Счетчик гейгера - это просто. Счетчик Гейгера-Мюллера мог бы спасти «радиевых девушек» в Америке

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Счетчик Гейгера-Мюллера - это относительно простой инструмент для измерения . В магазинах эти дозиметры стоят недёшево (от 5000 руб), но если есть сам датчик, то сделать этот измеритель можно с минимальными расходами. Чтобы увеличить чувствительность, представленная здесь конструкция содержит сразу три датчика СТС-5. Это полезно для измерения природных источников с низким уровнем излучения - почва, камни, вода.

Принцип работы счетчика Гейгера-Мюллера заключается в том, что высокое напряжение (обычно 400 В) подаётся на колбу-детектор. Она не проводит электричество, но в течение короткого периода, когда приходит излучение частиц, через неё проскакивает импульс тока. Уровень ионизирующего излучения пропорционален количеству импульсов, обнаруженных за постоянный интервал времени.

Сам счетчик Гейгера-Мюллера (детектор) состоит из двух электродов, а ионизирующая частица создает искровой промежуток между ними. Чтобы уменьшить величину тока, который при этом протекает, высокоомный резистор ставят последовательно с трубкой. Обозначены как R1 на схеме. Обычно он выбирается в диапазоне 1-10 мегаом, допустимые значения указаны в документации к счётчику Гейгера.

Есть разные способы получения данных из детектора, в представленной здесь схеме, резистор последовательно соединен между трубкой и землей, а изменения напряжения на резисторе измеряется с помощью детектора. Этот резистор обозначен как R2 на схеме. Обычно он в диапазоне 10-220 килоом. Аналогично диодам, счетчик Гейгера-Мюллера имеет свою полярность и при подключении в обратном направлении он будет работать неправильно.

Электрическая схема счетчика Гейгера-Мюллера

Здесь микросхема MC34063 - это DC/DC преобразователь, который используется для получения необходимого высокого напряжения из низкого батареечного. Главное его преимущество по сравнению с простой м/с NE555 или аналогичными генераторами заключается в том, что он может контролировать выходное напряжение и подстраивает параметры, чтобы сделать его стабильным (R3, R4, R5, С3). Элементы ОУ IC1A, R8, R9 используются как компаратор, чтобы отфильтровать шумы и сформировать двоичный сигнал (низкий = нет импульса, высокий = импульс проходит).

Внимание! Устройство использует высокое напряжение и может привести к неприятным последствиям при касании к некоторым токонесущим элементам конструкции. Не прикасайтесь к печатной плате или трубке датчика при включении питания.

Запуск и настройка измерителя

Напряжение на С4 должны быть в приемлемом диапазоне для работы Гейгера. Обычно около 400 В - будьте осторожны во время измерений! Если напряжение выходит за диапазон, то элементы С1 (частота преобразователя постоянного тока), и С3, R3, R4, R5 (обратная связь по напряжению преобразователя) могут быть скорректированы.

Счетчик Гейгера (Гейгера-Мюллера) -- газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Изобретён счетчик был в 1908 году Гансом Гейгером и усовершенствован Мюллером. Является самым распространенным детектором (датчиком) ионизирующего излучения. До сих пор ему, изобретенному в самом начале прошлого века для нужд зарождающейся ядерной физики, нет, как это ни странно, сколько-нибудь полноценной замены.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 В), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

Наиболее часто в приборах применяются счетчики с рабочим напряжением порядка 400 В, такие как:

1. «СБМ-20» (по размерам Ї чуть толще карандаша).

2. «СБМ-21» (оба со стальными корпусами, пригодные для измерения бета- и гамма-излучения).

3. «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения бета-излучения).

Цилиндрический счётчик Гейгера-Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки, и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка -- катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы -- аргон и неон. Между катодом и анодом создается напряжение порядка 400 В. Для большинства счетчиков существует так называемое плато, которое лежит приблизительно от 360 до 460 В, в этом диапазоне небольшие колебания напряжения не влияют на скорость счета.

Работа счетчика основана на ударной ионизации. Гамма-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается -- настолько, что разряд прекращается, и счетчик снова готов к работе.

Важной характеристикой счётчика является его эффективность. Не все Гама-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия гамма-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема.

Эффективность счётчика зависит от толщины стенок счётчика, их материала и энергии гамма-излучения. Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z, так как при этом увеличивается образование вторичных электронов.

Примечание. Атомный номер, Z Ї это порядковый номер химического элемента в периодической системе элементов Д. И. Менделеева. Атомный номер равен числу протонов в атомном ядре, которое, в свою очередь, равно числу электронов в электронной оболочке соответствующего нейтрального атома. Заряд ядра равен Ze, где е -- положительный элементарный электрический заряд, равный по абсолютному значению заряду электрона.

Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика и возникновения импульса тока не произойдет. СГ имеет свои минусы Ї по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые СГ под действием альфа-частиц, электронов, гамма-квантов ничем не различаются.

Приведем некоторые паспортные данные, на примере счетчика СБМ 20.

· Номинальное рабочее напряжение Ї 400 В.

· Протяжность плато счетной характеристики Ї не менее 100 В.

· Изменение чувствительности счетчика в течение всего ресурса не превышает.

· Собственный фон Ї не более 1 имп/сек.

· Амплитуда импульса Ї не менее 50 В.

· Диапазон регистрируемых мощностей Ї (0,001…10) мкр/сек.

· Чувствительность к излучению Ї 460 имп/сек.

Рис. 1.1 Ї Зависимость скорости счета от напряжения питания

Рис. 1.2 Ї Зависимость скорости счета от уровня радиации

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.


Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» - работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений.

Как появился счетчик Гейгера - Мюллера

Немецкий физик Ганс Гейгер, работавший в лаборатории Эрнста Резерфорда, в 1908 году предложил принцип работы счетчика «заряженных частиц» как дальнейшее развитие уже известной ионизационной камеры, которая представляла собой электрический конденсатор, наполненный газом при небольшом давлении. Она применялась еще Пьером Кюри с 1895 года для изучения электрических свойств газов. У Гейгера возникла идея использовать ее для обнаружения ионизирующих излучений как раз потому, что эти излучения оказывали прямое воздействие на степень ионизации газа.

В 1928 году Вальтер Мюллер, под началом Гейгера, создает несколько типов счетчиков радиации, предназначенных для регистрации различных ионизирующих частиц. Создание счетчиков было очень острой необходимостью, без которой невозможно было продолжать исследование радиоактивных материалов, поскольку физика, как экспериментальная наука, немыслима без измерительных приборов. Гейгер и Мюллер целенаправленно работали над созданием счетчиков, чувствительных к каждому из открытых к тому видов излучений: α, β и γ (нейтроны открыли только в 1932 году).

Счетчик Гейгера-Мюллера оказался простым, надежным, дешевым и практичным датчиком радиации. Хотя он не является самым точным инструментом для исследования отдельных видов частиц или излучений, однако на редкость подходит в качестве прибора для общего измерения интенсивности ионизирующих излучений. А в сочетании с другими детекторами используется физиками и для точнейших измерений при экспериментах.

Ионизирующие излучения

Чтобы лучше понять работу счетчика Гейгера-Мюллера, полезно иметь представление об ионизирующих излучениях вообще. По определению, к ним относится то, что может вызвать ионизацию вещества, находящегося в нормальном состоянии. Для этого необходима определенная энергия. Например, радиоволны или даже ультрафиолетовый свет не относятся к ионизирующим излучениям. Граница начинается с «жесткого ультрафиолета», он же «мягкий рентген». Этот вид является фотонным видом излучения. Фотоны большой энергии принято называть гамма-квантами.

Впервые разделил ионизирующие излучения на три вида Эрнст Резерфорд. Это было сделано на экспериментальной установке при помощи магнитного поля в вакууме. Впоследствии выяснилось, что это:

α - ядра атомов гелия
β - электроны с высокой энергией
γ - гамма-кванты (фотоны)

Позже были открыты нейтроны. Альфа-частицы легко задерживаются даже обычной бумагой, бета-частицы имеют немного большую проникающую способность, а гамма-лучи - самую высокую. Наиболее опасны нейтроны (на расстоянии до многих десятков метров в воздухе!). Из-за их электрической нейтральности они не взаимодействуют с электронными оболочками молекул вещества. Но попав в атомное ядро, вероятность чего достаточно высока, приводят к его нестабильности и распаду, с образованием, как правило, радиоактивных изотопов. А уже те, в свою очередь, распадаясь, сами образуют весь «букет» ионизирующих излучений. Хуже всего то, что облученный предмет или живой организм сам становится источником радиации на протяжении многих часов и суток.

Устройство счетчика Гейгера-Мюллера и принцип его работы

Газоразрядный счетчик Гейгера-Мюллера, как правило, выполняется в виде герметичной трубки, стеклянной или металлической, из которой откачан воздух, а вместо него добавлен инертный газ (неон или аргон или их смесь) под небольшим давлением, с примесью галогенов или спирта. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка - катод, а проволока - анод. К катоду подключают минус от источника постоянного напряжения, а к аноду - через большое постоянное сопротивление - плюс от источника постоянного напряжения. Электрически получается делитель напряжения, в средней точке которого (место соединения сопротивления и анода счетчика) напряжение практически равно напряжению на источнике. Обычно это несколько сотен вольт.

Когда сквозь трубку пролетает ионизирующая частица, атомы инертного газа, и так находящиеся в электрическом поле большой напряженности, испытывают столкновения с этой частицей. Энергии, отданной частицей при столкновении, хватает для отрыва электронов от атомов газа. Образующиеся вторичные электроны сами способны образовать новые столкновения и, таким образом, получается целая лавина электронов и ионов. Под действием электрического поля, электроны ускоряются в направлении анода, а положительно заряженные ионы газа - к катоду трубки. Таким образом, возникает электрический ток. Но так как энергия частицы уже израсходована на столкновения, полностью или частично (частица пролетела сквозь трубку), то кончается и запас ионизированных атомов газа, что является желательным и обеспечивается кое-какими дополнительными мерами, о которых мы поговорим при разборе параметров счетчиков.

При попадании в счетчик Гейгера-Мюллера заряженной частицы, за счет возникающего тока падает сопротивление трубки, а вместе с ним и напряжение в средней точке делителя напряжения, о которой шла речь выше. Затем сопротивление трубки вследствие возрастания ее сопротивления восстанавливается, и напряжение опять становится прежним. Таким образом, мы получаем отрицательный импульс напряжения. Считая импульсы, мы можем оценить число пролетевших частиц. Особенно велика напряженность электрического поля вблизи анода из-за его малых размеров, что делает счетчик более чувствительным.

Конструкции счетчиков Гейгера-Мюллера

Современные счетчики Гейгера-Мюллера выпускаются в двух основных вариантах: «классическом» и плоском. Классический счетчик выполняют из тонкостенной металлической трубки с гофрированием. Гофрированная поверхность счетчика делает трубку жесткой, устойчивой к внешнему атмосферному давлению и не дает ей сминаться под его действием. На торцах трубки расположены герметизирующие изоляторы из стекла или термореактивной пластмассы. В них же находятся выводы-колпачки для подключения к схеме приборов. Трубка снабжена маркировкой и покрыта прочным изолирующим лаком, не считая, конечно, ее выводов. Полярность выводов также обозначена. Это универсальный счетчик для любых видов ионизирующих излучений, особенно для бета и гамма.

Счетчики, чувствительные к мягкому β-излучению, делаются иначе. Из-за малого пробега β-частиц, их приходится делать плоскими, со слюдяным окошком, которое слабо задерживает бета-излучение, одним из вариантов такого счетчика, является датчик радиации БЕТА-2 . Все остальные свойства счетчиков определяются материалами, из которых их изготавливают.

Счетчики, предназначенные для регистрации гамма-излучения, содержат катод, изготовленный из металлов с большим зарядовым числом, или покрывают такими металлами. Газ крайне плохо ионизируется гамма-фотонами. Но зато гамма-фотоны способны выбить много вторичных электронов из катода, если его выбрать подходящим образом. Счетчики Гейгера-Мюллера для бета-частиц делают с тонкими окнами для лучшей проницаемости частиц, поскольку они являются обычными электронами, всего лишь получившими большую энергию. С веществом они взаимодействуют весьма хорошо и быстро эту энергию теряют.

В случае альфа-частиц дело обстоит еще хуже. Так, несмотря на весьма приличную энергию, порядка нескольких МэВ, альфа-частицы очень сильно взаимодействуют с молекулами, находящимися на пути, и быстро теряют энергию. Если вещество сравнить с лесом, а электрон с пулей, то тогда альфа-частицы придется сравнивать с танком, ломящимся через лес. Впрочем, обычный счетчик хорошо реагирует на α-излучение, но только на расстоянии до нескольких сантиметров.

Для объективной оценки уровня ионизирующих излучений дозиметры на счетчиках общего применения часто снабжают двумя параллельно работающими счетчиками. Один более чувствителен к α и β излучениям, а второй к γ-лучам. Такая схема применения двух счетчиков реализована в дозиметре RADEX RD1008 и в дозиметре-радиометре РАДЭКС МКС-1009 , в котором установлены счетчик БЕТА-2 и БЕТА-2М . Иногда между счетчиками помещают брусок или пластину из сплава, в котором есть примесь кадмия. При попадании нейтронов в такой брусок возникает γ-излучение, которое и регистрируется. Это делается для получения возможности определять нейтронное излучение, к которому простые счетчики Гейгера практически нечувствительны. Еще один способ - покрытие корпуса (катода) примесями, способными придавать чувствительность к нейтронам.

Галогены (хлор, бром) к газу подмешивают для быстрого самогашения разряда. Той же цели служат и пары спирта, хотя спирт в таком случае недолговечен (это вообще особенность спирта) и «протрезвевший» счетчик постоянно начинает «звенеть», то есть, не может работать в предусмотренном режиме. Это происходит где-то после регистрации 1e9 импульсов (миллиарда) что не так уж и много. Счетчики с галогенами намного долговечнее.

Параметры и режимы работы счетчиков Гейгера

Чувствительность счетчиков Гейгера.

Чувствительность счетчика оценивается отношением числа микрорентген от образцового источника к числу вызываемых этим излучением импульсов. Поскольку счетчики Гейгера не предназначены для измерения энергии частиц, точная оценка затруднительна. Счетчики калибруют по образцовым изотопным источникам. Необходимо отметить, что данный параметр у разных типов счетчиков может сильно отличаться, ниже приведены параметры самых распространённых счетчиков Гейгера-Мюллера:

Счетчик Гейгера-Мюллера Бета-2 - 160 ÷ 240 имп / мкР

Счетчик Гейгера-Мюллера Бета-1 - 96 ÷ 144 имп / мкР

Счетчик Гейгера-Мюллера СБМ-20 - 60 ÷ 75 имп / мкР

Счетчик Гейгера-Мюллера СБМ-21 - 6,5 ÷ 9,5 имп / мкР

Счетчик Гейгера-Мюллера СБМ-10 - 9,6 ÷ 10,8 имп / мкР

Площадь входного окна или рабочая зона

Площадь датчика радиации, через которую пролетают радиоактивные частицы. Данная характеристика напрямо связана с габаритами датчика. Чем больше площадь, тем больше частиц уловит счетчик Гейгера-Мюллера. Обычно данный параметр указывается в квадратных сантиметрах.

Счетчик Гейгера-Мюллера Бета-2 - 13,8 см 2

Счетчик Гейгера-Мюллера Бета-1 - 7 см 2

Это напряжение соответствует приблизительно середине рабочей характеристики. Рабочая характеристика составляет плоскую часть зависимости числа регистрируемых импульсов от напряжения, поэтому ее еще называют «плато». В этой точке достигается наибольшая скорость работы (верхний предел измерений). Типичное значение 400 В.

Ширина рабочей характеристики счетчика.

Это разность между напряжением искрового пробоя и напряжением выхода на плоскую часть характеристики. Типичное значение 100 В.

Наклон рабочей характеристики счетчика.

Наклон измеряется в процентах от числа импульсов на вольт. Он характеризует статистическую погрешность измерений (подсчета числа импульсов). Типичное значение 0.15%.

Допустимая температура эксплуатации счетчика.

Для счетчиков общего применения -50 … +70 градусов Цельсия. Это весьма важный параметр, если счетчик работает в камерах, каналах, и других местах сложного оборудования: ускорителей, реакторов и т.п.

Рабочий ресурс счетчика.

Общее число импульсов, которое счетчик регистрирует до того момента, когда его показания начнут становиться неверными. Для приборов с органическими добавками самогашения, как правило, составляет число 1e9 (десять в девятой степени, или один миллиард). Ресурс считается только в том случае, если к счетчику приложено рабочее напряжение. Если счетчик просто хранится, этот ресурс не расходуется.

Мертвое время счетчика.

Это время (время восстановления), в течение которого счетчик проводит ток после срабатывания от пролетевшей частицы. Существование такого времени означает, что для частоты импульсов есть верхний предел, и это ограничивает диапазон измерений. Типичное значение 1e-4 с, то есть десять микросекунд.

Нужно отметить, что благодаря мертвому времени, датчик может оказаться «зашкаленным» и молчать в самый опасный момент (например, самопроизвольной цепной реакции на производстве). Такие случаи бывали, и для борьбы с ними применяют свинцовые экраны, закрывающие часть датчиков аварийных систем сигнализации.

Собственный фон счетчика.

Измеряется в свинцовых камерах с толстыми стенками для оценки качества счетчиков. Типичное значение 1 … 2 импульса в минуту.

Практическое применение счетчиков Гейгера

Советская и теперь российская промышленность выпускает много типов счетчиков Гейгера-Мюллера. Вот несколько распространенных марок: СТС-6, СБМ-20, СИ-1Г, СИ21Г, СИ22Г, СИ34Г, счетчики серии «Гамма», торцевые счетчики серии «Бета » и есть еще множество других. Все они применяются для контроля и измерений радиации: на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту. После чернобыльской аварии, бытовые дозиметры , ранее неизвестные населению даже по названию, стали очень популярными. Появилось много марок бытовых дозиметров. Все они используют именно счетчик Гейгера-Мюллера в качестве датчика радиации. В бытовых дозиметрах устанавливают от одного до двух трубок или торцевых счетчиков.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ВЕЛИЧИН

Долгое время была распространена единица измерения Р (рентген). Однако, при переходе к системе СИ появляются другие единицы. Рентген - это единица экспозиционной дозы, «количество радиации», которое выражается числом образовавшихся ионов в сухом воздухе. При дозе в 1 Р в 1 см3 воздуха образуется 2.082e9 пар ионов (что соответствует 1 единице заряда СГСЭ). В системе СИ экспозиционную дозу выражают в кулонах на килограмм, а с рентгеном это связано уравнением:

1 Кл/кг = 3876 Р

Поглощенная доза излучения измеряется в джоулях на килограмм и называется Грей. Это взамен устаревшей единицы рад. Мощность поглощенной дозы измеряется в греях в секунду. Мощность экспозиционной дозы (МЭД) раньше измерявшаяся в рентгенах в секунду, теперь измеряется в амперах на килограмм. Эквивалентная доза излучения, при которой поглощенная доза составляет 1 Гр (грей) и коэффициент качества излучения 1, называется Зиверт. Бэр (биологический эквивалент рентгена) - это сотая часть зиверта, в настоящее время уже считается устаревшей. Тем не менее, и сегодня очень активно применяются все устаревшие единицы.

Главными понятиями в радиационных измерениях считаются доза и мощность. Доза - это число элементарных зарядов в процессе ионизации вещества, а мощность - это скорость образования дозы за единицу времени. А уж в каких единицах это выражается, это дело вкуса и удобства.

Даже минимальная доза опасна в смысле отдаленных последствий для организма. Расчет опасности достаточно прост. Например, ваш дозиметр показывает 300 миллирентген в час. Если вы останетесь в этом месте на сутки, вы получите дозу 24*0.3 = 7.2 рентген. Это опасно и нужно как можно скорее уходить отсюда. Вообще, обнаружив даже слабую радиацию надо уходить от нее и проверять ее даже на расстоянии. Если она «идет за вами», вас можно «поздравить», вы попали под нейтроны. А не каждый дозиметр может на них отреагировать.

Для источников радиации используют величину, характеризующую число распадов за единицу времени, ее называют активностью и измеряют также множеством различных единиц: кюри, беккерель, резерфорд и некоторыми другими. Величина активности, замеренная дважды с достаточным разносом по времени, если она убывает, позволяет рассчитать время, по закону радиоактивного распада, когда источник станет достаточно безопасным.

Счетчик Гейгера представляет собой вакуумированный баллон с двумя электродами, в который введена газовая смесь, состоящая из легкоионизируемых неона и аргона с небольшой добавкой галогена - хлора или брома.
К электродам прикладывают высокое напряжение, которое само по себе не вызывает каких-либо разрядных явлений (см. рис.).

В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации - след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей.
Первичные электроны, ускоряясь в электрическом поле, ионизируют «по дороге» другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Обратный процесс - возвращение газовой среды в ее исходное состояние - происходит под действием содержащегося в ней галогена, который способствует интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика и фактически определяющий его быстродействие - так называемое «мертвое» время, - является важной паспортной характеристикой счетчика.

Галоген - расходуемая часть газовой среды счетчика. Но эта часть столь велика, что в режиме фонового счета ее хватило бы на столетия (наработка по галогену, например, счетчика СБМ20 составляет не менее 2 10 10 импульсов).
Счетчики такого типа называют галогеновыми самогасящимися. Отличаясь самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α, β, γ, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика зависит от его конструкции.
Чаще встречаются счетчики с цилиндрическим баллоном, выполненным из нержавеющей стали толщиной 0,05....0,06 мм. Баллон в таком счетчике является и его катодом. Спектральная чувствительность такого тонкостенного счетчика ограничена γ- и жестким β-излучением.

Счетчики со стеклянным баллоном чувствительны лишь к γ-излучению (стекло толщиной в 1 мм для β-излучения является почти непреодолимой преградой). Катодом в таких счетчиках служит тонкий проводящий слой, нанесенный на внутреннюю поверхность стекла. Практически полностью теряет чувствительность к β-излучению и счетчик с толстостенным (более 0,2 мм) металлическим баллоном.

В счетчиках Гейгера, предназначенных для регистрации мягкого β-излучения, делают специальные окна из очень тонкой слюды.
Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легкорегистрируемые α-частицы.
Фотонное излучение - ультрафиолетовое, рентгеновское, γ-излучение - счетчики Гейгера воспринимают опосредованно: через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Каждая фиксируемая счетчиком Гейгера частица возбуждает в нем короткий (доли миллисекунды) импульс тока. Число импульсов, возникающих в единицу времени - скорость счета счетчика Гейгера, - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания U пит показан на рис. a.

Здесь:
Uнс - напряжение начала счета;
Umin и Umax - нижняя и верхняя границы рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика.
Рабочее напряжение Up обычно выбирают в середине этого участка.
Ему соответствует N(Up) - скорость счета в этом режиме.
На рис. б приведена зависимость N(Uпит) для счетчика СБМ20, находящегося в поле ионизирующей радиации, примерно в 1000 раз превышающей уровень естественного радиационного фона.

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика.
График этой зависимости имеет почти линейный характер, и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). На рис. 4 приведен график этой зависимости для счетчика СБМ20.
В тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности счетчика приходится по другому его, тоже очень важному параметру - собственному фону.
Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода.

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии (жесткости) ионизирующих частиц.
На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рис. 5
«Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

Не обсуждая вопрос о том, нужна ли высокая точность измерений бытовому радиометру, заметим, что подобные приборы промышленного изготовления отличаются от любительских лишь коррекцией счетчика Гейгера по жесткости. Для этого на него надевают «рубашку» - пассивный фильтр. Этот фильтр должен, во-первых, «отрезать» посторонние излучения (прежде всего, (β-излучение), и, во-вторых, своей приблизительно обратной по отношению к счетчику жесткостной характеристикой скомпенсировать «ход с жесткостью» самого счетчика. Некоторые из промышленных дозиметров учитывают также и спонтанную активность счетчика Гейгера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы - по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α-частиц, электронов, γ-квантов (в счетчике на все эти виды излучения реагирующем), ничем не различаются.
Сами частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

В принципе регулировать радиационную чувствительность счетчика Гейгера можно изменением напряжения питания в пределах от напряжения начала счета до выхода на плато: Uпит € . Но этот режим весьма неустойчив, и в сколько-нибудь серьезных случаях полагаться на него нельзя.

Стабильная регулировка чувствительности возможна лишь в трехэлектродном счетчике Гейгера, в котором от напряжения на управляющем электроде зависят конфигурация и объем пространства, в котором возможны лавинные вспышки. На рис. 6, а показана схема включения такого счетчика, а на рис. 6, б - зависимость его радиационной чувствительности от напряжения на управляющем электроде.



Рис. 8. Включение трехэлектродного счетчика Гейгера (а); зависимость его радиационной чувствительности от напряжения на управляющем электроде (б)

Однако трехэлектродные счетчики Гейгера широкого распространения не получили. Причина в генераторе Uynp. Электроника, учитывающая реальную радиационную чувствительность двухэлектродного счетчика Гейгера, оказалась проще, нежели этот высоковольтный источник.

В бытовых дозиметрических приборах быстродействие счетчика Гейгера не является сколько-нибудь лимитирующим фактором (человек должен обнаружить источник радиации до того, как это быстродействие ему потребуется). Поэтому нет необходимости включать многоанодный счетчик Гейгера так, как это обычно рекомендуют справочники (рис.).
Постоянная времени при прямом объединении даже всех десяти анодов счетчика СБТ10, самого многосекционного из отечественных, остается еще достаточно малой (R n Са = 15 10 6 10 5 10 -12 = 0,75 мс), чтобы практически никак не влиять на результат измерений даже в полях, тысячекратно превышающих уровень естественного радиационного фона.

Есть ли счетчики Гейгера, способные реагировать на α-излучение - одного из самых опасных для человека?

Оценим способность счетчиков, имеющих слюдяные окна (другие можно и не рассматривать), реагировать на α-излучение того же плутония-239 (Еа = 5,16 МэВ). Пробег в воздухе его α-частиц около 3,5 см. Слюда плотностью 2,8 г/см 3 (она плотнее воздуха примерно в 2200 раз) и толщиной 10 мкм (10 -3 см) эквивалентна воздушной «подушке» толщиной 2200 10 -3 = 2,2 см. То есть, счетчик со слюдяным окном 10-микронной толщины сможет обнаружить излучение плутония-239, если сблизится с ним практически вплотную. Во всяком случае, «зазор» между излучателем и счетчиком должен быть меньше 3,5 - 2,2 = 1,3 см.

Из счетчиков отечественного производства слюду примерно такой толщины имеют СБТ7 и СБТ11. Еще тоньше слюда в счетчике СБТ9 (4...5 мкм), но из-за маленького окна (0,2 см 2) его α-чувствительность очень невелика. Но - и это важно! - не равна нулю, как у многих других.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»