Стабилизатор напряжения на транзисторах. Мощный стабилизатор напряжения с защитой от кз Защита интегральных стабилизаторов от кз

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Стабилизатор напряжения на lm317

После выхода из строя старенького СН, аналогичного описанному в , изготовленного еще в студенческие годы, работать стало тяжеловато. Посетив любимый радиорынок Караваевы дачи в надежде на что-то недорогое, несложное с достойными параметрами и минимумом деталей, автор остановился на КР142ЕН12А, импортный аналог LM317. Поскольку стабилизатор напряжения на ИМС КР142ЕН12А не имеет защиты от КЗ, пришлось немного доработать его.

Схема модернизированного СН показано на рисунке, внешний вид представлен на сайте. В стандартной схеме включения КР142ЕН12А при верхнем положении движка регулировочного резистора R5 (низкий потенциал) микросхеме имеет минимальное выходное напряжение 1,2 В. При высоком потенциале — максимальное 37В. Максимальный ток стабилизации 1,5 А.

Защита от КЗ работает следующим образом: при протекании тока нагрузки (в авторском варианте более 1,1 А) на резисторе R6 увеличивается падение напряжения, соответственно увеличивается ток светодиода оптрона U1, что ведет к открытию тиристора оптопары и транзистора VT1. При открытии транзистора на выводе 1 стабилизатора DA1 низкий потенциал, СН переходит в режим минимального выходного напряжения. Ток, протекающий через тиристор оптрона U1, достаточен для поддержания его в открытом состоянии.

Светодиоды VD1 (зеленого цвета свечения) и VD2 (красного цвета свечения) служат для индикации включения стабилизатора напряжения и режима защиты при КЗ соответственно. Кнопка SA1 служит для возврата СН в рабочий режим. Недостатком конструкции является неполное отключение выходного напряжения стабилизатора. Сэкономив на площади рассеивания радиатора DA1 посредством установки на радиатор небольшого кулера от процессора ПК, автор получил достойную замену вышедшей из строя конструкции.

Детали. В стабилизаторе применены резисторы МЛТ-0,25, резистор R6 — С5- 16В. Конденсаторы импортного производства. Светодиоды малогабаритные импортные. Оптрон U1 – АОУ103 с любым буквенным индексом.

Наладка. После проверки правильности монтажа включают устройство. (На рис. 1 не показаны трансформатор и диодный мост.) Проверяют диапазон регулирования выходного напряжения, затем, подключив нагрузочное сопротивление (порядка 20 Ом), постепенно увеличивают выходное напряжение от 1,2В до максимума. Амперметром контролируют ток срабатывания защиты. Может понадобиться изменение сопротивления резистора R6, а резистор R7 может быть исключен из схемы. В зависимости от типов светодиодов VD1 и VD2 возможно придется подобрать сопротивления резисторов R1, R2.



Предлагаем заказать в нашем интернет магазине популярные стабилизирующие устройства с энергосберегающим режимом управления и полностью автоматической системой устранения внештатных ситуаций в электрической сети. Главными предусмотренными у данных марок Энергия и Вольтрон задачами является: безотказная защита от короткого замыкания, высокоскоростное выравнивание повышенного и пониженного электропитания в бытовых, а также промышленных потребительских сетях и решение проблем связанных с непредсказуемыми кратковременными перегрузками. Официальный производитель российского рекомендуемого оборудования для электросети 220В, 380В - компания «ЭТК Энергия». Точность стабилизации у некоторых бытовых линеек составляет всего ±3% и ±5%, благодаря чему они идеально будут работать даже с медицинскими высокоточными приборами. Купить стабилизатор напряжения с защитой от КЗ можно в Москве, Санкт-Петербурге и области. Многие предлагаемые к покупке отечественные однофазные и трёхфазные марки Энергия и Voltron отлично подходят для простой и высокочувствительной современной электротехники ещё и потому, что располагают плавной автоматической регулировкой опасных на входе скачков и просадок. Лучшими электроприборами российского производства на данный момент времени считаются новые усовершенствованные модели с чистой синусоидальной формой сигнала, а именно: Энергия Гибрид, Classic и Ultra. Также стоит отметить, что в процессе функционирования этих линеек совершенно отсутствует мерцание лампочек. Универсальный корпус автоматических аппаратов Энергия Классик, Ультра, Гибрид U и Voltron РСН предусматривает кроме напольной стандартной эксплуатации и компактную настенную установку.

Однофазные и трёхфазные стабилизаторы напряжения с защитой от КЗ широко представленные у нас на сайте на сегодня пользуются огромным покупательским спросом для высокоэффективной и долговечной защиты различной отдельной маломощной техники и всего дома, квартиры, офиса, загородной дачи, учебных, развлекательных и медицинских учреждений, промышленных и других объектов, где часто возникают проблемы в 1-фазной или 3-фазной сети. Модельный ряд состоит из аппаратов среднего и премиум класса с максимальными предусмотренными производителем мощностями на 1, 2, 3, 5, 8, 10, 15, 20 и 30 кВт (кВа). Поэтому у нас вы сможете выбрать подобное электрооборудование даже для безопасности самого большого коттеджа или производственного помещения с большим количеством используемых потребителей. Купить стабилизатор напряжения с защитой от КЗ в Москве, СПБ вы можете у нас по доступной цене. По типу выравнивания некачественного электроснабжения в бытовой электросети имеются релейные, электронные (тиристорные) и электромеханические российские сетевые приборы. Почти все серии обладают высокими техническими характеристиками и дополнительно оснащены системой самодиагностики для тщательного отслеживания состояния электроснабжения на входе и выходе. Для непрерывного применения в условиях отрицательных внешних температур (до -20, -30 градусов Цельсия) окружающей среды есть специальные морозостойкие модели. Следить за важными параметрами в сети позволяет цифровой дисплей. У нас вы сможете подобрать качественное и очень надёжное малошумное и абсолютно бесшумное сетевое оборудование с многоуровневой защитой от аварийных сбоев. Гарантия 1-3 года. Заявленный производителем срок назначенной работы на большинство наших сертифицированных электроприборов составляет не менее 10 лет. Все устройства могут использоваться круглосуточно.

Стабилизатор тока с защитой от КЗ

Защита стабилизатора тока от перегрузки

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема регулируемого стабилизатора тока взята из статьи . Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье .

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.

В транзисторных стабилизаторах наиболее часто применяются три вида защиты: от повышения выходного напряжения, от понижения выходного напряжения, от перегрузки по току или короткого замыкания в нагрузке.

Защита от перегрузки по току в стабилизаторах может быть выполнена с ограничением на постоянном уровне I К.З. превышающем значение I НОМ или же с резким уменьшением тока потребления до I К.З.0 в режиме короткого замыкания. В первом случае режим перегрузки по току характеризуется большей мощностью, выделяемой на регулирующем транзисторе. Поэтому в таких случаях обычно выключают напряжение питания на входе стабилизатора. Во втором случае рассеиваемая мощность на транзисторе при коротком замыкании значительно меньше мощности при номинальном токе нагрузки. Поэтому выключение питания в такой схеме не обязательно.

У традиционных транзисторных стабилизаторов нередко ненадежна защита от перегрузки. Безынерционные системы защиты ложно срабатывают даже от кратковременных перегрузок при подключении емкостной нагрузки. Инерционные же средства защиты не успевают сработать при сильном импульсе тока, например, при коротком замыкании приводящем к пробою транзисторов, Устройства с ограничителем выходного тока - безынерционны в них отсутствует триггерный эффект, но при коротком замыкании на регулирующем транзисторе рассеивается большая мощности что требует применения соответствующего теплоотвода.

Единственный выход при такой ситуации - одновременное применение средств ограничения выходного тока и инерционной защиты регулирующего транзистора от перегрузку что обеспечит ему в два-три раза меньшую мощность и габариты теплоотвода. Но это приводит к увеличению числа элементов, габаритов конструкции и усложняет повторяемость устройства в любительских условиях.

Принципиальная схема стабилизатора, число элементов в котором минимально, приведена на рис. 1. Источником образцового напряжения служит термостабилизированный стабилитрон VD1.

Для исключения влияния входного напряжения стабилизатора на режим стабилитрона его ток задается генератором стабильного тока (ГСТ), построенным на полевом транзисторе VT1. Термостабилизация и стабилизация тока стабилитрона повышают коэффициент стабилизации выходного напряжения.

Образцовое напряжение поступает на левый (по схеме) вход дифференциального усилителя на транзисторах VT2.2 и VT2.3 микросборки К125НТ1 и резисторе R7, где сравнивается с напряжением обратной связи, снимаемым с делителя выходного напряжения R8R9. Разность напряжений на входах дифференциального усилителя изменяет баланс коллекторных токов его транзисторов.

Регулирующий транзистор VT4, управляемый коллекторным током транзистора VT2.2, обладает большим коэффициентом передачи тока базы. Это увеличивает глубину ООС и повышает коэффициент стабилизации устройства, а также уменьшает мощность, рассеиваемую транзисторами дифференциального усилителя.

Рассмотрим работу устройства более подробно.

Допустим, что в установившемся режиме при увеличении тока нагрузки выходное напряжение несколько уменьшится, что вызовет и уменьшение напряжения на эмиттерном переходе транзистора VT3.2. При этом ток коллектора также уменьшится. Это приведет к увеличению тока транзистора VT2.2, поскольку сумма выходных токов транзисторов дифференциального усилителя равна току, текущему через резистор R7, и практически не зависит от режима работы его транзисторов.

В свою очередь, растущий ток транзистора VT2.2 вызывает увеличение тока коллектора регулирующего транзистора VT4, пропорциональное его коэффициенту передачи тока базы, повышая выходное напряжение до первоначального уровня и позволяет поддерживать его неизменным независимо от тока нагрузки.

Для кратковременной защиты устройства с возвратом его в исходное состояние введен ограничитель тока коллектора регулирующего транзистора, выполненный на транзисторе VT3 и резисторах R1, R2.

РезисторП1 выполняет функцию датчика тока, протекающего через регулирующий транзистор VT4. В случае превышения тока этого транзистора максимального значения (около 0,5 А) падение напряжения на резисторе R1 достигнет 0,6 В, т е. порогового напряжения открывания транзистора VT3, Открываясь, он шунтирует эмиттерный переход регулирующего транзистора, тем самым ограничивая его ток примерно до 0,5 А.

Таким образом, при кратковременных превышениях током нагрузки максимального значения транзисторы VT3 и VT4 работают в режиме ГСТ, что вызывает падение выходного напряжения без срабатывания защиты от перегрузки по току. Через некоторое время, пропорциональное постоянной времени цепи R5C1, это приводит к открыванию транзистора VT2.1 и дальнейшему открыванию транзистора VT3, закрывающего транзистор VT4. Такое состояние транзисторов устойчивое, поэтому после устранения короткого замыкания или обесточивания нагрузки необходимо Отключить устройство от сети и вновь включить после разрядки конденсатора С1.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»