Ядерная реакция. Ядерные реакции

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Ядерной реакцией называется процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, приводящий к преобразованию ядра. Наиболее распространенным видом ядерной реакции является реакция типа , где
- легкие частицы – нейтрон, протон,-частица,-квант.

Реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. На первом этапе частицы, приблизившиеся к ядру, захватываются им, образуя промежуточное ядро – компаунд-ядро. Энергия, привнесенная частицей, перераспределяется между нуклонами, и ядро оказывается в возбужденном состоянии. На втором этапе ядро испускает частицу . .

Если
, то это не ядерная реакция, а процесс рассеяния. Если
- упругое рассеяние, если
- неупругое рассеяние.

Реакции, вызываемые быстрыми нуклонами, происходят без образования промежуточного ядра – это прямые ядерные взаимодействия.

Реакции делятся:

    по роду участвующих в ядерных реакциях частиц.

    По энергии участвующих частиц (холодные, горячие)

    По роду ядер, участвующих в реакции (легкие, средние, тяжелые)

    По характеру продуктов, получаемых в результате реакции (элементарные частицы, протоны, нейтроны)

Реакции деления ядер . В 1938 году Ган и Штрассман обнаружили, что при облучении урана нейтронами образуются элементы из середины периодической системы. Реакция характеризуется выделением большого количества энергии. Впоследствии было выяснено, что захватившее нейтрон ядро может делиться разными путями. Продукты деления называются осколками. Наиболее вероятным является деление на осколки, массы которых относятся как :

Церий - стабилен

Цирконий – стабилен.

Ядро урана делится только быстрыми нейтронами. При меньших энергиях нейтроны поглощаются, и ядро переходит в возбужденное состояние – это радиационный захват.

Нейтроны, которые, образуются в результате деления урана, могут вызвать еще реакцию, и т.д. – это цепная ядерная реакция. Коэффициент размножения нейтронов – это отношение числа нейтронов в данном поколении к числу нейтронов в предыдущем поколении. Цепная реакция идет при
.

Из-за конечных размеров делящегося тела и большой проникающей способности, многие нейтроны покидают зону реакции до того как будут захвачены ядром. Если масса делящегося урана меньше некоторой критической, то большинство нейтронов вылетают наружу и цепная реакция не происходит. Если масса больше критической, нейтроны быстро размножаются, и реакция имеет характер взрыва (на этом основано действие атомной бомбы). В реакторах регулируют критическую массу, поглощая лишние нейтроны кадмиевыми и угольными стержнями.

Слияние легких ядер в более тяжелые – это реакция синтеза. Если реакция происходит при высоких температурах – это термоядерная реакция. Термоядерная реакция является, по-видимому, одним из источников энергии Солнца и звезд.

Типы взаимодействия элементарных частиц.

Развитие физики элементарных частиц связано с изучением космических лучей. Существует 2 типа космического излучения: первичное, приходящее из космоса и состоящее в основном из высокоэнергетичных протонов, и вторичное, которое образуется в результате взаимодействия первичных космических лучей с ядрами атомов земной атмосферы. Во вторичном излучении выделяют жесткую и мягкую компоненты.

Существует 4 типа взаимодействия:

Сильное взаимодействие в 100 раз больше, чем электромагнитное, и в 10 14 раз, чем слабое. Радиус действия сильного 10 -15 м, слабого 10 -19 м.

Определение 1

Ядерной реакцией в широком смысле называют процесс, который происходит в результате взаимодействия нескольких сложных атомных ядер или элементарных частиц. Так же ядерными реакциями называют такие реакции, в которых среди исходных частиц присутствует хотя бы одно ядро, оно стыкается с другим ядром или элементарной частицей, в результате чего происходит ядерная реакция и создаются новые частицы.

Как правило, ядерные реакции происходят под действиями ядерных сил. Однако ядерная реакция распада ядра под действием $\gamma $ -- квантов высоких энергий или быстрых электронов происходит под действием электромагнитных, а не ядерных сил, по той причине, что ядерные силы на фотоны и электроны не действуют. К ядерным реакциям относят процессы, которые происходят при столкновении нейтрино с другими частицами, но они протекают при слабом взаимодействии.

Ядерные реакции могут проходить в природных условиях (в недрах звезд, в космических лучах). Изучение ядерных реакций проходит в лабораториях на экспериментальных установках, в которых энергия заряженным частицам передается с помощью ускорителей. В этом случае более тяжелые частицы находятся в состоянии покоя и их называют частицами-мишенями . На них налетают более легкие частицы, которые входят в состав ускоренного пучка. В ускорителях на встречных пучках в деление на мишени и пучки нет смысла.

Энергия положительно заряженной частицы пучка должна быть порядка или больше кулоновского потенциального барьера ядра. В $1932$ году Дж. Кокрофт и Э. Уолтон впервые осуществили искусственное расщепление ядер лития путем бомбардировки протонами, энергия которых была меньшей высоты кулоновского барьера. Проникновение протона в ядро лития произошло путем туннельного перехода через кулоновский потенциальный барьер. Для отрицательно заряженных и нейтральных частиц кулоновского потенциального барьера не существует и ядерные реакции могут происходить даже при тепловых энергиях частиц которые налетают.

Самой распространённой и наглядной записью ядерных реакций взято из химии. Слева записывают сумму частиц до реакции, а справа сумму конечных продуктов реакции:

описывает ядерную реакцию, которая происходит в результате бомбардировки изотопа лития ${}^7_3{Li}$ протонами, в результате чего возникает нейтрон и изотоп бериллия ${}^7_4{Be}$.

Ядерные реакции часто записываются в символической форме: $A\left(a,bcd\dots \right)B$, где $A$ -- ядро мишени, $a$ -- бомбардирующая частица, $bcd\dots и\ B$ -- соответственно частицы и ядро, которые образуются в результате реакции. Реакцию выше можно переписать у виде ${}^7_3{Li}(p,n){}^7_4{Be}$. Иногда используется запись иду $(p,n)$, что значит выбивание нейтрона с некоторого ядра под действием протона.

Количественное описание реакций

Количественное описание ядерных реакций с точки зрения квантовой-механики возможно только статистическим способом, т.е. можно говорить о некоторой вероятности различных процессов, которые характеризуют ядерную реакцию. Таким образом, реакция $a+A\to b+B$, в начальном и конечном состоянии которой есть по две частицы, в этом понимании полностью характеризуется дифференциальным эффективным сечением рассеивания $d\sigma /d\Omega $ внутри телесного кута $d\Omega {\rm =}{\sin \theta \ }\theta d\varphi $, где $\theta $ и $\varphi $ -- полярный и азимутальный углы вылета одной с частиц, при этом угол $\theta $ исчисляется от начала движения бомбардирующей частицы. Зависимость дифференциального сечения от углов $\theta $и $\varphi $ называется угловым распределениям частиц, которые образуют реакцию. Полным или интегральным сечением, которым характеризуется интенсивность реакции, называется дифференциальное эффективное сечение, проинтегрированное по всем значением углов $\theta $ и $\varphi $:

Эффективное сечение можно интерпретировать как площадку, попадая в пределы которой налетающая частица вызовет данную ядерную реакцию. Эффективное сечение ядерной реакции измеряется в барнах $1\ б={10}^{-28}\ м^2$.

Ядерные реакции характеризуются выходом реакции. Выходом ядерной реакции $W$ называется доля частиц пучка, которые получили ядерное взаимодействие с частицами мишени. Если $S$ -- площадь сечения пучка., $I$ -- плотность потока пучка, то на такую же площадь мишени каждую секунду попадает $N=IS$ частиц. С них в одну секунду в среднем реагирует $\triangle N=IS\sigma n$ частиц, где $\sigma $ -- эффективное сечение реакции частиц пучка, $n$ -- концентрация ядер у мишени. Тогда:

Различные классификации ядерных реакций

Ядерные реакции можно классифицировать за следующими признаками:

  • за природою частиц, которые участвуют в реакции;
  • за массовым числом ядер, которые участвуют в реакции;
  • за энергетическим (тепловым) эффектом;
  • за характером ядерных преобразований.

За значением энергии $E$ частиц, что вызывают реакции, различают такие реакции:

  • при малых энергиях ($E\le 1\ кэВ$);
  • при низких энергиях ($1\ кэВ\le E\le 1\ МэВ$);
  • при средних энергиях ($1\ МэВ\le E\le 100\ МэВ$);
  • при значимых энергиях ($100\ МэВ\le E\le 1\ ГэВ)$;
  • при высоких энергиях ($1\ ГэВ\le E\le 500\ ГэВ$);
  • при сверхвысоких энергиях ($E>500\ ГэВ$).

В зависимости от энергии частицы $a$ для одних и тех же ядер $A$ происходят разные преобразования в ядерных реакциях. Для примеру рассмотрим реакцию бомбардировки изотопа фтора нейтронами разных энергий:

Рисунок 1.

В зависимости от природы частиц, которые берут участие в ядерных реакциях, их делят на следующие виды:

  • под действием нейтронов;
  • под действием фотонов;
  • под действием заряженных частиц.

За массовым числом ядер, ядерные реакции делят на следующие виды:

  • на легких ядрах ($A
  • на средних ядрах ($50
  • на массивных ядрах ($A >100$).

За характером преобразований, что происходят в ядре, реакции разделяют на:

  • радиационный захват;
  • кулоновское возбуждение;
  • деление ядер;
  • реакция взрыва;
  • ядерный фотоэффект.

При рассмотрении ядерных реакций используют следующие законы:

  • закон сохранения энергии;
  • закон сохранения импульса;
  • закон сохранения электрического заряда;
  • закон сохранения барионного заряда;
  • закон сохранения лептонного заряда.

Замечание 1

Законы сохранения дают возможность предугадать, какие с мысленно возможных реакций могут быть реализованными, а какие нет в связи с невыполнением одного или нескольких законов сохранения. В этом соотношении законы сохранения играют особенно важную роль для ядерных реакций.

Ядерная реакция характеризируется энергией ядерной реакции $Q$. Если реакция протекает с выделением энергии $Q >0$, то реакция называется экзотермической; если реакция проходит с поглощением тепла $Q

Она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны . Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

  • реакции с образованием составного ядра , это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
  • прямые ядерные реакции, проходящие за ядерное время , необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил , сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием .

Энциклопедичный YouTube

  • 1 / 5

    Теория механизма реакции с образованием составного ядра была разработана Нильсом Бором в 1936 году совместно с теорией капельной модели ядра и лежит в основе современных представлений о большой части ядерных реакций.

    Согласно этой теории ядерная реакция идёт в два этапа. В начале исходные частицы образуют промежуточное (составное) ядро за ядерное время , то есть время, необходимое для того, чтобы частица пересекла ядро, примерно равное 10 −23 - 10 −21 . При этом составное ядро всегда образуется в возбуждённом состоянии, так как оно обладает избыточной энергией, привносимой частицей в ядро в виде энергии связи нуклона в составном ядре и части его кинетической энергии , которая равна сумме кинетической энергии ядра-мишени с массовым числом A {\displaystyle A} и частицы в системе центра инерции .

    Энергия возбуждения

    Энергия возбуждения E ∗ {\displaystyle E^{*}} составного ядра, образовавшегося при поглощении свободного нуклона, равна сумме энергии связи E c {\displaystyle E_{c}} нуклона и части его кинетической энергии E ′ {\displaystyle E^{"}} :

    E ∗ = E c + E ′ {\displaystyle E^{*}=E_{c}+E"}

    Чаще всего вследствие большой разницы в массах ядра и нуклона E ′ {\displaystyle E"} примерно равна кинетической энергии бомбардирующего ядро нуклона.

    В среднем энергия связи равна 8 МэВ, меняясь в зависимости от особенностей образующегося составного ядра, однако для данных ядра-мишени и нуклона эта величина является константой. Кинетическая же энергия бомбардирующей частицы может быть какой угодно, например, при возбуждении ядерных реакций нейтронами, потенциал которых не имеет кулоновского барьера, значение может быть близким к нулю. Таким образом, энергия связи является минимальной энергией возбуждения составного ядра .

    Каналы реакций

    Переход в невозбуждённое состояние может осуществляться различными путями, называемыми каналами реакции . Типы и квантовое состояние налетающих частиц и ядер до начала реакции определяют входной канал реакции. После завершения реакции совокупность образовавшихся продуктов реакции и их квантовых состояний определяет выходной канал реакции. Реакция полностью характеризуется входным и выходным каналами.

    Каналы реакции не зависят от способа образования составного ядра, что может быть объяснено большим временем жизни составного ядра, оно как бы «забывает», каким способом образовалось, следовательно, образование и распад составного ядра можно рассматривать как независимые события. К примеру, 13 27 Al {\displaystyle {}_{13}^{27}{\textrm {Al}}} может образоваться как составное ядро в возбуждённом состоянии в одной из следующих реакций:

    11 23 Na + 2 4 He → 13 27 Al* {\displaystyle {}_{11}^{23}{\textrm {Na}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{13}^{27}{\textrm {Al*}}}

    12 26 Mg + 1 1 H → 13 27 Al* {\displaystyle {}_{12}^{26}{\textrm {Mg}}+{}_{1}^{1}{\textrm {H}}\rightarrow {}_{13}^{27}{\textrm {Al*}}}

    13 26 Al + 0 1 n → 13 27 Al* {\displaystyle {}_{13}^{26}{\textrm {Al}}+{}_{0}^{1}{\textrm {n}}\rightarrow {}_{13}^{27}{\textrm {Al*}}}

    13 27 Al + γ → 13 27 Al* {\displaystyle {}_{13}^{27}{\textrm {Al}}+\gamma \rightarrow {}_{13}^{27}{\textrm {Al*}}}

    Впоследствии, при условии одинаковой энергии возбуждения, это составное ядро может распасться путём, обратным любой из этих реакций, с определённой вероятностью, не зависящей от истории возникновения этого ядра. Вероятность же образования составного ядра зависит от энергии и от сорта ядра-мишени .

    Прямые ядерные реакции

    Течение ядерных реакций возможно и через механизм прямого взаимодействия, в основном, такой механизм проявляется при очень больших энергиях бомбардирующих частиц, когда нуклоны ядра можно рассматривать как свободные. От механизма составного ядра прямые реакции отличаются, прежде всего, распределением векторов импульсов частиц-продуктов относительно импульса бомбардирующих частиц. В отличие от сферической симметрии механизма составного ядра для прямого взаимодействия характерно преимущественное направление полёта продуктов реакции вперёд относительно направления движения налетающих частиц. Распределения по энергиям частиц-продуктов в этих случаях также различны. Для прямого взаимодействия характерен избыток частиц с высокой энергией. При столкновениях с ядрами сложных частиц (то есть других ядер) возможны процессы передачи нуклонов от ядра к ядру или обмен нуклонами. Такие реакции происходят без образования составного ядра и им присущи все особенности прямого взаимодействия .

    Сечение ядерной реакции

    Вероятность реакции определяется так называемым ядерным сечением реакции. В лабораторной системе отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную площадку). Если для одного входного канала могут осуществляться несколько выходных каналов, то отношения вероятностей выходных каналов реакции равно отношению их сечений. В ядерной физике сечения реакций обычно выражаются в специальных единицах - барнах , равных 10 −24 см².

    Выход реакции

    Число случаев реакции, отнесённое к числу бомбардировавших мишень частиц ν / Φ {\displaystyle \nu /\Phi } , называется выходом ядерной реакции . Эта величина определяется на опыте при количественных измерениях. Поскольку выход непосредственно связан с сечением реакции, измерение выхода по сути является измерением сечения реакции .

    Законы сохранения в ядерных реакциях

    При ядерных реакциях выполняются все законы сохранения классической физики . Эти законы накладывают ограничения на возможность осуществления ядерной реакции. Даже энергетически выгодный процесс всегда оказывается невозможным, если сопровождается нарушением какого-либо закона сохранения. Кроме того, существуют законы сохранения, специфичные для микромира; некоторые из них выполняются всегда, насколько это известно (закон сохранения барионного числа , лептонного числа); другие законы сохранения (изоспина , чётности , странности) лишь подавляют определённые реакции, поскольку не выполняются для некоторых из фундаментальных взаимодействий. Следствиями законов сохранения являются так называемые правила отбора , указывающие на возможность или запрет тех или иных реакций.

    Закон сохранения энергии

    Если E 1 {\displaystyle \mathrm {E} _{1}} , E 2 {\displaystyle \mathrm {E} _{2}} , E 3 {\displaystyle \mathrm {E} _{3}} , E 4 {\displaystyle \mathrm {E} _{4}} - полные энергии двух частиц до реакции и после реакции, то на основании закона сохранения энергии:

    E 1 + E 2 = E 3 + E 4 . {\displaystyle \mathrm {E} _{1}+\mathrm {E} _{2}=\mathrm {E} _{3}+\mathrm {E} _{4}.}

    При образовании более двух частиц соответственно число слагаемых в правой части этого выражения должно быть больше. Полная энергия частицы равна её энергии покоя Mc 2 и кинетической энергии E , поэтому:

    M 1 c 2 + M 2 c 2 + E 1 + E 2 = M 3 c 2 + M 4 c 2 + E 3 + E 4 . {\displaystyle M_{1}c^{2}+M_{2}c^{2}+E_{1}+E_{2}=M_{3}c^{2}+M_{4}c^{2}+E_{3}+E_{4}.}

    Разность суммарных кинетических энергий частиц на «выходе» и «входе» реакции Q = (E 3 + E 4) − (E 1 + E 2) называется энергией реакции (или энергетическим выходом реакции ). Она удовлетворяет условию:

    M 1 + M 2 = M 3 + M 4 + Q / c 2 . {\displaystyle M_{1}+M_{2}=M_{3}+M_{4}+Q/c^{2}.}

    Множитель 1/c 2 обычно опускают, при подсчёте энергетического баланса выражая массы частиц в энергетических единицах (или иногда энергии в массовых единицах).

    Если Q > 0, то реакция сопровождается выделением свободной энергии и называется экзоэнергетической , если Q < 0, то реакция сопровождается поглощением свободной энергии и называется эндоэнергетической .

    Легко заметить, что Q > 0 тогда, когда сумма масс частиц-продуктов меньше суммы масс исходных частиц, то есть выделение свободной энергии возможно только за счёт снижения масс реагирующих частиц. И наоборот, если сумма масс вторичных частиц превышает сумму масс исходных, то такая реакция возможна только при условии затраты какого-то количества кинетической энергии на увеличение энергии покоя, то есть масс новых частиц. Минимальное значение кинетической энергии налетающей частицы, при которой возможна эндоэнергетическая реакция, называется пороговой энергией реакции . Эндоэнергетические реакции называют также пороговыми реакциями , поскольку они не происходят при энергиях частиц ниже порога.

    Закон сохранения импульса

    Полный импульс частиц до реакции равен полному импульсу частиц-продуктов реакции. Если p → 1 {\displaystyle {\vec {p}}_{1}} , p → 2 {\displaystyle {\vec {p}}_{2}} , p → 3 {\displaystyle {\vec {p}}_{3}} , p → 4 {\displaystyle {\vec {p}}_{4}} - векторы импульсов двух частиц до реакции и после реакции, то

    p → 1 + p → 2 = p → 3 + p → 4 . {\displaystyle {\vec {p}}_{1}+{\vec {p}}_{2}={\vec {p}}_{3}+{\vec {p}}_{4}.}

    Каждый из векторов может быть независимо измерен на опыте, например, магнитным спектрометром . Экспериментальные данные свидетельствуют о том, что закон сохранения импульса справедлив как при ядерных реакциях, так и в процессах рассеяния микрочастиц.

    Закон сохранения момента импульса

    Ядерная реакция синтеза

    Ядерная реакция синтеза - процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.

    Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излучения.

    Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания - это так называемый «кулоновский барьер ». Для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.

    Такие условия могут сложиться в двух случаях:

    • Если вещество нагревается до чрезвычайно высоких температур в звезде или термоядерном реакторе . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. В таком случае говорят о термоядерном синтезе или термоядерной реакции.

    Термоядерная реакция

    Термоядерная реакция - слияние двух атомных ядер с образованием нового, более тяжелого ядра, за счёт кинетической энергии их теплового движения.

    Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены.

    Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространённого на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде:

    1 2 H (D) + 1 3 H (T) → 2 4 He + 0 1 n {\displaystyle {}_{1}^{2}{\textrm {H}}(D)+{}_{1}^{3}{\textrm {H}}(T)\rightarrow {}_{2}^{4}{\textrm {He}}+{}_{0}^{1}{\textrm {n}}} + энергия (17,6 МэВ) .

    Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица . Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза .

    Фотоядерная реакция

    При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром . Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном, нейтронов . Такой распад ведёт к ядерным реакциям (γ , n) {\displaystyle (\gamma ,n)} и (γ , p) {\displaystyle (\gamma ,p)} , которые и называются фотоядерными , а явление испускания нуклонов в этих реакциях - ядерным фотоэффектом, …). В некоторых реакциях, где участвует слабое взаимодействие , протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

    Второй способ записи, более удобный для ядерной физики , имеет вид A (a, bcd…) B , где А - ядро мишени, а - бомбардирующая частица (в том числе ядро), b, с, d, … - испускаемые частицы (в том числе ядра), В - остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне - более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

    48 113 Cd (n , γ) 48 114 Cd {\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma){}_{48}^{114}{\textrm {Cd}}} . - ядро атома водорода , протон .

    В «химической» записи эта реакция выглядит как

    7 14 N + α → p + 8 17 O {\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}} .

    Открытие нейтрона и его свойства

    Ядерные реакции под действием нейтронов занимают особое место в ядерной физике. Из-за того, что нейтрон не имеет электрического заряда, он свободно проникает в любые атомные ядра и вызывает ядерные реакции. Рассмотрим сначала свойства нейтрона.
    Нейтрон был открыт после предсказания Резерфорда, сделанного в 1920 году.
    В опытах Бете и Беккера (1930 год) ядра бериллия облучались α-частицами и было зарегистрировано нейтральное излучение, природа которого не была определена.

    α + Be → нейтральное излучение (какое?, γ?).

    В опытах Жолио-Кюри (1932 год) α-частицы направлялись на бериллиевую мишень, а затем на парафиновую, чтобы определить природу нейтрального излучения. После парафиновой мишени наблюдался выход протонов. Схема опыта показана ниже.

    α + Be → парафин → p

    Регистрировались протоны отдачи с Е р = 4.3 МэВ. Возник вопрос: под действием каких частиц они образовывались?
    Если бы они вызывались γ-квантами, то энергия γ-квантов Е γ должна была быть ~ 50 МэВ. γ-кванты с такой энергией не могли появиться из указанной реакции.
    Чедвик проанализировал эти эксперименты и предположил, что в результате реакции вылетают нейтральные частицы с массой, сравнимой с массой протона. Далее он поставил опыт в камере Вильсона и наблюдал ядра отдачи азота. Он сравнил эти результаты с результатами опытов Жолио-Кюри, в которых регистрировались протоны отдачи из парафина, и определил массу этой нейтральной частицы из законов сохранения энергии

    и импульса

    m 1 v = m 1 v 1 + m p v p ;

    где N − ядро азота; v 1 − скорость нейтральной частицы после столкновения; m 1 − масса нейтральной частицы. Она оказалась близкой к массе протона

    Таким образом, стало ясно, что в опытах Жолио-Кюри протекала реакция, в которой испускались нейтральные частицы − нейтроны:

    α + 9 Ве → 12 С+ n.

    Они, попадая на парафин, выбивали протоны отдачи с энергией Е р = 4.3 МэВ.

    Свойства нейтрона, полученные из многочисленных экспериментов, представлены ниже:
    масса − m n c 2 = 939.5 МэВ, m n = 1.008665 а. е. м.,
    магнитный момент − μ n = −1.91μ я,
    спин − J = ћ/2,
    время жизни − τ n = (10.61 ±0.16) мин,
    среднеквадратичный радиус − = (0.78 ± 0.18)·10 -2 фм 2 .

    Ядерные реакции не только дают новые сведения о природе и свойствах ядерных сил, но и практически используются в народном хозяйстве и в военном деле. Это в первую очередь относится к ядерным реакциям под действием нейтронов при низких энергиях.

    11.4 Источники нейтронов

    Источники нейтронов − это различные ядерные реакции.


    Рис. 88: Спектр нейтронов.

    1. Используется смесь радия с бериллием (иногда полония с бериллием), где протекает реакция

    α + 9 Ве → 12 С+ n + 5.5 МэВ.

    Кинетическая энергия нейтрона Т распределена по спектру
    (рис. 88).
    При распаде Ra образуются α-частицы с энергией 4.8 МэВ и 7.7 МэВ. Они вступают в реакцию с 9 Ве и генерируют поток нейтронов. Разброс по энергии нейтронов связан с тем, что α-частицы разных энергий создают нейтроны разных энергий. Ядро углерода 12 C образуется в основном и возбужденном состояниях.
    Выход нейтронов ~ 10 7 нейтронов на 1 г Ra в секунду. Одновременно испускаются γ-лучи.

    2. Другие источники нейтронов − фотоядерные реакции (γ,n), в которых получаются медленные и монохроматические нейтроны.

    γ + 2 H → p + n, Q = -2.23 МэВ.

    Используется ThC" (208 Tl). Он испускает γ-кванты с Е γ ~ 2.62 МэВ и Е n ~ Е р; Т n ~20 кэВ.

    3. Фоторасщепление Be фотонами с энергией Е γ = 1.78 МэВ

    γ + 9 Ве → 8 Ве + n, Q = -1.65 МэВ; Т n ~ 100 кэВ.

    4. Вылет нейтронов под действием ускоренных дейтонов с E d = 16 МэВ в реакции

    2 H + 9 Be → 10 B + n + 4.3 МэВ.

    Е n = 4 МэВ, выход 10 6 нейтронов в секунду.

    5. Реакция 2 H + 2 H → 3 Не + n + 3.2 МэВ,
    D + D (лед из тяжелой воды), i?n = 2.5 МэВ.

    6. Облучение дейтонами трития

    2 H + 3 H → 4 Не + n + 17.6 МэВ.

    Поскольку эта реакция экзотермическая, дейтоны ускоряются до энергии E d = 0.3 МэВ в газоразрядных трубках. Образуются монохроматические нейтроны с Е n ~ 14 МэВ.
    Этот источник нейтронов используется в геологии.

    7. В реакциях срыва под действием дейтонов с E d ~ 200 МэВ на тяжелых ядрах образуются n с
    Е n ~ 100 МэВ.

    11.5 Ядерные реакторы, цепная ядерная реакция

    Самый мощный источник нейтронов − ядерные реакторы − устройства, в которых поддерживается управляемая цепная реакция деления.
    В реакторе происходит деление ядер U и образуются нейтроны с Е n от 0 до 13 МэВ, интенсивность источника 10 19 нейтронов/с см2. Процесс деления идет под действием нейтронов, беспрепятственно проникающих в ядра из-за отсутствия кулоновского потенциального барьера.
    При делении ядра образуются радиоактивные осколки и испускается 2-3 n, которые снова вступают в реакцию с ядрами U; идет цепной процесс (рис. 89).

    n + 235 U → 236 U → 139 La + 95 Мо + 2n


    Рис. 89: Иллюстрация деления ядра 235U.

    Для описания процесса деления 235 U используется модель жидкой капли, в которой работает формула Вайцзеккера. После попадания нейтрона в ядро урана происходит конкуренция между поверхностной энергией нового ядра и энергией кулоновского расталкивания. В итоге под действием кулоновских сил ядро делится на два более легких ядра.
    Энергия Q, освобождающаяся при делении ядра (A,Z)

    (A,Z) → 2(A/2,Z/2) + Q,

    вычисляется с использованием формулы Вайцзеккера

    Q = 2ε(A/2,Z/2) − ε(A,Z) = (1 − 2 1/3)·а сим ·A 2/3 + (1 − 2 2/3)·а кул ·Z 2 ·A -1/3 ;

    Q (МэВ) = -4.5A 2/3 + 0.26·Z 2 A -1/3 , ε − удельная энергия связи: Е св /А. Для ядра 235 U Q = 180 МэВ.

    Для того, чтобы ядро разделилось, в него должна быть внесена энергия Е > Е а, где Е а Рис. 90: Потенциальная энергия ядра в зависимости от расстояния до центра ядра (сплошная кривая), E 0 − основное состояние, E 0 + Е а − возбужденное состояние, Е а − энергия активации
    (рис. 90).
    Мерой способности ядер к делению служит отношение энергии кулоновского отталкивания протонов к энергии поверхностного натяжения:

    где Z 2 /A − параметр деления, чем он больше, тем легче ядро делится; Z 2 /A = 49 критическое значение параметра деления.
    Иллюстрация процесса деления ядра приведена на рис. 91.
    В ядерном реакторе процесс деления ядер многократно повторяется в результате образования многих поколений деления. В 1-м акте деления 235 U возникает в среднем 2.4 нейтрона. Время жизни одного поколения ~ 10 с. Если происходит рождение K поколений, то образуется ~ 2 K нейтронов через время ~ 2·10 -6 с. Если K = 80, число нейтронов будет 2 80 ~ 10 24 − это приведет к делению 10 24 атомов (140 г урана). Выделяющаяся при этом энергия 3·10 13 вт равна энергии, образующейся при сжигании 1000 тонн нефти.


    Рис. 91: Процесс деления ядра, протекающий в ядерном реакторе.

    В реакциях деления энергия выделяется в виде тепла. Отвод тепла из реактора осуществляется теплоносителем, к которому предъявляются особые требования. Он должен обладать большой теплоемкостью, слабо поглощать нейтроны и иметь низкую химическую активность. Не будем обсуждать конструктивные особенности элементов ядерного реактора. Заметим только, что при попадании тепловых нейтронов на ядро 235 U образуются быстрые нейтроны, а реакция идет только на медленных нейтронах. Следовательно, необходимо замедлить быстрые нейтроны. Это происходит в замедлителе. В качестве замедлителя используется углерод или тяжелая вода. Остановка процесса деления реализуется с помощью ядер кадмия, которые захватывают образующиеся нейтроны. Таким образом, в конструкцию ядерного реактора обязательно входит замедлитель нейтронов (углерод) и кадмиевые стержни, поглощающие образующиеся нейтроны.
    В реакторах используется природный уран 238 U (99.3%) и обогащенный 235 U (0.7%). 235 U делится под действием тепловых нейтронов. 238 U используется в реакторах на быстрых нейтронах.
    Процессы, происходящие в реакторе, характеризуются следующими вероятностями:
    ν − количество образованных быстрых нейтронов;
    ε − коэффициент размножения быстрых нейтронов;
    Р − вероятность нейтрону дойти до тепловой энергии;
    ƒ − вероятность захвата нейтрона в процессе замедления;
    σ t /σ tot − вероятность вызвать реакцию деления.

    Произведение этих вероятностей дает оценку коэффициента размножения k тепловых нейтронов в ядерном реакторе:

    Цепная реакция идет, если k > 1; входящие в коэффициент размножения величины имеют следующие значения: ν = 2.47; ε = 1.02; Р = 0.89; ƒ = 0.88; σ t /σ tot = 0.54.
    Таким образом, k ∞ = 1.07 для реактора бесконечных размеров. В реальных условиях к эф < k ∞ , т.к. часть нейтронов уходит из реактора.
    В реакторах на быстрых нейтронах (239 Ри и 238 U) происходит следующий процесс:

    В результате этой реакции воспроизводится 239 Рu. Образовавшийся плутоний вступает в реакцию с нейтроном: n + 239 Рu, образуется ν = 2.41 нейтронов.
    Число ядер 239 Ри удваивается через каждые 7-10 лет.
    Реакция деления атомных ядер используется для получения атомной энергии. Ядерные реакторы работают на многих атомных электростанциях.

    11.6 Реакции слияния, синтез легких ядер

    Другим источником атомной энергии может служить синтез легких атомных ядер. Легкие ядра связаны менее прочно, и при их слиянии в тяжелое ядро выделяется больше энергии. Кроме того, термоядерные реакции чище из-за отсутствия сопровождающих их радиоактивных излучений, чем цепные реакции деления.
    Для получения термоядерной энергии могут быть использованы следующие реакции синтеза:

    d + d = 3 He + n + 4 МэВ,
    d + d = t + р + 3.25 МэВ,
    d + t = 4 Не + n + 17.б МэВ,
    3 Не + d = 4 Нe + р + 18.3 МэВ,
    6 Li + 2di = 2 4 Не + 22.4 МэВ. J

    Энергия ядер, вступающих в реакцию, должна быть достаточной для преодоления кулоновского потенциального барьера. На рис. 92 показана энергетическая зависимость сечений некоторых реакций. Как видно из рисунка, синтез ядер дейтерия d и трития t является наиболее предпочтительным. В этой реакции синтеза низок кулоновский потенциальный барьер и велико сечение взаимодействия при малых энергиях сливающихся ядер. Для протекания реакции необходимо иметь достаточную концентрацию этих ядер в единице объема и достаточную температуру разогретой плазмы.
    Число актов слияния R ab в единицу времени в единице объема определяется соотношением

    R ab = n a ·n b ·w ab (T).
    w ab (T) = σ ab ·v ab ,

    где n a , n b − число ядер a, b; σ ab − эффективное сечение реакции, v ab − относительная скорость частиц в плазме, Т − температура. В результате реакции освобождается энергия

    W = R ab ·Q ab ·τ,

    где R ab − число актов слияния, Q ab − энергия, выделившаяся в 1 акте, τ − время.
    Пусть n a = n b = 10 15 ядер/см 3 , Т = 100 кэВ. Тогда W ~ 10 3 вт/см 3 с.
    В самоподдерживающейся термоядерной реакции должно выделяться больше энергии, чем идет на нагрев и удержание плазмы. Затраты на нагрев n a = n b = 2n частиц до температуры Т: 3n·kТ: k − постоянная Больцмана. Таким образом, надо удовлетворить условию:

    n 2 ·w ab ·Q ab ·τ > 3nkТ

    (высвобождающаяся энергия > энергии нагрева).
    Лоусон сформулировал следующее условие для реакции слияния d + t:

    nτ > 10 14 с·см -3 ,

    где nτ − параметр удержания. На рис. 93 показана зависимость этого параметра от температуры. Реакция идет, если nτ > ƒ(T). Температура Т ~ 2·10 8 K соответствует энергии 10 кэВ. Минимальное значение параметра удержания nτ = 10 14 с/см 3 для реакции d + t достигается при температуре 2·10 8 K.

    Рис. 93: Зависимость параметров удержания от температуры. Заштрихованная область ƒ(Т) − зона управляемого термоядерного синтеза для реакции d + t. − значения параметров, достигнутые на различных установках к 1980 году.

    Для других реакций:

    Удержание плазмы, имеющей необходимые условия для протекания реакции, реализуется в установках типа Токамак с помощью магнитного поля. Такие установки работают в России и в ряде других стран. Как видно из рис. 93, режим управляемого термоядерного синтеза пока не достигнут.
    Делаются попытки получить необходимые для термоядерного синтеза условия с помощью лазерных установок. В этом случае небольшой объем, в котором заключены ядра дейтерия и трития, обжимается со всех сторон лазерным излучением. При этом ядра дейтерия и трития нагреваются до нужной температуры. Лазерный термояд требует введения коэффициента 100, т.к. велика бесполезная энергия, идущая на накачку лазера.
    Попытки осуществить управляемый термоядерный синтез в лабораторных условиях наталкиваются на ряд трудностей.

    1. 1. До сих пор не удается получить устойчивый режим высокотемпературной плазмы.
    2. 2. Велики энергетические потери в плазме даже из-за малых концентраций примесей атомов с большими Z.
    3. 3. Не решена "проблема первой стенки" в Токамаке, ограничивающей плазму реактора (поток нейтронов ее разрушает).
    4. 4. В природе отсутствует радиоактивный тритий t с периодом полураспада Т 1/2 = 12.5 лет, поэтому существует проблема воспроизводства трития в реакции

    n + 7 Li = α + t + n.

    До сих пор не удалось преодолеть эти трудности и получить управляемую термоядерную реакцию синтеза.
    В естественных условиях реакции термоядерного синтеза протекают на Солнце и в звездах.

    Литература

    1. 1. Широков Ю.М., Юдин Н.П. Ядерная физика. -М.: Наука, 1972.
    2. 2. Капитонов И.М. Введение в физику ядра и частиц. -М.: УППС, 2002.

    На уроках химии вы познакомились с химическими реакциями, которые ведут к превращениям молекул. Однако атомы при химических реакциях не изменяются. Рассмотрим теперь так называемые ядерные реакции, которые ведут к превращениям атомов. Введём условные обозначения:

    Здесь Х – символ химического элемента (как в таблице Менделеева), Z – зарядовое число ядра изотопа, А – массовое число ядра изотопа.

    Зарядовое число ядра – это число протонов в ядре, равное номеру элемента в таблице Менделеева. Массовое число ядра – это число входящих в ядро нуклонов (протонов и нейтронов). Зарядовое и массовое числа – физические величины, не совпадающие с зарядом и массой ядра.

    Например, символ означает, что ядро этого атома углерода имеет зарядовое число 6 и массовое число 12. Есть и другие изотопы углерода, например . Ядро такого изотопа содержит на один нейтрон больше при том же числе протонов (сравните рисунки).

    Первая лабораторная ядерная реакция Резерфорда протекала так:

    Ядро атома азота взаимодействовало с a -частицей (ядром атома гелия). При этом получилось ядро фтора – неустойчивый промежуточный продукт реакции. А затем из него образовались ядра кислорода и водорода, то есть произошло превращение одних химических элементов в другие.

    По результатам этой ядерной реакции составим следующую таблицу.

    Из сравнения клеток таблицы видно, что суммы массовых чисел, а также суммы зарядовых чисел до и после ядерной реакции попарно равны. Эксперименты показывают, что для всех ядерных реакций выполняется закон сохранения зарядового и массового чисел: суммы зарядовых и массовых чисел частиц до и после ядерной реакции попарно равны.

    Большинство ядерных реакций заканчивается после образования новых ядер. Однако существуют реакции, продукты которых вызывают новые ядерные реакции, называемые цепными ядерными реакциями. Примером служит реакция деления ядер урана-235 (см. рисунок). Когда в ядро урана попадает нейтрон, оно распадается на два других ядра и 2-3 новых нейтрона. Эти нейтроны попадают в другие ядра урана, и цепная реакция продолжается. Такая ситуация является идеальной. На самом деле многие образовавшиеся нейтроны вылетают за пределы вещества, поэтому не могут быть поглощены ураном.

    Однако при высокой степени чистоты урана, то есть при большой его массовой доле, а также при его компактном размещении вероятность захвата нейтрона соседним ядром возрастает. Минимальная масса радиоактивного вещества, при которой возникает цепная реакция, называется критической массой . Для чистого урана-235 – это несколько десятков килограммов. Неуправляемая цепная реакция протекает очень быстро, представляя собой взрыв. Для её применения в мирных целях необходимо сделать реакцию управляемой, что достигается в специальном устройстве – ядерном реакторе (см. § 15-и).

    Ядерные реакции очень часты в природе. Например, более половины элементов таблицы Менделеева имеют радиоактивные изотопы.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»