Космические лучи и радиация. Космическая радиация

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Космос радиоактивен. Укрыться от радиации просто невозможно. Представьте себе, что вы стоите посреди песчаной бури, и вокруг вас постоянно кружит водоворот из мелких камешков, которые ранят вашу кожу. Примерно так выглядит космическая радиация. И эта радиация наносит немалый вред. Но проблема в том, что в отличие от камушков и кусочков земли ионизирующее излучение не отскакивает от человеческой плоти. Оно проходит сквозь нее, как пушечное ядро пробивает насквозь здание. И эта радиация наносит немалый вред.

На прошлой неделе ученые из медицинского центра при университете города Рочестера опубликовали результаты исследования, свидетельствующие о том, что длительное воздействие галактической радиации, которому могут подвергнуться астронавты, отправившиеся на Марс, способно повысить риск заболевания болезнью Альцгеймера.

Читая сообщения СМИ об этом исследовании, я начала любопытствовать. Мы отправляем людей в космос уже более полувека. Мы имеем возможность следить за целым поколением астронавтов - как эти люди старятся и умирают. И мы постоянно отслеживаем состояние здоровья тех, кто сегодня летает в космос. Научные работы, подобные осуществленным в университете Рочестера, проводятся на лабораторных животных, таких, как мыши и крысы. Они призваны помочь нам подготовиться к будущему. Но что мы знаем о прошлом? Повлияла ли радиация на людей, которые уже побывали в космосе? Как она воздействует на находящихся на орбите в данный момент?

Существует одно ключевое отличие астронавтов сегодняшнего дня от астронавтов будущего. Отличие это - сама Земля.

Галактическое космическое излучение, называемое иногда космической радиацией, это как раз то, что вызывает наибольшую тревогу у исследователей. Оно состоит из частиц и кусочков атомов, которые могли появиться в результате образования сверхновой звезды. Большая часть этого излучения, примерно 90%, состоит из протонов, оторванных от атомов водорода. Эти частицы летят через галактику почти что со скоростью света.

А потом они наносят удар по Земле. У нашей планеты имеется пара защитных механизмов, укрывающих нас от воздействия космической радиации. Во-первых, магнитное поле Земли отталкивает некоторые частицы, а некоторые полностью блокирует. Преодолевшие данный барьер частицы начинают сталкиваться с атомами, находящимися в нашей атмосфере.

Если вы сбросите вниз с лестницы большую башню, построенную из деталей конструктора «Лего», она разлетится на мелкие куски, которые будут отлетать от нее на каждой новой ступеньке. Примерно то же самое происходит в нашей атмосфере и с галактической радиацией. Частицы сталкиваются с атомами и распадаются на части, образуя новые частицы. Эти новые частицы снова обо что-нибудь ударяются и опять распадаются на части. С каждый шагом они теряют энергию. Частицы замедляются и постепенно слабеют. К тому времени, когда они «останавливаются» на поверхности Земли, у них уже нет того мощного запаса галактической энергии, какой они обладали прежде. Это излучение намного менее опасно. Маленькая деталь от «Лего» бьет намного слабее, чем собранная из них башня.

Всем тем астронавтам, которых мы отправляли в космос, защитные барьеры Земли во многом помогли, по крайней мере, частично. Об этом мне рассказал Фрэнсис Кучинотта (Francis Cucinotta). Он - научный руководитель программы НАСА по исследованию воздействия радиации на человека. Это как раз тот парень, который может рассказать, насколько вредна радиация для астронавтов. По его словам, за исключением полетов «Аполлона» на Луну, человек присутствует в космосе в пределах действия магнитного поля Земли. Международная космическая станция, например, находится выше атмосферы, но все равно в глубине первого эшелона обороны. Наши астронавты не подвергаются в полной мере воздействию космического излучения.

Кроме того, под таким воздействием они находятся довольно непродолжительное время. Самый длительный полет в космос продолжался чуть больше года. А это важно, потому что ущерб от радиации имеет кумулятивное действие. Ты рискуешь гораздо меньше, когда шесть месяцев проводишь на МКС, чем когда отправляешься (пока теоретически) в многолетнее путешествие на Марс.

Но интересно и довольно тревожно то, сказал мне Кучинотта, что даже имея все эти механизмы защиты, мы наблюдаем, как излучение негативно воздействует на астронавтов.

Очень неприятная вещь это катаракта - изменения в хрусталике глаза, вызывающие его помутнение. Поскольку через мутный хрусталик в глаз человека попадает меньше света, больные катарактой люди хуже видят. В 2001 году Кучинотта с коллегами изучил данные продолжающегося исследования состояния здоровья астронавтов и пришел к следующему выводу. Астронавты, подвергшиеся большей дозе радиации (потому что они совершили больше полетов в космос или из-за специфики их миссий*) имели больше шансов на развитие у них катаракты, чем те, у кого доза облучения была ниже.

Наверняка существует также повышенная опасность заболевания раком, хотя количественно и точно такую опасность проанализировать трудно. Дело в том, что у нас нет данных эпидемиологов о том, какому типу радиации подвергаются астронавты. Мы знаем количество заболевших раком после атомной бомбардировки Хиросимы и Нагасаки, однако эта радиация несопоставима с галактическим излучением. В частности, Кучинотту больше всего беспокоят ионы ВВЧ - высокоатомных высокоэнергетических частиц.

Это очень тяжелые частицы, и перемещаются они очень быстро. На поверхности Земли мы не испытываем на себе их воздействие. Их отсеивают, тормозят и разбивают на части защитные механизмы нашей планеты. Однако ионы ВВЧ могут наносить больший вред и вред более разнообразный, чем то излучение, с которым радиологи хорошо знакомы. Мы знаем об этом, потому что ученые сравнивают пробы крови астронавтов до и после полета в космос.

Кучинотта называет это предполетной поверкой. Ученые берут образец крови у астронавта перед отправлением на орбиту. Когда астронавт находится в космосе, ученые делят взятую кровь на части и подвергают ее воздействию гамма-излучения различной степени. Это вроде той вредной радиации, с которой мы порой сталкиваемся на Земле. Затем, когда астронавт возвращается, они сравнивают эти подвергнутые гамма-излучению образцы крови с тем, что реально произошло с ним в космосе. «Мы отмечаем двух- трехкратную разницу у разных астронавтов», - сказал мне Кучинотта.

Кто же не мечтал о полётах в космос, даже зная, что такое космическая радиация? Хотя бы на орбиту Земли или на Луну улететь, а ещё лучше - подальше, на Орион какой-нибудь. На самом деле, человеческий организм очень мало приспособлен к подобным путешествиям. Даже при полёте на орбиту космонавты сталкиваются со многими опасностями, угрожающими их здоровью, а иногда и жизни. Все смотрели культовый сериал "Звёздный путь". Один из замечательных персонажей там дал очень точную характеристику такому явлению, как космическая радиация. "Это опасности и болезни во тьме и безмолвии" - сказал Леонард Маккой, он же Костлявый, он же Костоправ. Точнее выразиться очень трудно. Космическая радиация в путешествии сделает человека усталым, слабым, больным, страдающим от депрессии.

Ощущения в полёте

Человеческий организм к жизни в безвоздушном пространстве не приспособлен, поскольку эволюция не включала в свой арсенал такие способности. Об этом написаны книги, этот вопрос во всех подробностях изучается медициной, созданы во всём мире центры, исследующие проблемы медицины в космосе, в экстремальных условиях, на больших высотах. Конечно, забавно смотреть, как улыбается на экране космонавт, вокруг которого плавают в воздухе различные предметы. На самом деле, его экспедиция гораздо более серьёзна и чревата последствиями, чем представляется простому жителю с Земли, и здесь не только космическая радиация создаёт неприятности.

По просьбе журналистов астронавты, инженеры, учёные, на собственном опыте испытавшие всё, что происходит с человеком в космосе, рассказали о последовательности разнообразных новых ощущений в чуждой для организма искусственно созданной среде. Буквально через десять секунд после начала полёта неподготовленный человек теряет сознание, потому что ускорение космического аппарата возрастает, отделяя его от пускового комплекса. Человек пока не так сильно, как в открытом космосе, ощущает космические лучи - радиация поглощается атмосферой нашей планеты.

Основные неприятности

Но хватает и перегрузок: человек становится раза в четыре тяжелее собственного веса, в кресло его буквально вдавливает, даже рукой пошевелить трудно. Все видели эти специальные кресла, например, в космическом аппарате "Союз". Но не все поняли, почему у космонавта такая странная поза. Однако она необходима, потому что перегрузки отправляют почти всю кровь в организме вниз, в ноги, и мозг остаётся без кровоснабжения, отчего и случаются обмороки. Но изобретённое в Советском Союзе кресло помогает избежать хотя бы этой неприятности: поза с приподнятыми ногами заставляет кровь снабжать кислородом все участки головного мозга.

Через десять минут после начала полёта отсутствие гравитации заставит человека почти утратить чувство равновесия, ориентацию и координацию в пространстве, человек даже движущиеся объекты может не отследить. Его тошнит и рвёт. То же самое могут вызвать и космические лучи - радиация здесь уже значительно сильнее, а если случается выброс плазмы на солнце, угроза жизни космонавтов на орбите реальна, даже пассажиры авиалайнеров могут пострадать в полёте на большой высоте. Изменяется зрение, случаются отёк и изменения на сетчатке глаз, глазное яблоко деформируется. Человек становится слабым и не может выполнять задачи, которые перед ним стоят.

Загадки

Однако время от времени люди ощущают и на Земле высокую космическую радиацию, им для этого совершенно не обязательно бороздить космические просторы. Нашу планету постоянно бомбардируют лучи космического происхождения, и учёные предполагают, что далеко не всегда наша атмосфера обеспечивает достаточную защиту. Есть множество теорий, которые наделяют эти энергетические частицы такой силой, которая значительно ограничивает шансы планет на возникновение жизни на них. Во многом природа этих космических лучей всё ещё является для наших учёных неразрешимой загадкой.

Субатомные заряженные частицы в космосе движутся практически со скоростью света, их уже зарегистрировали неоднократно и на спутниках, и даже на Это ядра химических элементов, протоны, электроны, фотоны и нейтрино. Также не исключается присутствие в атаке космической радиации частиц - тяжёлой и сверхтяжёлой. Если бы удалось их обнаружить, был бы разрешён целый ряд противоречий в космологических и астрономических наблюдениях.

Атмосфера

Что нас защищает от космической радиации? Только наша атмосфера. Угрожающие гибелью всему живому космические лучи сталкиваются в ней и генерируют потоки других частиц - безвредных, в том числе и мюонов, значительно более тяжёлых родственников электронов. Потенциальная опасность всё-таки существует, поскольку некоторые частицы достигают поверхности Земли и проникают на многие десятки метров в её недра. Уровень радиации, который получает любая планета, показывает пригодность или непригодность её для жизни. Высокая которую несут с собой космические лучи, намного превышает излучение от собственной звезды, потому что энергия протонов и фотонов, например, нашего Солнца - ниже.

А с высокой жизнь невозможна. На Земле эта доза контролируется силой магнитного поля планеты и толщиной атмосферы, именно они значительно уменьшают опасность космической радиации. Например, на Марсе вполне могла бы быть жизнь, но атмосфера там ничтожно мала, собственного магнитного поля нет, а значит нет и защиты от космических лучей, которые пронизывают весь космос. Уровень радиации на Марсе огромен. А влияние космической радиации на биосферу планеты таково, что всё живое на ней погибает.

Что важнее?

Нам повезло, у нас есть и толща атмосферы, окутывающая Землю, и собственное достаточно мощное магнитное поле, поглощающее зловредные частицы, долетевшие до земной коры. Интересно, чья защита для планеты работает активнее - атмосферы или магнитного поля? Исследователи экспериментируют, создавая модели планет, снабжая их магнитным полем или не снабжая. И само магнитное поле отличается у этих моделей планет по силе. Ранее учёные были уверены, что именно оно является главной защитой от космической радиации, поскольку контролируют её уровень на поверхности. Однако обнаружилось, что количество облучения определяет в большей степени толщина атмосферы, которая укрывает планету.

Если на Земле "отключить" магнитное поле, доза облучения вырастет всего в два раза. Это очень много, но даже на нас отразится довольно малоощутимо. А если оставить магнитное поле и убрать атмосферу до одной десятой общего её количества, тогда доза возрастёт убийственно - на два порядка. Страшная космическая радиация убьёт на Земле всё и вся. Наше Солнце - желтая карликовая звезда, именно вокруг них планеты считаются основными претендентами на обитаемость. Это звёзды относительно тусклые, их много, около восьмидесяти процентов от общего количества звёзд в нашей Вселенной.

Космос и эволюция

Теоретики подсчитали, что такие планеты на орбитах желтых карликов, которые находятся в зонах, пригодных для жизни, имеют гораздо более слабые магнитные поля. Особенно этим отличаются так называемые супер-Земли - большие скалистые планеты массой в десять раз больше нашей Земли. Астробиологи были уверены, что слабость магнитных полей значительно снижает шансы на пригодность для жизни. И теперь новые открытия говорят о том, что это не настолько масштабная проблема, как привыкли думать. Главное - была бы атмосфера.

Учёными всесторонне изучается влияние возрастающего излучения на существующие живые организмы - животных, а также на разнообразные растения. Связанные с радиацией исследования заключаются в том, что их подвергают облучению в разной степени, от малых до предельных, и затем определяют - выживут ли они и насколько иначе будут себя чувствовать, если выживут. Микроорганизмы, на которые влияет постепенно возрастающая радиация, возможно, покажут нам, как происходила на Земле эволюция. Именно космические лучи, высокая радиация их когда-то заставили будущего человека слезть с пальмы и заняться изучением космоса. И больше уже никогда человечество на деревья не вернётся.

Космическая радиация 2017 года

В начале сентября 2017-го вся наша планета была сильно встревожена. Солнце внезапно выбросило тонны солнечного вещества после слияния двух больших групп тёмных пятен. И этот выброс сопровождался вспышками класса Х, которые заставили магнитное поле планеты работать буквально на износ. Последовала большая магнитная буря, вызвавшая недомогания у многих людей, а также исключительно редкие, практически небывалые природные явления на Земле. Например, под Москвой и в Новосибирске были зафиксированы мощные картины северного сияния, никогда не бывавшие в этих широтах. Однако красота таких явлений не заслонила последствия убийственной солнечной вспышки, пронизавшей планету космической радиацией, которая оказалась по-настоящему опасна.

Мощность её была близка к максимальной, Х-9,3, где буква - класс (экстремально большая вспышка), а число - сила вспышки (из десяти возможных). Вместе с этим выбросом появилась угроза отказа систем космической связи и всей техники, находящейся на Космонавты были вынуждены пережидать этот поток страшной космической радиации, которую несут космические лучи, в специальном убежище. Качество связи в эти двое суток значительно ухудшилось и в Европе, и в Америке, именно там, куда был направлен поток заряженных частиц из космоса. Примерно за сутки до момента, когда частицы достигли поверхности Земли, было сделано предупреждение о космической радиации, которое прозвучало на всех континентах и в каждой стране.

Мощь Солнца

Энергия, выбрасываемая нашим светилом в окружающее космическое пространство, поистине огромна. В течение нескольких минут в космос улетают многие миллиарды мегатонн, если считать в тротиловом эквиваленте. Человечество столько энергии сможет выработать современными темпами только за миллион лет. Всего лишь пятая часть всей энергии, излучаемой Солнцем в секунду. И это наш маленький и не слишком горячий карлик! Если только представить себе, сколько губительной энергии вырабатывают остальные источники космической радиации, рядом с которыми наше Солнышко покажется практически невидимой песчинкой, голова пойдёт кругом. Какое счастье, что у нас хорошее магнитное поле и отличная атмосфера, которые не дают нам погибнуть!

Люди ежедневно подвергаются такой опасности, поскольку радиоактивное излучение в космосе никогда не иссякает. Именно оттуда к нам приходит большая часть радиации - из чёрных дыр и от скоплений звёзд. Она способна убивать при большой дозе облучения, а при малой - делать из нас мутантов. Однако нужно помнить и то, что эволюция на Земле произошла благодаря таким потокам, радиация изменила структуру ДНК до того состояния, которое мы наблюдаем сегодня. Если же перебрать этого "лекарства", то есть, если испускаемая звёздами радиация превысит допустимые отметки, процессы будут необратимы. Ведь если существа мутируют, к первоначальному состоянию они уже не вернутся, нет здесь никакого обратного эффекта. Поэтому мы уже никогда не увидим те живые организмы, которые присутствовали в новорождённой на Земле жизни. Любой организм пытается подстроиться под изменения, происходящие в окружающей среде. Или погибает, или подстраивается. Но обратной дороги нет.

МКС и солнечная вспышка

Когда Солнце послало нам свой приветик с потоком заряженных частиц, МКС как раз проходила между Землёй и светилом. Высокоэнергичные протоны, высвобожденные при взрыве, создали абсолютно нежелательный радиационный фон в пределах станции. Эти частицы пробивают насквозь совершенно любой космический корабль. Тем не менее, космическую технику это излучение пощадило, поскольку удар был мощным, но слишком коротким, чтобы вывести её из строя. Однако экипаж всё это время прятался в специальном укрытии, потому что человеческий организм гораздо уязвимее современной техники. Вспышка была не одна, они шли целой серией, а началось всё это 4 сентября 2017 года, чтобы 6 сентября потрясти космос экстремальным выбросом. За последние двенадцать лет более сильного потока на Земле ещё не наблюдали. Облако плазмы, которое выбросило Солнце, настигло Землю гораздо раньше намеченного срока, значит, скорость и мощность потока превысили ожидаемую в полтора раза. Соответственно и удар по Земле был гораздо более сильным, чем рассчитывали. На двенадцать часов облако опередило все расчёты наших учёных, и соответственно сильнее возмутило магнитное поле планеты.

Мощность магнитной бури получилась на оценку четыре из пяти возможных, то есть - в десять раз больше предполагаемой. В Канаде полярные сияния тоже наблюдались даже в средних широтах, как и в России. Планетарного характера магнитная буря случилась на Земле. Можно себе представить, что там творилось в космосе! Радиация - самая значительная опасность из всех там существующих. Защита от неё нужна немедленно, как только космический корабль покидает верхние слои атмосферы и оставляет далеко внизу магнитные поля. Потоки незаряженных и заряженных частиц - радиационное излучение - постоянно пронизывают космос. Такие же условия нас ждут на любой планете Солнечной системы: магнитного поля и атмосферы на наших планетах нет.

Виды радиации

В космосе самой опасной считается ионизирующая радиация. Это гамма-излучение и рентгеновские лучи Солнца, это частицы, летящие после хромосферных солнечных вспышек, это внегалактические, галактические и солнечные космические лучи, солнечный ветер, протоны и электроны радиационных поясов, альфа-частицы и нейтроны. Есть и неионизирующая радиация - это ультрафолетовое и инфракрасное излучения от Солнца, это электромагнитное излучение и видимый свет. В них большой опасности нет. Нас защищает атмосфера, а космонавта - скафандр и обшивка корабля.

Ионизирующая радиация же доставляет непоправимые беды. Это вредное действие на все жизненные процессы, которые протекают в человеческом организме. Когда частица высокой энергии или фотон проходят через вещество, находящееся на их пути, они образуют в результате взаимодействия с этим веществом пару заряженных частиц - ион. Даже на неживом веществе это сказывается, а живое реагирует наиболее бурно, поскольку организация высокоспециализированных клеток требует обновления, и процесс этот, покуда жив организм, происходит динамически. И чем выше уровень эволюционного развития организма, тем более необратимым получается радиационное поражение.

Защита от облучения

Учёные ищут такие средства в самых разных областях современной науки, в том числе и в фармакологии. Пока что ни один препарат эффективных результатов не даёт, и подвергшиеся радиационному облучению люди продолжают погибать. Эксперименты проводятся на животных и на земле, и в космосе. Единственное, что стало понятно, - это то, что любой препарат должен быть принят человеком до начала облучения, а не после.

А если учесть, что все такие лекарства токсичны, то можно считать, что борьба с последствиями радиации пока ни к одной победе не привела. Даже если фармакологические средства приняты вовремя, они обеспечивают защиту только от гамма-излучения и рентгеновских лучей, но не защищают от ионизирующего излучения протонов, альфа-частиц и быстрых нейтронов.

Одним из основных негативных биологических факторов космического пространства, наряду с невесомостью, является радиация. Но если ситуация с невесомостью на различных телах Солнечной системы (например, на Луне или Марсе) будет лучше, чем на МКС, то с радиацией дела обстоят сложнее.

По своему происхождению космическое излучение бывает двух типов. Оно состоит из галактических космических лучей (ГКЛ) и тяжелых положительно заряженных протонов, исходящих от Солнца. Эти два типа излучения взаимодействуют друг с другом. В период солнечной активности интенсивность галактических лучей уменьшается, и наоборот. Наша планета защищена от солнечного ветра магнитным полем. Несмотря на это, часть заряженных частиц достигает атмосферы. В результате возникает явление, известное как полярное сияние. Высокоэнергетические ГКЛ почти не задерживаются магнитосферой, однако они не достигают поверхности Земли в опасном количестве благодаря ее плотной атмосфере. Орбита МКС находится выше плотных слоев атмосферы, однако внутри радиационных поясов Земли. Из-за этого уровень космического облучения на станции намного выше, чем на Земле, но существенно ниже, чем в открытом космосе. По своим защитным свойствам атмосфера Земли приблизительно эквивалентна 80-сантиметровому слою свинца.

Единственным достоверным источником данных о дозе излучения, которую можно получить во время длительного космического перелета и на поверхности Марса, является прибор RAD на исследовательской станции Mars Science Laboratory, более известной как Curiosity. Чтобы понять, насколько точны собранные им данные, давайте для начала рассмотрим МКС.

В сентябре 2013 года в журнале Science была опубликована статья, посвященная результатам работы инструмента RAD. На сравнительном графике, построенном Лабораторией реактивного движения НАСА (организация не связана с экспериментами, проводимыми на МКС, но работает с инструментом RAD марсохода Curiosity), указано, что за полгода пребывания на околоземной космической станции человек получает дозу излучения, примерно равную 80 мЗв (миллизиверт). А вот в издании Оксфордского университета от 2006 года (ISBN 978-0-19-513725-5) говорится, что в сутки космонавт на МКС получает в среднем 1 мЗв, т. е. полугодовая доза должна составить 180 мЗв. В результате мы видим огромный разброс в оценке уровня облучения на давно изученной низкой орбите Земли.

Основные солнечные циклы имеют период 11 лет, и, поскольку ГКЛ и солнечный ветер взаимосвязаны, для статистически надежных наблюдений нужно изучить данные о радиации на разных участках солнечного цикла. К сожалению, как говорилось выше, все имеющиеся у нас данные о радиации в открытом космосе были собраны за первые восемь месяцев 2012 года аппаратом MSL на его пути к Марсу. Информация о радиации на поверхности планеты накоплена им же за последующие годы. Это не значит, что данные неверны. Просто нужно понимать, что они могут отражать лишь характеристики ограниченного периода времени.

Последние данные инструмента RAD были опубликованы в 2014 году. Как сообщают ученые из Лаборатории реактивного движения НАСА, за полгода пребывания на поверхности Марса человек получит среднюю дозу излучения около 120 мЗв. Эта цифра находится посередине между нижней и верхней оценками дозы облучения на МКС. За время перелета к Марсу, если он также займет полгода, доза облучения составит 350 мЗв, т. е. в 2-4,5 раза больше, чем на МКС. За время полета MSL пережил пять вспышек на Солнце умеренной мощности. Мы не знаем наверняка, какую дозу облучения получат космонавты на Луне, поскольку во времена программы «Аполлон» не проводились эксперименты, изучавшие отдельно космическую радиацию. Ее эффекты изучались лишь совместно с эффектами других негативных явлений, таких как влияние лунной пыли. Тем не менее, можно предположить, что доза будет выше, чем на Марсе, поскольку Луна не защищена даже слабой атмосферой, но ниже, чем в открытом космосе, т. к. человек на Луне будет облучаться только «сверху» и «с боков», но не из-под ног./

В заключение можно отметить, что радиация – это та проблема, которая обязательно потребует решения в случае колонизации Солнечной системы. Однако широко распространенное мнение, что радиационная обстановка за пределами магнитосферы Земли не позволяет совершать длительные космические полеты, просто не соответствует действительности. Для полета к Марсу придется установить защитное покрытие либо на весь жилой модуль космического перелетного комплекса, либо на отдельный особо защищенный «штормовой» отсек, в котором космонавты смогут пережидать протонные ливни. Это не значит, что разработчикам придется использовать сложные антирадиационные системы. Для существенного снижения уровня облучения достаточно теплоизоляционного покрытия, которое применяют на спускаемых аппаратах космических кораблей для защиты от перегрева при торможении в атмосфере Земли.

Космическая лента

Вблизи Земли продолжает защищать ее магнитное поле - пусть даже ослабленное и без помощи многокилометровой атмосферы. Пролетая в районе полюсов, где поле мало, космонавты сидят в особо защищенном помещении. А для радиационной защиты при полете на Марс пока нет удовлетворительного технического решения.

Решил дополнить исходный ответ по двум причинам:

  1. в одном месте он содержит неверное утверждение и не содержит верное
  2. просто для полноты картины (цитаты)

1. В комментариях Сузанна покритиковала ответ - во многом справедливо.

Над магнитными полюсами Земли поле слабеет , как я и утверждал. Да, Сузанна права, что У ПОЛЮСОВ оно особо велико (представьте себе силовые линии: они собираются именно у полюсов). Но на большой высоте НАД ПОЛЮСАМИ оно слабее чем в других местах- по той же самой причине (представьте те же силовые линии: они ушли вниз - к полюсам, а вверху их почти не осталось). Поле как бы проседает.

Но Сузанна права в том, что космонавты МЧС не укрываются в спецпомещении из-за приполярных областей : меня подвела память.

Но все же есть место, над которым спецмеры принимаются (его я и спутал с приполярными областями). Это - над магнитной аномалией в Южной Атлантике . Там магнитное поле настолько "проседает", что радиационный пояс и принимать спецмеры приходится без всяких вспышек на Солнце . Цитату о не связанных с солнечной активностью спецмерах быстро найти не смог, но я о них где-то читал.

Ну и, конечно, стоит упомянуть и сами вспышки : от них тоже укрываются в наиболее защищенном помещении, а не разгуливают в это время по всей станции.

Все солнечные вспышки тщательно отслеживаются и информация о них отправляется в центр управления. В такие периоды космонавты прекращают работу и укрываются в наиболее защищённых отсеках станции. Такими защищёнными сегментами являются отсеки МКС рядом с ёмкостями с водой. Вода задерживает вторичные частицы - нейтроны, и доза радиации поглощается эффективнее.

2. Просто цитаты и допинформация

В некоторых цитатах ниже упоминается доза в Зивертах (Зв). Для ориентировки некоторые цифры и вероятные эффекты из таблицы в

0-0.25 Зв. Нет эффекта, за исключением умеренных изменений в крови

0.25-1 Зв. Радиационные заболевания из 5-10% облучённых людей

7 Зв ~100% летальных исходов

Суточная доза на МКС - около 1 мЗв (см. ниже). Значит, можно без особого риска летать около 200 суток . Важно также, за какой срок набрана одна и та же доза: набранная за короткое время намного опаснее, чем за набранная за длительный срок. Организм - не пассивный объект просто "набирающий" радиационные дефекты: есть у него и "ремонтные" механизмы и с постепенно набираемыми малыми дозами они обычно справляются.

В отсутствие массивного атмосферного слоя, который окружает людей на Земле, космонавты на МКС подвергаются более интенсивному облучению постоянными потоками космических лучей. В день члены экипажа получают дозу радиации в размере около 1 миллизиверта, что примерно равнозначно облучению человека на Земле за год. Это приводит к повышенному риску развития злокачественных опухолей у космонавтов, а также ослаблению иммунной системы.

Как показывают данные, собранные NASA и специалистами из России и Австрии, астронавты на МКС ежедневно получают дозу в 1 миллизиверт. На Земле такую дозу облучения не везде можно получить и за целый год.

Этот уровень, впрочем, ещё относительно терпим. Однако необходимо иметь в виду, что околоземные космические станции находятся под защитой магнитного поля Земли.

За его пределами радиация возрастёт во много раз, следовательно, экспедиции в глубокий космос окажутся невозможными.

Радиация в жилых корпусах и лабораториях МКС и «Мира» возникала вследствие бомбёжки космическими лучами алюминиевой обшивки станции. Быстрые и тяжёлые ионы выбивали из обшивки изрядное количество нейтронов.

В настоящее время на космических кораблях невозможно обеспечить стопроцентную защиту от радиации. Точнее, возможно, но за счёт более чем значительного увеличения массы, а вот это-то как раз и недопустимо

Кроме атмосферы нашей, защитой от радиации является магнитное поле Земли. Первый радиационный пояс Земли находится на высоте порядка 600-700 км. Станция сейчас летает на высоте порядка 400км, что существенно ниже... Защитой от радиации в космосе является (также – ред.) корпус корабля или станции. Чем толще стенки корпуса, тем больше защита. Конечно, стенки не могут быть бесконечно толстыми, потому что существуют весовые ограничения.

Ионизирующий уровень, фоновый уровень радиации на международной космической станции выше, чем на Земле (примерно в 200 раз – ред.), что делает космонавта более подверженным ионизирующему излучению, чем представителей традиционно радиационно-опасных отраслей, таких как атомная энергетика и рентгенодиагностика.

Кроме индивидуальных дозиметров космонавтов на станции есть еще система радиационного контроля. ... По одному датчику расположено в каютах экипажа и по одному датчику в рабочем отсеке малом и большом диаметре. Система работает автономно 24 часа в сутки. ... Таким образом Земля располагает информацией о текущей радиационной обстановке на станции. Система радиационного контроля способна выдавать предупреждающий сигнал «Проверь радиацию!». Если бы это случилось, то на пульте сигнализации систем мы увидели бы загорание транспаранта с сопровождающим звуковым сигналом. За все время существование космической международной станции таких случаев не было.

В... районе Южной Атлантики... радиационные пояса “провисают” над Землей из-за существования глубоко под Землей магнитной аномалии. Космические корабли, летающие над Землей, как бы “чиркают” пояса радиации в течение очень непродолжительного времени... на витках, проходящих район аномалии. На других витках потоки радиации отсутствуют и не создают хлопот участникам космических экспедиций.

Магнитная аномалия в районе Южной Атлантики – не единственная радиационная “напасть” для космонавтов. Солнечные вспышки, генерирующие подчас весьма энергичные частицы... , могут создать большие сложности для полётов космонавтов. Какая доза радиации может быть получена космонавтом в случае прихода солнечных частиц к Земле – во многом воля случая. Эта величина определяется, в основном, двумя факторами: степенью искажения дипольного магнитного поля Земли во время магнитных бурь и параметрами орбиты космического аппарата в течение солнечного события. ... Экипажу может повезти, если орбиты в момент вторжения СКЛ не проходят опасных высокоширотных участков.

Одно из наиболее мощных протонных извержений – радиационная буря солнечных извержений, вызвавшая радиационную бурю вблизи Земли, произошло совсем недавно – 20 января 2005 г. Аналогичное по мощности солнечное извержение было 16 лет назад, в октябре 1989 г. Множество протонов с энергиями, превышающими сотни МэВ, достигли магнитосферы Земли. Кстати, такие протоны способны преодолеть защиту толщиной, эквивалентной примерно 11 сантиметрам воды. Скафандр космонавта – тоньше. Биологи считают, что если в это время космонавты оказались бы вне Международной космической станции, то, безусловно, воздействие радиации сказалось бы на здоровье космонавтов. Но они находились внутри неё. Защита МКС достаточно велика, чтобы обезопасить экипаж от неблагоприятного воздействия радиации во многих случаях. Так было и во время данного события. Как показали измерения с помощью радиационных дозиметров, “схваченная” космонавтами доза радиации не превышала той дозы, которую человек получает при обычном рентгеновском обследовании. Космонавты МКС получили 0.01 Гр или ~ 0.01 Зиверт... Правда, столь малые дозы связаны и с тем, что, как об этом написано ранее, станция находилась на “магнитно-защищённых” витках, что может случаться не всегда.

Нил Армстронг (первый астронавт, вступивший на Луну) сообщил на Землю о своих необычных ощущениях во время полёта: порой он наблюдал яркие вспышки в глазах. Иногда их частота достигала около сотни в день... Учёные... пришли к выводу, что ответственны за это … галактические космические лучи. Именно эти частицы высокой энергии, проникая в глазное яблоко, вызывают черенковское свечение при взаимодействии с веществом, из которого состоит глаз. В результате астронавт и видит яркую вспышку. Наиболее эффективно с веществом взаимодействуют не протоны, которых в составе космических лучей больше всех остальных частиц, а тяжёлые частицы – углерод, кислород, железо. Эти частицы, обладая большой массой, теряют значительно больше своей энергии на единицу пройденного пути, чем их более лёгкие собратья. Именно они и ответственны за генерацию черенковского свечения и возбуждение ретины – чувствительной оболочки глаза.

При дальних космических полётах возрастает роль галактических и солнечных космических лучей как радиационно-опасных факторов. Подсчитано, что при полёте на Марс именно ГКЛ становятся основной радиационной опасностью. Полёт на Марс длится порядка 6 месяцев, и интегральная – суммарная - доза радиации от ГКЛ и СКЛ за этот период в несколько раз выше дозы радиации на МКС за то же время. Поэтому риск радиационных последствий, связанных с выполнением дальних космических миссий значительно возрастает. Так, за год полёта на Марс, поглощённая доза, связанная с ГКЛ, составит 0.2-0.3 Зв (без защиты). Её можно сравнить с дозой от одной из самых мощных вспышек прошлого столетия – августа 1972 г. Во время этого события она была в несколько раз меньше: ~0.05 Зв.

Радиационную опасность, создаваемую ГКЛ, можно оценить и предсказать. Сейчас накоплен богатый материал по временным вариациям ГКЛ, связанным с солнечным циклом. Это позволило создать модель, на основе которой удаётся предсказать поток ГКЛ на любой заданный вперёд период времени.

Гораздо сложнее обстоят дела с СКЛ. Солнечные вспышки возникают случайным образом и даже не очевидно, что мощные солнечные события возникают в годы, обязательно близкие к максимуму активности. По крайней мере, опыт последних лет показывает, что они происходят и во времена затихшего светила.

Протоны солнечных вспышек несут реальную угрозу космическим экипажам дальних миссий. Взяв вновь в качестве примера вспышку августа 1972 г., можно показать, пересчитав потоки солнечных протонов в дозу радиации, что через 10 часов после начала события, она превысила летальное значение для экипажа космического корабля, если бы он оказался вне корабля на Марсе или, скажем, на Луне.

Здесь уместно вспомнить полёты американскго “Apollo” к Луне в конце 60-х – начале 70-х. В 1972 г., в августе, была такая же по мощности вспышка на Солнце, как и в октябре 1989 г. “Apollo-16” приземлился после своего лунного путешествия в апреле 1972 г., а следующий – “Apollo-17” стартовал в декабре. Повезло экипажу “Apollo-16”? Безусловно, да. Расчёты показывают, будь астронавты “Apollo” в августе 1972 г. на Луне, они бы подверглись облучению с дозой радиации в ~4 Зв. Это – очень много, чтобы спастись. Если… если быстро не возвратиться на Землю для экстренного лечения. Другой вариант – перейти в кабину лунного модуля “Apollo”. Здесь доза радиации уменьшилась бы в 10 раз. Для сравнения скажем, что защита МКС в 3 раза толще, чем лунного модуля “Apollo”.

На высотах орбитальных станций (~400 км) дозы радиации превышают величины, наблюдающиеся на поверхности Земли, в ~200 раз! В основном за счёт частиц радиационных поясов.

Известно, что некоторые трассы межконтинентальных самолётов проходят вблизи северной полярной области. Эта область наименее защищена от вторжения энергичных частиц и поэтому во время солнечных вспышек опасность радиационного облучения экипажа и пассажиров возрастает. Солнечные вспышки увеличивают дозы радиации на высотах полётов самолётов в 20-30 раз.

В последнее время экипажи некоторых авиалиний информируются о начале наступления вторжения солнечных частиц. Одно из недавних мощных солнечных извержений, случившеееся в ноябре 2003 г., заставило экипаж “Дельты” рейса Чикаго - Гонг-Конг свернуть с пути: лететь к пункту назначения более низкоширотным маршрутом.

Землю от космического излучения защищают атмосфера и магнитное поле. На орбите радиационный фон в сотни раз больше, чем на поверхности Земли. Каждые сутки космонавт получает дозу облучения 0,3-0,8 миллизиверта - примерно в пять раз больше, чем при рентгене грудной клетки. При работе в открытом космосе воздействие радиации оказывается еще на порядок выше. А в моменты мощных солнечных вспышек можно за один день на станции схватить 50-суточную норму. Не дай бог в такое время работать за бортом - за один выход можно выбрать допустимую за всю карьеру дозу, составляющую 1000 миллизивертов. В обычных условиях ее хватило бы года на четыре - столько еще никто не налетал. Причем ущерб здоровью от такого однократного облучения будет значительно выше, чем от растянутого на годы.

И все же низкие околоземные орбиты еще относительно безопасны. Магнитное поле Земли захватывает заряженные частицы солнечного ветра, образуя радиационные пояса. Они имеют форму широкого бублика, окружающего Землю по экватору на высоте от 1000 до 50 000 километров. Максимальная плотность частиц достигается на высотах около 4000 и 16 000 километров. Сколько-нибудь длительная задержка корабля в радиационных поясах представляет серьезную угрозу жизни экипажа. Пересекая их на пути к Луне, американские астронавты за несколько часов рисковали получить дозу 10-20 миллизивертов - как за месяц работы на орбите.

В межпланетных полетах вопрос радиационной защиты экипажа стоит еще острее. Земля экранирует половину жестких космических лучей, а ее магнитосфера почти полностью задерживает поток солнечного ветра. В открытом космосе без дополнительных мер защиты облучение вырастет на порядок. Иногда обсуждается идея отклонять космические частицы сильными магнитными полями, однако на практике ничего, кроме экранирования, пока не отработано. Частицы космического излучения неплохо поглощаются ракетным топливом, что наводит на мысль использовать полные баки как защиту от опасной радиации.

Магнитное поле на полюсах не мало, а наоборот, большое. Просто направлено оно там практически радиально к Земле, что приводит к тому, что захваченные магнитными полями в радиационных поясах частицы солнечного ветра, при определенных условиях двигаются (высыпаются) в направлении Земли у полюсов, вызывая полярные сияния. Это не представляет опасности космонавтам так как траектория МКС проходит ближе к экваториальной зоне. Опасность представляют сильные солнечные вспышки класса М и Х с коронарными выбросами вещества (в основном протоны), направленные к Земле. Именно в этом случае, космонавты применяют дополнительные меры радиационной защиты.

Ответить

ЦИТАТА: "... Наиболее эффективно с веществом взаимодействуют не протоны, которых в составе космических лучей больше всех остальных частиц, а тяжёлые частицы – углерод, кислород, железо...."

Объясните неучу пожалуйста - откуда в солнечном ветре (космических лучах, как у вас написано) взялись частицы углерода, кислорода, железа и каким образом они могут попасть в вещество, из которого состоит глаз - через скафандр?

Ответить

Ещё 2 комментария

Объясняю... Солнечный свет - это фотоны (включая гамма-кванты и рентгеновское излучение, являющиеся проникающей радиацией).

Есть еще солнечный ветер. Частицы . Например, электроны, ионы, ядра атомов, летящие от Солнца и из Солнца. Сколь-нибудь тяжелых ядер (тяжелее гелия) там мало, ибо их мало в самом Солнце. Но альфа-частиц (ядер гелия) - много. И, в принципе, может прилететь любое ядро, легче железного (вопрос лишь в количестве прилетающего). Дальше железа синтез на Солнце (тем более вне его) не идет. Поэтому от Солнца может прилететь только железо и что-то полегче (тот же углерод, например).

Космические лучи в узком смысле - это особо высокоскоростные заряженные частицы (и не заряженные, впрочем, тоже), прилетевшие из-за пределов Солнечной системы (в основном). А также - проникающая радиация оттуда же (иногда ее рассматривпют отдельно, не причисляя к "лучам").

Среди прочих частиц космические лучи содержат и ядра каких угодно атомов разном количестве, конечно). Сколь-нибудь тяжелые ядра, попав в вещество, ионизируют все на своем пути (а также - в стороне: там вторичная ионизация - уже тем, что вышиблено по дороге). А если у них высокая скорость (и кинетическая энергия), то заниматься этим делом (полетом через вещество и его ионизацей) ядра будут долго и остановятся не скоро. Соответственно, пролетят через что угодно и с пути не свернут - пока не потратят почти всю кинетическую энергию. Даже наткнувшись прямо на другое ядро (а это бывает редко) могут просто отшвырнуть его в сторону, почти не изменив направление своего движения. Или не в сторону, а полетят дальше более-менее в одном направлении.

Представьте автомобиль, который на полном ходу врезался в другой. Разве он остановится? А еще представьте, что скорость у него - многие тысячи километров в час (еще лучше - в секунду!), а прочность позволяет выдержать любой удар. Вот это и есть ядро из космоса.

Космические лучи в широком смысле - это космические лучи в узком, плюс солнечный ветер и проникаюшая радиация от Солнца. (Ну, или без проникающей радиации, если ее рассматривают отдельно).

Со́лнечный ве́тер - поток ионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300-1200 км/с в окружающее космическое пространство. Является одним из основных компонентов межпланетной среды.

Множество природных явлений связано с солнечным ветром, в том числе такие явления космической погоды, как магнитные бури и полярные сияния.

Не следует путать понятия «солнечный ветер» (поток ионизированных частиц, долетающий от Солнца до Земли за 2-3 суток) и «солнечный свет» (поток фотонов, долетающий от Солнца до Земли в среднем за 8 минут 17 секунд).

Из-за солнечного ветра Солнце теряет ежесекундно около одного миллиона тонн вещества. Солнечный ветер состоит в основном из электронов, протонов и ядер гелия (альфа-частиц); ядра других элементов и неионизированных частиц (электрически нейтральных) содержатся в очень незначительном количестве.

Хотя солнечный ветер исходит из внешнего слоя Солнца, он не отражает состава элементов в этом слое, так как в результате процессов дифференциации содержание некоторых элементов увеличивается, а некоторых - уменьшается (FIP-эффект).

Косми́ческие лучи́ - элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве[

Классификация по происхождению космических лучей:

  • вне нашей Галактики
  • в Галактике
  • на Солнце
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

Энергетический спектр космических лучей на 43 % состоит из энергии протонов, ещё на 23 % - из энергии гелия (альфа-частиц) и 34 % энергии, переносимой остальными частицами.

По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % - из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны.

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы... соответственно, протоны, альфа-частицы, легкие, средние, тяжелые и сверхтяжелые... Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжелые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра.

Ответить

Прокомментировать

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»