блочная – сочетание несущих блок-комнат с несущим каркасом. В зданиях такой конструкции все нагрузки воспринимаются железобетонным каркасом, блок-комнаты опираются на поперечные или продольные ригели.

3. Объемно-блочная – сплошная расстановка объемных элементов без применения плоских конструкций.

В бескаркасных зданиях, в зависимости от конструктивного решения, объемные элементы могут опираться друг на друга в четырех точках по углам – точечная схема опирания или по граням двух внутренних стенок блоков – линейная схема.

Здания из объемных элементов возводятся из блок-элементов (блок-комнат, блок-квартир, санитарно-технических кабин, лифтовых шахт и др.). Объемные элементы это готовые строительные блоки с выполненной отделкой или полностью подготовленные под отделку с установленным инженерным оборудованием. Блоки изготавливаются монолитным способом или собираются в заводских условиях с максимально возможносй степенью готовности.

Конструктивные решения одноэтажных промышленных зданий из сборных железобетонных конструкций

В зависимости от назначения промышленные здания подразделяются на:

Производственные, в которых размещаются основные производства.

Вспомогательные, в которых размещаются культурно-бытовые, административно-конторские помещения, столовые, лаборатории и т.п.

Здания промышленных предприятий классифицируют по их специфическим признакам, которые предусматривают назначение и принадлежность этих зданий к той или иной отрасли промышленности, а также этажности, числу пролетов, степени огнестойкости и долговечности, способу расположения внутренних опор и вида внутрицехового транспорта.

Одноэтажные промышленные здания компонуются, как правило, из параллельных пролетов одинаковой ширины и высоты с одинаковым подъемно-транспортным обобрудованием. Могут быть однопролетные и многопролетные

Тип зданий зависит от массы монтажных элементов:

Легкого типа – с массой монтажных элементов 5-9 т.

Среднего типа – с массой монтажных элементов 8-16т.

Тяжелого типа – с массой монтажных элементов 15-35т.

По расположению внутренних опор одноэтажные промышленные здания подразделяются на:

Пролетные.

Ячейковые.

Зальные с центральной опорой или без нее.

В пролетных зданиях ширина пролетов 12-36м с шагом колонн 6 или 12м. Технологические линии направлены вдоль пролета и обслуживаются кранами.

В ячейковых зданиях – квадратная сетка опор – 12х12,18х18, …36х36м и технологические линии располагаются во взаимно-перпендикулярном направлении.

Зальные здания имеют пролеты 60-100м и более с установкой большеразмерного оборудования для выпуска крупногабаритной продукции (ангары, машинные залы ТЭЦ и т.п.). Такие здания перекрывают, как правило, пространственными конструкциями.

Одноэтажные промышленные здания проектируются с полным и неполным каркасом. Они могут быть оснащены подъемно-транспортным оборудованием в виде мостовых кранов – опорных или подвесных или напольных кранов.

Общая устойчивость и геометрическая неизменяемость одноэтажного каркасного здания достигается в продольном направлении защемлением колонн в фундаментах и системой связей по колоннам, в поперечном направлении – защемлением колонн в фундаментах, а также жестким в своей плоскости диском покрытия.

В общем случае одноэтажное промышленное здание состоит из стен, колонн, покрытия, подкрановых балок, связей и фундаментов.

Железобетонные колонны по виду поперечного сечения могут быть сплошными (прямоугольного или двутаврового сечения) и сквозными (двухветвевые). В зависимости от назначения зданий и действующих нагрузок применяются следующие разновидности колонн:

Прямоугольные (безконсольные).

С консолями для опирания несущих конструкций покрытий.

С односторонними и двусторонними подкрановыми консолями.

Одноэтажное промышленное каркасное здание может иметь плоское покрытие – из линейных элементов или пространственное – из тонкостенных пространственных элементов.

Несущие конструкции покрытий подразделяются на главные (стропильные балки, фермы или арки) и второстепенные (крупнопанельные плиты, прогоны). В состав конструкций покрытия одноэтажного каркасного здания входят также фонари и связи.

Балки покрытий (стропильные балки) опираются на колонны или подстропильные балки. Стропильными балками перекрываются пролеты 6-24м при шаге колонн 6 или 12м. Подстропильные балки применяют в том случае, когда шаг колонны больше расстояния между стропильными балками.

Стропильные балки могут быть двускатными, односкатными и с параллельными горизонтальными поясами. Подстропильные балки бывают с параллельными и непараллельными поясами.

В качестве несущих конструкций покрытия кроме балок применяют железобетонные фермы. Применение ферм целесообразно при пролетах 18-30м и шаге колонн 6 или 12м. Железобетонные фермы могут быть цельными и составными.

Очертание фермы зависит от вида кровли, общей компоновки покрытия, а также от наличия, формы и расположения фонарей. Различают сегментные и полигональные фермы. Сегментные фермы с криволинейным верхним поясом называют арочными.

Полигональные фермы применяют с параллельными поясами, восходящими опорными раскосами и уклоном верхнего пояса 1:12, а также с нисходящими опорными раскосами и ломаным нижним поясом.

Второстепенные несущие конструкции покрытий могут непосредственно опираться на стропильные балки, фермы или арки (беспрогонная система покрытий) или поддерживаться системой прогонов, опирающихся на основные несущие конструкции покрытий (прогонная система покрытий).

Конструктивные решения каркасных многоэтажных зданий из сборных железобетонных конструкций

Основой многоэтажного каркасного здания является многоэтажная многопролетная железобетонная рама, ригели которой воспринимают нагрузку от панелей перекрытия и покрытия. Наружные стены, как правило, навесные из крупных панелей.

Каркасы многоэтажных зданий по схеме статической работы подразделяются на рамные, связевые и рамно-связевые.

В рамной схеме каркаса все горизонтальные нагрузки воспринимаются жестким сопряжением колонн и ригелей.

В связевой схеме каркасов горизонтальные нагрузки воспринимаются вертикальными диафрагмами жесткости или ядрами жесткости. Связевая схема каркаса исключает необходимость устройства жестких узлов в сопряжении ригелей с колоннами. которые могут выполняться шарнирными или с частичным защемлением ригелей на опоре.

В рамно-связевой схеме горизонтальные нагрузки распределяются между элементами связей и жестким сопряжением ригелей с колоннами (в одном или в двух направлениях).

Основными конструктивными элементами многоэтажных зданий являются: фундаменты, колонны, стены, перекрытия и покрытия.

Многоэтажные здания возводятся с полносборным железобетонным каркасом и самонесущими навесными стенами (панелями), а также с неполным каркасом и несущими стенами. Сборные конструкции перекрытий могут быть балочные и безбалочные.

Основными элементами безбалочного каркаса являются фундаменты, колонн, надколонные плиты, межколонные плиты, пролетные плиты.

Железобетонный каркас с безбалочным перекрытием используется при строительстве предприятий пищевой промышленности, холодильников, где предъявляются повышенные требования к чистоте.

Конструктивные решения селькохозяйственных сооружений из сборных железобетонных конструкций.

Инженерные сооружения из сборных железобетонных конструкций

Инженерные сооружения могут возводиться в сборном, монолитном или сборно-монолитном исполнении.

Резервуары и силосы из сборных железобетонных элементов используются, как правило, для хранения сыпучих материалов и жидкостей.

В цилиндрическом резервуаре днище выполняется из монолитного бетона, колонны опираются на сборные железобетонные подколонники. Стеновое ограждение выполняется сборным из железобетонных панелей, плиты покрытия сборные железобетонные, предварительно напряженные, трапециевидной формы в плане.

Силосы сооружаются круглыми, квадратными, многогранными с коническими и пирамидальными днищами и используются для хранения сыпучих материалов: цемента, зерна, минеральных удобрений. Высота стенок значительно больше размеров поперечного сечения. Силосы являются основными элементами корпусов элеваторов.

Железобетонный силос опирается на колонны. Силосы квадратной формы собираются, как правило, из замкнутых объемных элементов 3х3м, высотой 1,2м, массой 4т. Силосы круглой формы собираются из колец полной заводской готовности диаметром 3м и более, толщина стенок 60-100мм. Стенки блоков могут ребристыми или плоскими. Кольцевые блоки соединяются между собой горизонтальными болтами, а вертикальные соединения между блоками армируются и замоноличиваются.

4

4.1. о твет : да (адрес файла Блок 3 )

Ваш ответ верен, т.к. стены являются несущими только тогда, когда они воспринимают нагрузку и от собственного веса и от других конструктивных элементов здания.

Переходите к вопросу 4.2

.1.ответ: да

4

4.1. о твет : НЕТ (адрес файла Блок 3 )

Ваш ответ НЕверен, т.к. ВЫ не учли, что стены, невопринимающие нагрузку от других элементов здания, относятся к категориям или самонесущих, или ненесущих.

Вернитесь к чтению текста

.1.ответ: НЕТ

Конструктивные решения стен

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.

Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторону – внутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Панель – сборный элемент стены толщиной от 200 до 400 мм высотой не менее одного этажа, длиной, равной одному либо двум модулям, соответствующим шагу поперечных стен.

По конструктивным схемам крупнопанельные здания можно разделить на следующие три типа: бескаркасные, в которых нагрузка от перекрытий и крыши передается на несущие стены; каркасные, в которых она воспринимается каркасом; панельно-каркасные, в которых элементы каркаса объединены со стеновыми панелями в единую несущую конструкцию.

Бескаркасные панельные здания могут быть сконструированы: а) с тремя продольными несущими стенами – двумя наружными и одной внутренней; б) с несущими поперечными стенами с опиранием плит перекрытий на поперечные стены или по контуру.

Конструктивные схемы бескаркасных панельных зданий, у которых несущими являются только поперечные стены, применяют в тех случаях, когда наружные стены, изготовленные из легких материалов, имеют малую толщину, и поэтому их желательно освободить от нагрузки, передаваемой перекрытиями.

Каркасные здания включают полный или неполный каркас. В том и другом случае расположение прогонов (ригелей) бывает как поперечное, так и продольное.

Наружные стены в зависимости от характера их работы в здании могут быть: несущие, воспринимающие собственный вес и нагрузки от перекрытий и крыши, самонесущие, воспринимающие только собственный вес и навесные, вес которых передается поэтажно на каркас здания.

Панели наружных стен по своей конструкции подразделяются на одно-, двух- и трехслойные; однослойные изготовляют из легких или ячеистых бетонов (шлакобетона, керамзитобетона, пенобетона, газобетона и др.); двухслойные обычно состоят из железобетонной оболочки и утеплителя из минеральных теплоизоляционных материалов (пенобетона, газобетона, пеностекла и др.), трехслойные – из двух тонких железобетонных оболочек, между которыми расположен утеплитель.

Трехслойные панели, изготавливаемые в соответствии с современными теплотехническими нормами, обладают высокой степенью заводской готовности, в них можно применять такие эффективные утеплители, как пенополистирол и минераловатные плиты. По сравнению с трехслойными на изготовление двухслойных панелей бетона расходуется меньше, однако опасность накопления влаги в этих панелях больше, чем в трехслойных, в которых внутренняя железобетонная плита замедляет проникновение водяного пара из помещения в панель.

В бескаркасных зданиях широко применялись однослойные панели. Легкобетонные однослойные панели при толщине от 200 до 400 мм до 2000 г. удовлетворяли требованиям теплозащиты и прочности и могли быть несущими. Преимущества однослойных панелей по сравнению с многослойными заключаются в сокращении расхода металла, меньшей трудоемкости изготовления, снижении стоимости и более благоприятном влажностном режиме при эксплуатации здания. Однако однослойные панели не удовлетворяют действующим нормам по теплотехническим требованиям.

Важнейшим конструктивным элементом крупнопанельного здания является стеновая панель. Помимо общих требований, предъявляемых к наружным стенам (прочность, устойчивость, малая теплопроводность, морозостойкость, огнестойкость, небольшой вес, экономичность), конструкция наружной стеновой панели должна обеспечивать надежность конструкции стыка.

Стыковые соединения в крупнопанельных домах должны обеспечивать соединения панелей; воспринимать усилия, возникающие в элементах здания в процессе монтажа и процессе эксплуатации; постоянно воспринимать температурные воздействия и при этом обеспечивать водо- и воздухонепроницаемость, а также теплозащиту внутренних помещений.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»