Сколько нужно секций радиатора. Снип расчет количества секций радиаторов отопления по объему помещения

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Ватты и секции

Чтобы вычислить количество секций радиаторов отопления, нужно знать два значения:

  • Количество тепла, которое теряется через ограждающие конструкции и которое нам нужно компенсировать;
  • Тепловой поток от одной секции.

Разделив первое значение на втрое, мы получим искомое — количество секций.

О мощности

В расчетах для батарей разных типов принято оперировать такими значениями тепловой мощности на секцию:

  • Биметаллический — 180 ватт;

  • Алюминиевый — 200 ватт.

Как всегда, дьявол кроется в деталях.

Кроме стандартного размера радиаторов (500 мм по осям коллекторов), существуют еще низкие батареи, предназначенные для установки под подоконники нестандартной высоты и создания тепловой завесы перед панорамными окнами. При межосевом расстоянии по коллекторам в 350 мм тепловой поток на секцию уменьшается в 1,5 раза (скажем, для алюминиевого радиатора — 130 ватт), при 200 мм — в 2 раза (для алюминия — 90-100 ватт).

Кроме того, на фактическую теплоотдачу очень сильно влияют:

  1. Температура теплоносителя (читай — температура поверхности отопительного прибора);
  2. Температура в помещении.

Обычно производители указывают тепловой поток для разницы между этими температурами в 70 градусов (скажем, 90/20С). Однако реальные параметры системы отопления часто далеки от максимально допустимых в ней 90-95С: в системе ЦО температура подачи достигает 90С лишь в пик морозов, а в автономном контуре типичная температура теплоносителя и вовсе равна 70С на подаче и 50С на обратном трубопроводе.

Уменьшение дельты температур в два раза (например, с 90/20 до 60/25 градусов) уменьшит мощность секции ровно вдвое. Алюминиевый радиатор будет отдавать не более 100 ватт тепла на секцию, чугунный — не более 80 ватт.

Схемы расчета

Способ 1: по площади

Простейшая схема расчета учитывает только площадь комнаты. Согласно нормам полувековой давности, на один квадратный метр помещения должно приходиться 100 ватт тепла.

Зная тепловую мощность секции, несложно выяснить, сколько радиаторов нужно на 1м2. При мощности 200 ватт на секцию она способна отапливать 2 м2 площади; 1 квадрат помещения соответствует половине секции.

Давайте в качестве примера рассчитаем отопление комнаты размером 4х5 метров для чугунных радиаторов МС-140 (номинальная мощность 140 ватт на секцию) при температуре теплоносителя 70С и температуре в комнате 22С.

  1. Дельта температур между средами равна 70-22=48С;
  2. Отношение этой дельты к стандартной, для которой заявлена мощность в 140 ватт — 48/70=0,686. Значит, реальная мощность в приведенных условиях будет равна 140х0,686=96 ватт на секцию;
  3. Площадь помещения составляет 4х5=20 м2. Расчетная потребность в тепле — 20х100=2000 Вт;
  4. Итоговое количество секций — 2000/96=21 (с округлением до целого значения).

Такая схема предельно проста (особенно если использовать номинальное значение теплового потока), но она не учитывает ряд дополнительных факторов, влияющих на потребность помещения в тепле.

Вот их неполный список:

  • Комнаты могут различаться высотой потолков. Чем выше перекрытие, тем больший объем предстоит отапливать;

Увеличение высоты потолка увеличивает разброс температур на уровне и под потолком. Для того, чтобы получить заветные +20 на полу, воздух под перекрытием 2,5-метровой высоты достаточно прогреть до +25С, а в комнате высотой 4 метра под потолком будут все +30. Рост температуры увеличивает потери тепловой энергии через перекрытие.

  • Через окна и двери в общем случае теряется больше тепла, чем через капитальные стены;

Правило не универсально. Например, тройной стеклопакет с двумя энергосберегающими стеклами по теплопроводности соответствует 70-сантиметровой кирпичной стене. Двойной стеклопакет с одним i-стеклом пропускает на 20% тепла больше, при этом его цена ниже на 70%.

  • Расположение квартиры в многоквартирном доме тоже влияет на потери тепла. Угловые и торцевые комнаты с общими с улицей стенами будут явно холоднее расположенных в центре здания;

  • Наконец, на теплопотерях очень сильно сказывается климатическая зона. В Ялте и Якутске (средняя температура января +4 и -39 соответственно) количество секций радиатора на 1 м2 будет предсказуемо отличаться.

Способ 2: по объему для стандартного утепления

Вот инструкция для зданий, соответствующих требованиям СНиП 23-02-2003, который нормирует тепловую защиту строений:

  • Вычисляем объем помещения;
  • На кубометр берем 40 ватт тепла;
  • Для угловых и торцевых комнат умножаем результат на коэффициент 1,2;
  • На каждое окно добавляем к результату 100 Вт, на каждую ведущую на улицу дверь — 200;

  • Полученное значение умножаем на региональный коэффициент. Его можно взять из приведенной ниже таблицы.
Средняя температура января Коэффициент
0 0,7
-10 1
-20 1,3
-30 1,6
-40 2

Давайте выясним, сколько нужно тепла для нашей комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка в ней равна 3 метрам;
  • Комната — угловая, с двумя окнами;
  • Она расположена в городе Комсомольске-на-Амуре (средняя температура января -25С).

Приступим.

  1. Объем комнаты — 4х5х3=60 м3;
  2. Базовое значение потребности в тепле — 60х40=2400 Вт;
  3. Поскольку комната угловая, умножаем результат на 1,2. 2400х1,2=2880;
  4. Два окна добавляют еще 200 Вт. 2880+200=3080;
  5. С учетом климатической зоны мы используем региональный коэффициент 1,5. 3080х1,5=4620 ватт, что соответствует 23 секциям работающих на номинальной мощности алюминиевых радиаторов.

Теперь мы проявим любопытство и подсчитаем, сколько нужно секций радиатора на 1 м2. 23/20=1,15. Очевидно, расчет тепловой нагрузки по старым СНиП (100 ватт на квадрат, или секция на 2 м2) будет для наших условий чересчур оптимистичным.

Способ 3: по объему для нестандартного утепления

Как рассчитать количество батарей на комнату в здании, не соответствующем требованиям СНиП 23-02-2003 (например, в панельном доме советской постройки или в современном «пассивном» доме с экстремально эффективным утеплением)?

Потребность в тепле оценивается по формуле Q=V*Dt*k/860, где:

  • Q — искомое значение в киловаттах;
  • V — отапливаемый объем;
  • Dt — перепад температур между помещением и улицей;
  • k — коэффициент, определяющийся качеством утепления.

Разность температур рассчитывается между санитарной нормой для жилого помещения (18-22С в зависимости от климатической зоны и расположения комнаты внутри здания) и температурой самой холодной пятидневки года.

Коэффициент утепления можно взять из еще одной таблицы:

В качестве примера мы снова разберем нашу комнату в Комсомольске-на-Амуре, очередной раз уточнив вводные данные:

  • Температура самой холодной пятидневки для этой климатической зоны равна -31С;

Абсолютный минимум ниже и составляет -44С. Однако экстремальные холода длятся недолго и не учитываются в расчетах.

  • Стены дома — кирпичные, толщиной в полметра (два кирпича). Остекление окон — тройное.

Итак:

  1. Объем комнаты нами уже рассчитан ранее. Он равен 60 м3;
  2. Санитарная норма для угловой комнаты и региона с минимумом зимних температур ниже -31С — +22, что в сочетании с температурой самой холодной пятидневки дает нам Dt=(22 — -31)=53;
  3. Коэффициент утепления возьмем равным 1,2;

  1. Потребность в тепле составит 60х53х1,2/860=4,43 КВт, или 22 секции по 200 ватт. Результат примерно равен полученному в предыдущем расчете благодаря тому, что утепление дома и окон соответствует требованиям регламентирующего тепловую защиту зданий СНиП.

Полезные мелочи

На реальную теплоотдачу радиаторов отопления оказывает влияние ряд дополнительных факторов, которые тоже стоит учесть в расчетах:

  • При одностороннем боковом подключении мощность всех секций соответствует номинальной только при их количестве не более 7-10. Дальний край более длинной батареи будет куда холоднее подводок;

Проблема решается диагональным подключением. В этом случае будут равномерно прогреты все секции, независимо от их количества.

  • В большинстве домов новой постройки розливы подачи и обратки отопления расположены в подвале, что подразумевает попарное соединение стояков перемычками на верхнем этаже. Радиатор на обратном стояке всегда будет холоднее радиатора на подаче;
  • Разнообразные экраны и ниши опять-таки уменьшают теплоотдачу отопительного , причем разница с номинальной тепловой мощностью может достигать 50%;

  • Дросселирующая арматура на подводке ограничивает расход воды через радиатор даже в полностью открытом состоянии. Падение тепловой мощности определяется конфигурацией дросселя и обычно составляет 10-15%. Исключение — полнопроходные шаровые и пробковые краны;

  • Радиаторы с боковым односторонним подключением в системе ЦО постепенно заиливаются. По мере заиливания будет падать температура крайних секций.

Для борьбы с грязью батарея периодически промывается через установленный в нижний коллектор крайней секции промывочный кран. Подключенный к нему шланг направляется в канализацию, после чего через него сбрасывается некоторое количество теплоносителя.

Заключение

Как видите, простые схемы расчета отопления не всегда дают точный результат. Узнать больше о методах расчетов вам поможет видео в этой статье. Не стесняйтесь делиться в комментариях собственным опытом. Успехов, камрады!

На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.

Порядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.



Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.

Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.


Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.


В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт батареи. В данном случае вычисления ограничиваются одной простой формулой:

K =S/ U*100

В этой формуле:


Для примера рассмотрим порядок расчета необходимого числа батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.

Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.


Приблизительный расчет для стандартных помещений

Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.

Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.

Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.

Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.


Расчет для нестандартных комнат

Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:

A =Bx 41,

  • А – нужное число секций отопительной батареи;
  • B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.

Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.

Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.

Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных .


Расчет необходимого количества радиаторов для отопления

Максимально точный вариант расчета

Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.

Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.

В целом расчетная формула имеет следующий вид:

T =100 Вт/м 2 * A *B * C * D * E * F * G * S ,

  • где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
  • S – площадь обогреваемой комнаты.

Остальные коэффициенты нуждаются в более подробном изучении. Так, коэффициент А учитывает особенности остекления помещения .


Значения следующие:

  • 1,27 для комнат, окна которых остеклены просто двумя стеклами;
  • 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
  • 0,85 – если окна имеют тройной стеклопакет.

Коэффициент В учитывает особенности утепления стен помещения .


Зависимость следующая:

  • если утепление низкоэффективное, коэффициент принимается равным 1,27;
  • при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором) , используется коэффициент равный 1,0;
  • при высоком уровне утепления – 0,85.

Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.


Зависимость выглядит так:

  • при соотношении равном 50% коэффициент С принимается как 1,2;
  • если соотношение составляет 40%, используют коэффициент равный 1,1;
  • при соотношении равном 30% значение коэффициента уменьшают до 1,0;
  • в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).

Коэффициент D указывает на среднюю температуру в наиболее холодный период года .


Зависимость выглядит так:

  • если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
  • при температуре до -25 градусов используется значение 1,3;
  • если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
  • жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
  • если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.

Коэффициент E указывает на количество внешних стен.


Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.

Коэффициент F учитывает особенности вышерасположенно й комнаты . Зависимость такова:

  • если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
  • если чердак отапливаемый – 0,9;
  • если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.

И последний коэффициент формулы – G – учитывает высоту помещения.


Порядок следующий:

  • в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
  • если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
  • при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
  • комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
  • при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.

Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.

Перед началом отопительного сезона остро встает проблема хорошего и качественного отопления жилища. Тем более если производится ремонт и меняются батареи. Ассортимент отопительного оборудования достаточно богат. Батареи предлагаются разных мощностей и типов исполнения. Поэтому необходимо знать особенности каждого вида, чтобы правильно подобрать количество секций и тип радиатора.

Что такое радиаторы отопления и какой стоит выбрать?

Радиатор представляет собой отопительный прибор, состоящий из отдельных секций, которые соединены между собой трубами. По ним циркулирует теплоноситель, который чаще всего представляет собой простую воду, нагретую до необходимой температуры. В первую очередь радиаторы служат для отопления жилых помещений. Существуют несколько типов радиаторов, и сложно выделить лучший или худший. Каждая разновидность имеет свои преимущества, которые в основном представляет материал, из которого изготовлен отопительный прибор.

  • Чугунные радиаторы. Несмотря на некоторую критику в их адрес и безосновательные утверждения, что чугун обладает более слабой теплопроводностью, нежели другие разновидности - это не совсем так. Современные радиаторы из чугуна обладают высокой тепловой мощностью и компактностью. Кроме этого, им свойственны и другие плюсы:
    • Большая масса является недостатком при транспортировке и доставке, но при этом вес приводит к большей теплоемкости и тепловой инерционности.
    • В случае, если в доме наблюдаются перепады температуры теплоносителя в системе отопления, чугунные радиаторы лучше держат уровень тепла за счет инерционности.
    • Чугун слабо восприимчив к качеству и уровню засорения воды и ее перегреву.
    • Долговечность чугунных батарей превосходит все аналоги. В некоторых домах еще наблюдаются старые батареи советских времен.

Из недостатков чугуна важно знать про следующие:

  • большой вес обеспечивает определенное неудобство при обслуживании и установке батарей, а также требует надежных монтажных крепежей,
  • чугун периодически нуждается в покраске,
  • поскольку внутренние каналы имеют шершавую структуру, на них со временем появляется налет, который приводит к падению теплоотдачи,
  • чугун требует большей температуры для нагрева и в случае слабой подачи или недостаточной температуры разогретой воды батареи хуже отапливают помещение.

Еще одним недостатком, который стоит выделить отдельно - является тенденция разрушения прокладок между секциями. Это проявляется по оценкам специалистов лишь спустя 40 лет эксплуатации, что в свою очередь еще раз подчеркивает одно из преимуществ чугунных радиаторов - их долговечность.

  • Алюминиевые батареи считается оптимальным выбором, поскольку обладают высокой теплопроводностью в сочетании с большей площадью поверхности радиатора за счет выступов и ребер. В качестве их достоинств выделяют следующие:
    • малый вес,
    • простота в монтаже,
    • высокое рабочее давление,
    • небольшие габариты радиатора,
    • высокая степень теплоотдачи.

К недостаткам алюминиевых радиаторов относят их чувствительность к засорению и коррозию металла в воде, особенно в случае, если на батарею воздействуют малые блуждающие токи. Это чревато возрастанием давления, что способно привести к разрыву отопительной батареи.

Чтобы исключить риск, внутреннюю часть батареи покрывают полимерным слоем, способным предохранить алюминий от непосредственного контакта с водой. В том же случае, если батарея не имеет внутреннего слоя - крайне не рекомендуется перекрывать краны с водой в трубах, поскольку это может вызвать разрыв конструкции.

  • Хорошим выбором станет покупка биметаллического радиатора, состоящего из сплавов алюминия и стали. Такие модели обладают всеми достоинствами алюминиевого, при этом недостатки и опасность разрыва устранены. Нужно учитывать, что и их цена соответственно выше.
  • Стальные радиаторы выпускаются разных форм-факторов, что позволит выбрать прибор любой мощности. Они обладают следующими недостаткам:
    • невысокое рабочее давление, как правило, составляющее показатель всего до 7 атм,
    • максимальная температура теплоносителя не должна превышать 100°С,
    • отсутствие защиты от коррозии,
    • слабая тепловая инерционность,
    • чувствительность к перепадам рабочих температур и гидравлическим ударам.

Стальные радиаторы характеризуются большой площадью нагревательной поверхности, что стимулирует движение нагретого воздуха. Эту разновидность радиаторов целесообразнее отнести к конвекторам. Поскольку стальной обогреватель имеет больше недостатков, нежели достоинств - при желании купить радиатор подобного типа стоит вначале обратить внимание на биметаллические конструкции либо же на чугунные батареи.

  • Последняя разновидность - это масляные радиаторы. В отличие от остальных моделей, масляные представляют собой независимые от общей центральной системы отопления приборы и их чаще приобретают в качестве дополнительного мобильного отопительного прибора. Как правило, достигает максимальной отопительной мощности уже через 30 минут после нагрева, и в целом, представляют собой весьма полезное устройство, особенно актуальное в загородных домах.

При выборе радиатора важно обращать внимание именно на их срок службы и условия эксплуатации. Нет необходимости экономить и покупать дешевые модели алюминиевых радиаторов без полимерного покрытия, поскольку они сильно подвержены коррозии. По сути, наиболее предпочтительным вариантом по-прежнему остается чугунный радиатор. Продавцы стремятся навязать покупку именно алюминиевых конструкций, делая упор на то, что чугун устарел - однако это не так. Если сравнить многочисленные отзывы по типам батарей, именно чугунные отопительные батареи по-прежнему остаются самым правильным капиталовложением. Это не означает, что стоит хранить приверженность старым ребристым моделям МС-140 эпохи Страны Советов. На сегодняшний момент на рынке предлагается значительный ассортимент компактных чугунных радиаторов. Начальная цена одной секции чугунной батареи стартует от $7. Для любителей эстетики доступны в продаже радиаторы, представляющие собой целые художественные композиции, но их цена значительно выше.

Необходимые значения для расчета количества радиаторов отопления

Прежде чем приступать к расчету, необходимо знать основные коэффциенты, которые используются при определении требуемой мощности.

Остекление: (к1)

  • тройной энергосберегающий стеклопакет = 0,85
  • двойной энергосберегающий = 1,0
  • простой стеклопакет = 1,3

Теплоизоляция: (к2)

  • бетонная плита со слоем пенополистирола толщиной в 10 см = 0,85
  • кирпичная стена толщиной в два кирпича = 1,0
  • обычная бетонная панель - 1,3

Отношение к площади окон: (к3)

  • 10% = 0,8
  • 20% = 0,9
  • 30% = 1,0
  • 40% = 1,1 и т.д.

Минимальная температура снаружи помещения: (к4)

  • - 10°С = 0,7
  • - 15°С = 0,9
  • - 20°С = 1,1
  • - 25°С = 1,3

Высота потолков помещения: (к5)

Коэффициент отапливаемого помещения = 0,8 (к6)

Количество стен: (к7)

  • одна стена = 1,1
  • угловая квартира с двумя стенами = 1,2
  • три стены = 1,3
  • отдельный дом с четырьмя стенами = 1,4

Теперь, чтобы определить мощность радиаторов, нужно перемножить показатель мощности на площадь помещения и на коэффициенты по этой формуле: 100 Вт/м2*Sпомещ*к1*к2*к3*к4*к5*к6*к7

Существует много методик расчетов, из которых стоит выбрать более удобную. О них речь пойдет далее.

Сколько нужно радиаторов отопления?

  • первый способ стандартный, и позволяет произвести расчет по площади. К примеру, согласно строительных нормативов на обогрев одного квадратного метра площади нужно 100 Ватт мощности. Если помещение имеет площадь 20 м², а средняя мощность одной секции 170 Ватт, то расчет станет иметь такой вид:

20*100/170 = 11,76

Полученное значение необходимо округлять в большую сторону, поэтому для обогрева одной комнаты понадобится батарея с 12 секциями радиатора по с мощностью 170 Ватт.

  • примерный метод подсчета даст возможность определить необходимое количество секций, исходя из площади помещения и высоты потолков. В таком случае, если брать за основу показатель обогрева одной секции в 1,8 м² и высоту потолка в 2,5 м, то тогда при таком же размере комнаты расчет 20/1,8 = 11,11 . Округляя этот показатель в большую сторону, получаем 12 секций батареи. Необходимо отметить, что этот метод отличается большей погрешностью, поэтому его использовать не всегда целесообразно.
  • третий метод основан на подсчете объема помещения. К примеру, комната имеет 5 м в длину, 3,5 в ширину, и высоту потолков 2,5 м. Взяв за основу факт, что для обогрева 5 м3 требуется одна секция с тепловой мощностью в 200 Ватт, получаем такую формулу:

(5*3,5*2,5)/5 = 8,75

Вновь округляем в большую сторону и получаем, что для обогрева комнаты нужно 9 секций по 200 Ватт каждая, либо же 11 секций по 170 Ватт.

Важно помнить, что указанные методы имеют погрешность, поэтому лучше устанавливать количество секций батарей на одну больше. Кроме того, строительные нормы предполагают минимальные показатели температуры в помещении. Если необходимо создать жаркий микроклимат, то к полученному числу секций рекомендуют добавить еще не менее пяти.

Расчет требуемой мощности для радиаторов

  • определяется объем комнаты. К примеру, площадь 20 м и высота потолков 2,5 м:

После повышения показателя в большую сторону, получается требуемое значение мощности радиатора в 2100 Ватт. Для условий холодной зимы с температурой воздуха ниже -20°С имеет смысл дополнительно учесть запас мощности, равный 20%. В таком случае требуемая мощность составит 2460 Ватт. оборудование такой тепловой мощности и надлежит искать в магазинах.

Правильно рассчитать радиаторы отопления можно и с помощью второго примера расчета, основанного на учете площади комнаты и коэффициента на количество стен. Для примера берется одна комната площадью 20 м² и одной наружной стеной. В таком случае расчеты имеют подобный вид:

20*100*1,1 = 2200 Ватт , где 100 - это нормативная тепловая мощность. Если брать мощность одной секции радиатора в 170 Ватт, то получается значение 12,94 - то есть, нужно 13 секций по 170 Ватт каждая.

Важно обратить внимание на тот факт, что нередким явлением становится завышение теплоотдачи, поэтому перед покупкой радиатора отопления необходимо изучить технический паспорт, чтобы узнать минимальное значение теплоотдачи.

Как правило, нет необходимости в том, чтобы рассчитать площадь радиатора, вычисляется необходимая мощность или тепловое сопротивление, и затем уже подходящую модель выбирают из предлагаемого продавцами ассортимента. В том случае, если требуется точный расчет, то правильнее обратится к специалистам, поскольку понадобится знание параметров состава стен и их толщины, соотношение площади стен, окон и климатический условий местности.

Чугунные радиаторы ценятся за свою надежность, неприхотливость, простоту конструкции .

Они имеют высокую устойчивость к коррозии и незаменимы в открытых системах с большим содержанием кислорода в воде.

Тепловая инерционность чугунных приборов отопления обеспечивает стабильность температурного режима в помещении при резких колебаниях параметров теплоносителя в централизованных системах отопления.

При расчете необходимого количества секций пользуются двумя способами - упрощенным и точным.

Упрощенный метод расчёта количества секций чугунных батарей

Существует несколько формул для расчёта количества радиаторов отопления.

На квадратный метр площади, таблица

Методика основана на утверждении, что для обогрева 1 м² жилой площади комнаты в средней полосе России необходимо 100 Вт тепловой мощности прибора отопления.

Фото 1. Вариант расчёта количества чугунных радиаторов на квадратный метр площади в жилом помещении.

Количество секций радиатора рассчитывается по формуле (1):

N = (100 х S )/Q (1)

  • N
  • S — площадь комнаты, м²;
  • Q — теплоотдача одной секции , Вт.

При нестандартных температурах теплоносителя

Тепловая мощность одной секции радиатора указана в паспорте для стандартных значений температуры на входе Тпод = 90ºС и выходе прибора Тобр = 70ºС .

Если в системе отопления частного дома температура теплоносителя имеет другие значения, то теплоотдача секции Q рассчитывается по формуле (2) :

Q = K х ∆ Т (2)

  • K — приведенный коэффициент, зависящий от физических характеристик секции радиатора;
  • Т — температурный перепад, рассчитываемый по формуле (3) :

Т = 0,5 х (Тпод + Тобр ) — Тпом (3)

  • Тпод — температура на входе прибора отопления;
  • Тобр — температура на выходе;
  • Тпом — требуемая температура в комнате (20ºС ).

Расчет значения Q при заданных температурах теплоносителя на входе и выходе прибора отопления выполняется в следующей последовательности:

  1. Рассчитывается величина приведенного коэффициента К из формул (2), (3) для известных паспортных величин Q при стандартных Тпод = 90ºС , Тобр = 70ºС .
  2. Определяется перепад ∆ Т по формуле (3) для реальных параметров Тпод и Тобр.
  3. Вычисляется Q по формуле (2) .

Фото 2. Чугунный радиатор, установленный в жилом помещении. Устройство украшено декоративной ковкой.

При нестандартной высоте потолков

Формула (1) справедлива при стандартной высоте комнаты — от 2,5 до 3 м . При иных значениях высоты помещения пользуются формулой (4) :

N = (H х Y х S )/Q (4)

  • N — количество секций (с округлением до ближайшего целого числа);
  • H — высота комнаты, м;
  • Y — удельная мощность, равная 41 Вт/м³ для панельных домов из железобетона или 34 Вт/м³ для кирпичных построек или частных домов с наружным утеплением;
  • S — площадь помещения, м²;
  • Q — теплоотдача одной секции, Вт.

Как точно рассчитать количество радиаторов отопления?

За основу методики взята формула (1) с коэффициентами, учитывающими климатические особенности местности и параметры конструкций здания, от которых зависят теплопотери в рассчитываемом помещении.

Количество секций радиатора N при точном расчете определяется по формуле (5) :

N = K1 х K2 х K3 х K4 х K5 х K6 х K7 х K8 х K9 х K10 х (100 х S )/Q (5)

  • N — количество секций (с округлением до ближайшего целого числа);
  • S — площадь комнаты, м²;
  • Q —тепловая мощность одной секции , Вт.
  • K1 K10 поправочные коэффициенты.

К1 - на число внешних стен в помещении

Коэффициент К1 равен:

  • 0,8 - помещение внутреннее;
  • 1,0 - комната с одной наружной стеной;
  • 1,2 - помещение угловое — две перегородки с улицей;
  • 1,4 - три стены на улицу.

К2 - на ориентацию по сторонам света

От расположения наружных перегородок в помещении зависит степень их нагрева солнечными лучами. Коэффициент К2 равен:

  • 1,1 - наружные стены ориентированы на восток или север;
  • 1,0 - стены комнаты «смотрят» на запад или юг.

Вам также будет интересно:

К3 - на степень утепленности стен

От характеристик утеплителя зависит термическое сопротивление стены, влияющее на теплопотери помещения. Коэффициент К3 равен:

  • 1,27 - наружная стена не утеплена;
  • 1,0 - перегородки комнаты в два кирпича без утеплителя;
  • 0,85 - стена с утеплителем, расчетное значение термического сопротивления всей стены соответствует нормам по СНиП.

Проверка соответствия нормам СНиП термического сопротивления стены, как многослойной конструкции, выполняется в следующей последовательности:

  1. Для каждого слоя рассчитывается свое термическое сопротивление R i по формуле (6) :

R i = h / λ (6)

  • h - толщина слоя, м;
  • λ - коэффициент теплопроводности одного слоя.
  1. Полученные значения сопротивлений всех слоев суммируются.
  2. Вычисленная сумма сравнивается с нормированным значением для данной местности.

К4 - на особенности климатических условий региона

Этот коэффициент зависит от того, в какой климатической зоне расположен дом. В зависимости от средней температуры Tср за пять самых холодных зимних дней коэффициент К4 равен:

  • 1,5 : Тср ≤ -35°C ;
  • 1,3: -30 °C ≥Тср > -35 °C ;
  • 1,2: -25°C ≥ Тср > -30 °C ;
  • 1,1: -20°C ≥ Тср > -25 °C ;
  • 1,0: -15°C ≥Тср > -20 °C ;
  • 0,9: -10°C ≤Тср > -15 °C ;
  • 0,7: Тср > -10 °C .

К5 - коэффициент высоты потолков

В зависимости от высоты Н потолков помещения величина коэффициента К5 равна:

  • 1,0: H < 2,7 м ;
  • 1,05: 2,7 м ≤ H < 3,0 м ;
  • 1,1: 3,0 м ≤ H < 3,5 м ;
  • 1,15: 3,5 м ≤ H < 4,0 м ;
  • 1,2: H 4,0 м .

К6 - на тип помещения, расположенного выше

Величина коэффициента К6 равна:

  • 1,0 - сверху комнаты — неутепленный чердак или крыша;
  • 0,9 - выше помещения — утепленный чердак;
  • 0,8 - верхнее помещение — отапливаемое.

К7 - на виды установленных окон

В зависимости от вида остекления коэффициент К7 равен:

К8 - на площадь остекления

Расчет коэффициента К8 :

  1. Вычисляют суммарную площадь всех окон в комнате.
  2. Делят полученное число на площадь помещения, получают приведенное значение Sпр .

В зависимости от величины Sпр величина коэффициента К8 равна:

  • 0,8: 0 0,1;
  • 0,9: 0,11 0,2;
  • 1,0: 0,21 0,3;
  • 1,1: 0,31 0,4;
  • 1,2: 0,41 0,5.

При проектировании систем отопления обязательным мероприятием является проведение расчётов мощности отопительных приборов. Полученный результат в большей степени влияет на выбор того или иного оборудования – радиаторов отопления и нагревательных котлов (если проект выполняется для частных домов, не подключенных к центральным системам отопления).

Наибольшей популярностью в данный момент пользуются батареи, выполненные в виде соединённых между собой секций. В данной статье речь как раз и пойдёт о том, как рассчитать количество секций радиатора.

Способы расчета количества секций батареи

Для того чтобы выполнить расчет количества секций радиаторов отопления, можно воспользоваться тремя основными способами. Первые два – достаточно лёгкие, но они дают лишь приблизительный результат, который подходит для типовых помещений многоэтажных домов. Сюда относится расчет секций радиаторов по площади помещения или по его объёму. Т.е. в этом случае достаточно узнать нужный параметр (площадь или объём) помещения и вставить его в соответствующую формулу для вычисления.

Третий способ предполагает использование для расчётов множества различных коэффициентов, определяющих теплопотери помещения. Сюда относятся размеры и тип окон, этаж, тип утепления стен, высота потолков и другие критерии, влияющие на теплопотери. Потеря тепла может также происходить и по различным причинам, связанными с ошибками и недочётами при строительстве дома. Например, внутри стен имеется полость, слой утеплителя имеет трещины, брак в строительном материале и т.д. Таким образом, поиск всех причин утечки тепла – одно из обязательных условий для выполнения точного расчёта. Для этого используются тепловизоры, отображающие на мониторе места утечки тепла из помещения.

Всё это делается для того, чтобы подобрать такую мощность радиаторов, которая компенсирует суммарное значение теплопотерь. Рассмотрим каждый способ расчёта секций батарей по отдельности и приведём для каждого из них наглядный пример.

Расчет количества секций радиатора по площади помещения

Данный способ является наиболее простым. Для получения результата потребуется перемножить площадь помещения на значение мощности радиатора, требуемой для обогрева 1кв.м. Это значение приведено в СНиП, и составляет оно:

  • 60-100Вт для средней климатической зоны России (Москва);
  • 120-200Вт для районов, расположенных севернее.

Расчет секций радиаторов согласно усреднённому параметру мощности осуществляется путём его умножения на значение площади помещения. Так, 20 кв.м. потребуют для обогрева: 20*60 (100)=1200 (2000)Вт

Далее, полученное число необходимо разделить на значение мощности одной секции радиатора. Чтобы узнать, на какую площадь рассчитана 1 секция радиатора, достаточно открыть техпаспорт оборудования. Допустим, что мощность секции равна 200Вт, а требуемая для обогрева общая мощность составляет 1600Вт (возьмём среднее арифметическое). Остаётся только уточнить, сколько нужно секций радиатора на 1 м2. Для этого разделим значение требуемой мощности для обогрева на мощность одной секции: 1600/200 =8

Результат: для обогрева помещения площадью 20 кв. м. потребуется 8-секционный радиатор (при условии, что мощность одной секции составляет 200Вт).

Расчет секций радиаторов отопления по значению площади помещения даёт лишь приблизительный результат. Чтобы не ошибиться с количеством секций, лучше всего производить расчёты при условии, что для обогрева 1 кв.м. требуется мощности в 100Вт.

Это, как следствие, увеличит общие затраты на монтаж системы отопления, а потому проведение такого расчёта не всегда уместно, особенно при ограниченном бюджете. Более точный, но, всё такой же, приблизительный результат даст следующий способ.

Способ данного расчёта аналогичен предыдущему, за исключением того, что теперь из СНиП потребуется узнать значение мощности для обогрева не 1 кв.м., а кубометра помещения. Согласно СНиП – это:

    41Вт для обогрева помещений зданий панельного типа;34Вт для кирпичных домов.

В качестве примера возьмём то же помещение площадью в 20 кв. м., и зададим условную высоту потолка – 2,9м. В этом случае объём будет равен: 20*2,9 =58 кубометров

Из этого: 58*41 =2378 Вт для панельного дома 58*34 =1972 Вт для кирпичного дома

Разделим полученные результаты на значение мощности одной секции. Итого: 2378/200 =11,89 (панельный дом) 1972/200 =9,86 (кирпичный дом)

Если округлять до большего числа, тогда для обогрева помещения в 20 кв. м. панельного понадобятся 12-секционные, а для кирпичного дома 10-секционные радиаторы. И эта цифра также является приблизительной. Чтобы с высокой точностью рассчитать, сколько секций батарей нужно для отопления помещений, необходимо воспользоваться более сложным способом, который будет рассмотрен далее.

Для проведения точного расчёта в общую формулу вводятся специальные коэффициенты, которые могут, как увеличивать (коэффициент увеличения) значение минимальной мощности радиатора для обогрева помещения, так и понижать его (коэффициент понижения).

На самом деле, факторов, влияющих на значение мощности, множество, но мы будем использовать наиболее те, которые легко вычислить и с которыми легко оперировать. Коэффициент зависит от значений следующих параметров помещения:

  1. Высота потолков:
    • При высоте в 2,5м коэффициент составляет 1;
    • При 3м – 1,05;
    • При 3,5м – 1,1;
    • При 4м – 1,15.
  2. Тип остекления окон в помещении:
    • Простое двойное стекло – коэффициент равен 1,27;
    • Стеклопакет из 2 стёкол – 1;
    • Тройной стеклопакет – 0,87.
  3. Процент площади окна от общей площади помещения (для простоты определения можно разделить площадь окна на площадь помещения и умножить затем на 100):
    • Если результат вычислений равен 50%, берётся коэффициент 1,2;
    • 40-50% – 1,1;
    • 30-40% – 1;
    • 20-30% – 0,9;
    • 10-20% – 0,8.
  4. Теплоизоляция стен:
    • Низкий уровень теплоизоляции – коэффициент равен 1,27;
    • Хорошая теплоизоляция (кладка в два кирпича или утеплитель 15-20см) – 1.0;
    • Повышенная теплоизоляция (стена толщиной от 50см или утеплитель от 20см) – 0,85.
  5. Среднее значение минимальной температура зимой, которая может продержаться неделю:
    • -35 градусов – 1,5;
    • -25 – 1,3;
    • -20 – 1,1;
    • -15 – 0,9;
    • -10 – 0,7.
  6. Количество наружных (торцевых) стен:
  7. Тип помещения над отапливаемым помещением:

Отсюда понятно, что если коэффициент выше единицы, то он считается повышающим, если ниже – понижающим. Если в его значении стоит единица, то он никак не влияет на результат. Чтобы произвести расчёт, необходимо умножить каждый из коэффициентов на значение площади помещения и усреднённую удельную величину тепловых потерь на 1 кв.м., которая составляет (согласно СНиП) 100Вт.

Таким образом, мы имеем формулу: Q_T= γ*S*K_1*…*K_7,где

  • Q_T – требуемая мощность всех радиаторов для обогрева помещения;
  • γ – средняя величина теплопотерь на 1 кв.м., т.е. 100Вт; S – общая площадь помещения; K_1…K_7 – коэффициенты, влияющие на величину тепловых потерь.
  • Площадь помещения – 18 кв.м.;
  • Высота потолка – 3м;
  • Окно с обычным двойным стеклом;
  • Площадь окна 3 кв.м., т.е. 3/18*100 = 16,6%;
  • Теплоизоляция – двойной кирпич;
  • Минимальная температура на улице в течение недели подряд -20 градусов;
  • Одна торцевая (внешняя) стена;
  • Помещение сверху – отапливаемая жилая комната.

Теперь заменим буквенные значения на числовые и получим: Q_T= 100*18*1,05*1,27*0,8*1*1,3*1,1*0,85≈2334 Вт

Осталось разделить результат на значение мощности одной секции радиатора. Допустим, что на равна 160Вт: 2334/160 =14,5

Т.е. для обогрева помещения площадью в 18 кв.м. и приведёнными коэффициентами тепловых потерь потребуется радиатор с 15 секциями (округлим в большую сторону).

Существует ещё один несложный способ того, как рассчитать секции радиаторов, ориентируясь на материал их изготовления. На самом деле, этот метод не даёт точного результата, однако помогает прикинуть примерное количество секций батарей, которые потребуется задействовать в помещении.

Отопительные батареи принято разделять на 3 типа в зависимости от материала их изготовления. Это биметаллические, в которых используется металл и пластик (обычно в качестве внешнего покрытия), чугунные и алюминиевые радиаторы отопления. Расчёт количества секций батарей, выполненных из того или иного материала, одинаков во всех случаях. Здесь достаточно воспользоваться усреднённым значением мощности, которую может выдать одна секция радиатора, и значением площади, которую данная секция способна прогреть:

  • Для алюминиевых батарей – это 180Вт и 1,8 кв. м;
  • Биметаллических – 185Вт и 2 кв.м.;
  • Чугунных – 145Вт и 1,5 кв.м.

Используя простой калькулятор, расчёт количества секций радиаторов отопления можно произвести путём разделения площади помещения на значение площади, которую способна прогреть одна секция радиатора из интересующего нас металла. Возьмём помещение в 18 кв. м. Тогда получаем:

  • 18/1,8 = 10 секций (алюминий);
  • 18/2 = 9 (биметалл);
  • 18/1,5 = 12 (чугун).

Площадь, которую способна прогреть одна секция радиатора, не всегда указывается. Обычно производители указывают её мощность. В этом случае потребуется вычислить общую мощность, требуемую для обогрева помещения, любым из приведённых выше способов. Если брать расчёт по площади и мощность, необходимую для прогрева 1 кв.м., в 80Вт (согласно СНиП), тогда получим: 20*80=1800/180 =10 секций (алюминий); 20*80=1800/185 =9,7 секций (биметалл); 20*80=1800/145 =12,4 секций (чугун);

Округлив десятичные числа в одну из сторон, мы получим примерно одинаковый результат, как и в случае расчётов по площади.

Важно понимать, что вычисление количества секций по металлу изготовления радиатора – это самый неточный метод. Он может помочь определиться с выбором в пользу той или иной батареи, и ни с чем другим.

И напоследок совет. Практически каждый производитель отопительного оборудования или интернет-магазин на своём сайте размещает специальный калькулятор для расчёта количества секций радиаторов отопления. Достаточно ввести в него требуемые параметры, и программа выдаст на выходе нужный результат. Но, если вы не доверяете роботу, то вычисления, как можно заметить, достаточно легко произвести и самостоятельно даже на листе бумаги.

Остались вопросы? Позвоните или напишите нам!

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»