Закон гука для абсолютной деформации. Продольные и поперечные деформации

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Рассмотрим прямой брус постоянного сечения длиной l, заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 2.9, а). Под действием силы Р брус удлиняется на некоторую величину?l, которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние, и, следовательно, линейные деформации для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения?l к первоначальной длине бруса l, т.е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 2.9, а), а деформацию сжатия - отрицательной (рис. 2.9, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса;

F - площадь поперечного сечения бруса;

Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т.е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал Р. Гук (в 1660 г.).

Более общей является следующая формулировка закона Гука относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы, называется модулем продольной упругости (сокращенно - модулем упругости). Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформации.

Произведение EF называется жесткостью поперечного сечения бруса при растяжении и сжатии.

Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить b, а после приложения этих сил b+?b (рис. 9.2), то величина?b будет обозначать абсолютную поперечную деформацию бруса. Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная поперечная деформацией прямо пропорциональна относительной продольной деформации е, но имеет обратный знак:

Коэффициент пропорциональности в формуле (2.16) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение поперечной деформации к продольной, взятое по абсолютной величине, т.е.

Коэффициент Пуассона, наряду с модулем упругости Е, характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других метало (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36.

Таблица 2.1 Значения модуля упругости.

Таблица 2.2 Значения коэффициента поперечной деформации (коэффициент Пуассона)

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).

План лекции

1. Деформации, закон Гука при центральном растяжении-сжатии стержней.

2. Механические характеристики материалов при центральном растяжении и сжатии.

Рассмотрим стержневой элемент конструкции в двух состояниях (см. рисунок 25):

Внешняя продольная сила F отсутствует, начальная длина стержня и его поперечный размер равны соответственно l и b , площадь сечения А одинакова по всей длине l (внешний контур стержня показан сплошными линиями);

Внешняя продольная растягивающая сила, направленная вдоль центральной оси, равна F , длина стержня получила приращение Δl , при этом его поперечный размер уменьшился на величину Δb (внешний контур стержня в деформированном положении показан пунктирными линиями).

l Δl

Рисунок 25. Продольно-поперечная деформация стержня при его центральном растяжении.

Приращение длины стержня Δl называется его абсолютной продольной деформацией, величина Δb – абсолютной поперечной деформацией. Величина Δl может трактоваться как продольное перемещение (вдоль оси z) концевого поперечного сечения стержня. Единицы измерения Δl и Δb те же, что и начальные размеры l и b (м, мм, см). В инженерных расчетах применяется следующее правило знаков для Δl : при растяжении участка стержня происходит увеличение его длины и величина Δl положительна; если же на участке стержня с начальной длиной l возникает внутренняя сжимающая сила N , то величина Δl отрицательна, т. к. происходит отрицательное приращение длины участка.

Если абсолютные деформации Δl и Δb отнести к начальным размерам l и b , то получим относительные деформации:


– относительная продольная деформация;

– относительная поперечная деформация.

Относительные деформации и являются безразмерными (как правило,

очень малыми) величинами, их именуют обычно е. о. д. – единицами относительных деформаций (например, ε = 5,24·10 -5 е. о. д.).

Абсолютное значение отношения относительной продольной деформации к относительной поперечной деформации является очень важной константой материала, называемой коэффициентом поперечной деформации или коэффициентом Пуассона (по фамилии французского ученого)

Как видно коэффициент Пуассона количественно характеризует соотношение между величинами относительной поперечной деформацией и относительной продольной деформацией материала стержня при приложении внешних сил вдоль одной оси. Значения коэффициента Пуассона определяются экспериментально и для различных материалов приводятся в справочниках. Для всех изотропных материалов значения лежит в пределах от 0 до 0,5 (для пробки близко к 0, для каучука и резины близко к 0,5). В частности, для прокатных сталей и алюминиевых сплавов в инженерных расчетах обычно принимается , для бетона .



Зная значение продольной деформации ε (например, в результате замеров при проведении экспериментов) и коэффициент Пуассона для конкретного материала (который можно взять из справочника) можно вычислить значение относительной поперечной деформации

где знак минус свидетельствует о том, что продольные и поперечные деформации всегда имеют противоположные алгебраические знаки (если стержень удлиняется на величину Δl растягивающей силой, то продольная деформация положительна, т. к. длина стержня получает положительное приращение, но при этом поперечный размер b уменьшается, т. е. получает отрицательное приращение Δb и поперечная деформация отрицательна; если же стержень будет сжиматься силой F , то, наоборот, продольная деформация станет отрицательной, а поперечная – положительной).

Внутренние усилия и деформации, возникающие в элементах конструкций под действием внешних нагрузок, представляют собой единый процесс, в котором все факторы взаимосвязаны между собой. Прежде всего, нас интересует взаимосвязь между внутренними усилиями и деформациями, в частности, при центральном растяжении-сжатии стержневых элементов конструкций. При этом, как и выше, будем руководствоваться принципом Сен-Венана: распределение внутренних усилий существенно зависит от способа приложения внешних сил к стержню лишь вблизи места нагружения (в частности, при приложении сил к стержню через малую площадку), а в частях, достаточно удаленных от мест


приложения сил распределение внутренних усилий зависит только от статического эквивалента этих сил, т. е. при действии растягивающих или сжимающих сосредоточенных сил будем считать, что в большей части объема стержня распределение внутренних сил будет равномерным (это подтверждается многочисленными экспериментами и опытом эксплуатации конструкций).

Английским ученым Робертом Гуком еще в 17-м веке была установлена прямая пропорциональная (линейная) зависимость (закон Гука) абсолютной продольной деформации Δl от растягивающей (или сжимающей) силы F . В 19-м веке английским ученым Томасом Юнгом сформулирована идея о том, что для каждого материала существует постоянная величина (названная им модулем упругости материала), характеризующая его способность сопротивляться деформированию при действии внешних сил. При этом Юнг первый указал на то, что линейный закон Гука справедлив только в определенной области деформирования материала, а именно – при упругих его деформациях .

В современном представлении применительно к одноосному центральному растяжению-сжатию стержней закон Гука используется в двух видах.

1) Нормальное напряжение в поперечном сечении стержня при центральном растяжении прямо пропорционально его относительной продольной деформации

, (1-й вид закона Гука),

где Е – модуль упругости материала при продольных деформациях, значения которого для различных материалов определены экспериментальным путем и занесены в справочники, которыми технические специалисты пользуются при проведении различных инженерных расчетов; так, для прокатных углеродистых сталей, широко применяемых в строительстве и машиностроении ; для алюминиевых сплавов ; для меди ; для других материалов значение Е всегда можно найти в справочниках (см., например, «Справочник по сопротивлению материалов» авторов Писаренко Г.С. и др.). Единицы измерения модуля упругости Е те же, что и единицы измерения нормальных напряжений, т. е. Па , МПа , Н/мм 2 и др.

2) Если в записанном выше 1-м виде закона Гука нормальное напряжение в сечении σ выразить через внутреннюю продольную силу N и площадь поперечного сечения стержня А , т. е. , а относительную продольную деформацию – через начальную длину стержня l и абсолютную продольную деформацию Δl , т. е. , то после простых преобразований получим формулу для практических расчетов (продольная деформация прямо пропорциональна внутренней продольной силе)

(2-й вид закона Гука). (18)

Из этой формулы следует, что с увеличением значения модуля упругости материала Е абсолютная продольная деформация стержня Δl уменьшается. Таким образом, сопротивляемость элементов конструкций деформациям (их жесткость) можно увеличить путем применения для них материалов с более высокими значениями модуля упругости Е . Среди широко применяемых в строительстве и машиностроении конструкционных материалов высоким значением модуля упругости Е обладают стали. Диапазон изменения величины Е для разных марок сталей небольшой: (1,92÷2,12)·10 5 МПа . У алюминиевых сплавов, например, величина Е примерно в три раза меньше, чем у сталей. Поэтому для


конструкций, к жесткости которых предъявляются повышенные требования, предпочтительными материалами являются стали.

Произведение называют параметром жесткости (или просто жесткостью) сечения стержня при его продольных деформациях (единицы измерения продольной жесткости сечения – Н , кН, МН ). Величина с = Е·А/l называется продольной жесткостью стержня длиной l (единицы измерения продольной жесткости стержня с Н/м , кН/м ).

Если стержень имеет несколько участков (n ) с переменной продольной жесткостью и сложной продольной нагрузкой (функция внутренней продольной силы от координаты z сечения стержня), то суммарная абсолютная продольная деформация стержня определится по более общей формуле

где интегрирование проводится в пределах каждого участка стержня длиной , а дискретное суммирование – по всем участкам стержня от i = 1 до i = n .

Закон Гука широко применяется в инженерных расчетах конструкций, поскольку большинство конструкционных материалов в процессе эксплуатации могут воспринимать весьма значительные напряжения, не разрушаясь в пределах упругих деформаций.

При неупругих (пластических или упруго-пластических) деформациях материала стержня прямое применение закона Гука неправомерно и, следовательно, вышеприведенные формулы использовать нельзя. В этих случаях следует применять другие расчетные зависимости, которые рассматриваются в специальных разделах курсов «Сопротивление материалов», «Строительная механика», «Механика твердого деформируемого тела», а также в курсе «Теория пластичности».

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).

Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δ а - абсолютное сужение; Δ1 > 0; Δ а <0.

При сжатии выполняется соотноше­ние Δl < 0; Δ а > 0.

В сопротивлении материалов приня­то рассчитывать деформации в относи­тельных единицах: рис.4.13

Относительное удлинение;

Относительное сужение.

Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, - характеристика пластичности материала.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. введение.. любое явление в ок ружающем нас макромире связано с движением следовательно не может не иметь того или иного..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиомы статики
Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики.

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободным называется тело, которое не испыты

Определение равнодействующей геометрическим способом
Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 1.15).

Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Условия равновесия плоской системы сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: FΣ

Методика решения задач
Решение каждой задачи можно условно разделить на три этапа. Первый этап: Отбрасываем внешние связи системы тел, равновесие которой рассматривается, и заменяем их действие реакциями. Необхо

Пара сил и момент силы относительно точки
Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил. Уметь определять моменты пар сил и момент силы относитель

Эквивалентность пар
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нару­шается его

Опоры и опорные реакции балок
Правило для определения направления реакций связей (рис.1.22). Шарнирно-подвижная опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плос­кости.

Приведение силы к точке
Произвольная плоская система сил представляет собой систему сил, линии действия которых расположены в плоскости каким угодно образом (рис. 1.23). Возьмем силу

Приведение плоской системы сил к данной точке
Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, ч

Влияние точки приведения
Точка приведения выбрана произвольно. Произвольная плоская система сил представляет собой систему сил, линия действия которых расположены в плоскости каким угодно образом. При изменении по

Теорема о моменте равнодействующей (теорема Вариньона)
В общем случае произвольная плоская система сил приводится к главному вектору F"гл и к главному моменту Мгл относительно выбранного центра приведения, причем гла

Условие равновесия произвольно плоской системы сил
1)При равновесии главный вектор системы равен нулю (=0).

Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах. Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно точки
Момент силы относительно оси характеризуется вра­щательным эффектом, создаваемым силой, стремящейся повернуть тело вокруг данной оси. Пусть к телу в про­извольной точке К приложена сила

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 1.3

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Некоторые определения теории механизмов и машин
При дальнейшем изучении предмета теоретической ме­ханики, в особенности при решении задач, мы столкнемся с но­выми понятиями, относящимися к науке, которая называется теорией механизмов и машин.

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлени

Ускорение точки при криволинейном движении
При движении точки по криволинейном траектории скорость меняет свое направление. Представим себе точку М, которая за время Δt, двигаясь по криволинейной траектории, переместилас

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 2.9, а)

Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются. Уравнение неравномерного движения в общем виде представля­ет собой уравнение третьей S = f

Простейшие движения твердого тела
Иметь представление о поступательном движении, его особенности и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательно

Вращательное движение
Движение, при котором по крайнем мере точки твердого тела или неизменяемой системы остаются неподвижными, называемыми вращательным; прямая линия, соединяющая эти две точки,

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω = const. Уравнение (закон) равномерного вращения в данном случае име­ет вид: `

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Преобразование вращательного движения
Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Понятие трения
Абсолютно гладких и абсолютно твердых тел в природе не существует, и поэтому при перемещении одного тела по по­верхности другого возникает сопротивление, которое называется трением.

Трение скольжения
Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение скольжения, как и трение покоя, обуслов

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Принцип кинетостатики (принцип Даламбера)
Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям). Даламбер предло

Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению мо­дуля силы на длину пройденного мм пути и на косинус угла между направлением силы и направлением перемещения (рис. 3.8): W

Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F соста­вляет некоторый угол а

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности.

Коэффициент полезного действия
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения и взаимодействия матери

Закон изменения количества движения
Количеством движения материальной точки называется вектор­ная величина, равная произведению массы точки на ее скорость

Потенциальная и кинитецеская энергия
Существуют две основные формы механической энергии: потен­циальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится им

Закон изменения кинетической энергии
Пусть на материальную точку массой m действует постоянная сила. В этом случае точк

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как меха­ническая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью

Моменты инерции некоторых тел
Момент инерции сплошного цилиндра (рис. 3.19) Момент инерции полого тонкостен­ного цили

Сопротивление материалов
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях. Зн

Основные положения. Гипотезы и допущения
Практика показывает, что все части конструкций под действием нагрузок деформируются, т. е. изменяет свою форму и размеры, а в некоторых случаях происходит разрушение конструкции.

Внешние силы
Всопротивлении материалов под внешними воздейст­виями подразумевается не только силовое взаимодейст­вие, но и тепловое, возникающее из-за неравномерного изменения температурного ре

Деформации линейные и угловые. Упругость материалов
В отличие от теоретической механики, где изучалось взаимодействие абсолютно жестких (недеформируемых) тел, в сопротивлении материалов исследуется поведение конструкций, материал которых способен де

Допущения и ограничения, принятые в сопротивлении материалов
Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это

Виды нагрузок и основных деформаций
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и

Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному при­знаку. 1. Брус - любое тело, у которого длина значительно больше других размеров. В зависимости от форм продольной

Метод сечений. Напряжение
Знать метод сечений, внутренние силовые факторы, составляющие напряжений. Уметь определять виды нагружений и внутренние силовые факторы в поперечных сечениях. Для ра

Растяжение и сжатие
Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор - продольная сила. Продольные силы м

Центральное растяжение прямого бруса. Напряжения
Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние

Напряжения при растяжении и сжатии
При растяжении и сжатии в сечении действует только нормаль­ное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким

Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 - 1703).

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы. Закон Гука σ=Еε. Откуда.

Механические испытания. Статические испытания на растяжение и сжатие
Это стандартные испыта­ния: оборудование - стандарт­ная разрывная машина, стан- дартный образец (круглый или плоский), стандартная методика расчета. На рис. 4.15 представлена схема

Механические характеристики
Механические характеристики материалов, т. е. величины, характеризующие их прочность, пластичность, упругость, твер­дость, а также упругие постоянные Е и υ, необходимые конструктору для

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета напря­жений и перемещений.

Уметь проводить расчеты на прочность и жесткость стати­чески определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).

В сопротивлении материалов принято рассчитывать деформа­ции в относительных единицах:

Между продольной и поперечной деформациями существует за­висимость

где μ - коэффициент поперечной деформации, или коэффициент Пуассона, -характеристика пластичности материала.

Закон Гука

В пределах упругих деформаций деформации прямо пропорци­ональны нагрузке:

- коэффициент. В современной форме:

Получим зависимость

Где Е - модуль упругости, ха­рактеризует жесткость материала.

В пределах упругости нормальные напряжения пропорциональ­ны относительному удлинению.

Значение Е для сталей в пределах (2 – 2,1) 10 5 МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии

Используем известные формулы.

Относительное удлинение

В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:

Δl - абсолютное удлинение, мм;

σ - нормальное напряжение, МПа;

l - начальная длина, мм;

Е - модуль упругости материала, МПа;

N - продольная сила, Н;

А - площадь поперечного сечения, мм 2 ;

Произведение АЕ называют жесткостью сечения.

Выводы

1. Абсолютное удлинение бруса прямо пропорционально вели­чине продольной силы в сечении, длине бруса и обратно пропорцио­нально площади поперечного сечения и модулю упругости.



2. Связь между продольной и поперечной деформациями зави­сит от свойств материала, связь определяется коэффициентом Пуас­сона, называемом коэффициентом поперечной деформации.

Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.

3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная дефор­мация рассчитывается через продольную.

где Δа - поперечное сужение, мм;

а о - начальный поперечный раз­мер, мм.

4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяже­ния (рис. 21.2).

При работе пластические деформации не должны возни­кать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расче­ты в сопротивлении материалов проводятся в зоне упругих де­формаций, где действует закон Гука.

На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1 .

5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.

Примеры решения задач

Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.

Решение

1. Брус ступенчатый, по­этому следует построить эпюры продольных сил и нормальных напряжений.

Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.

2. Определяем величины нор­мальных напряжений по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру нормальных напряжений.

3. На каждом участке опре­деляем абсолютное удлинение. Результаты алгебраически сумми­руем.

Примечание. Балка за­щемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со сво­бодного конца (справа).

1. Два участка нагружения:

участок 1:

растянут;

участок 2:


Три участка по напряжениям:


Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормаль­ных напряжений по его длине, а также определить пере­мещения свободного конца и сечения С, где приложена сила Р 2 . Модуль продольной упругости материала Е = 2,1 10 5 Н/"мм 3 .

Решение

1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.

2. Вычислим напряжения в поперечных сечениях каж­дого участка:

для первого

для второго

для третьего

для четвертого

для пятого

Эпюра нормальных напряжений построена на рис. 2.9, в.

3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса опреде­ляется как алгебраическая сумма удлинений (укорочений) всех его участков:

Подставляя числовые значения, получаем

4. Перемещение сечения С, в котором приложена сила Р 2 , определяется как алгебраическая сумма удлинений (уко­рочений) участков ///, IV, V:

Подставляя значения из предыдущего расчета, полу­чаем

Таким образом, свободный правый конец бруса пере­мещается вправо, а сечение, где приложена сила Р 2 , - влево.

5. Вычисленные выше значения перемещений можно полу­чить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р 1 ; Р 2; Р 3 в отдельности и суммируя ре­зультаты. Рекомендуем учащемуся проделать это само­стоятельно.

Пример 3. Определить, какое напряжение возни­кает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l 1 = 200,2 мм. Е = 2,1*10 6 Н/мм 2 .

Решение

Абсолютное удлинение стержня

Продольная деформация стержня

Согласно закону Гука

Пример 4. Стенной кронштейн (рис. 2.10, а ) со­стоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F 1 = 1 см 2 , площадь сечения подкоса F 2 = 25 см 2 . Определить горизонтальное и вертикальное перемещения точки В, если в ней под­вешен груз Q = 20 кН. Модули продольной упругости стали E ст = 2,1*10 5 Н/мм 2 , дерева Е д = 1,0*10 4 Н/мм 2 .

Решение

1. Для определения продольных усилий в стерж­нях АВ и ВС вырезаем узел В. Предполагая, что стерж­ни АВ и ВС растянуты, направляем возникающие в них усилия N 1 и N 2 от узла (рис. 2.10, 6 ). Составляем уравнения равновесия:

Усилие N 2 получилось со знаком минус. Это указы­вает на то, что первоначальное предположение о направ­лении усилия неверно - фактически этот стержень сжат.

2. Вычислим удлинение стальной тяги Δl 1 и укорочение подкоса Δl 2:

Тяга АВ удлиняется на Δl 1 = 2,2 мм; подкос ВС уко­рачивается на Δl 1 = 7,4 мм.

3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если де­формированные стержни АВ 1 и В 2 С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В 1 и В 2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В 1 В" и В 2 В", соответственно перпендикулярными к АВ 1 и СВ 2 . Пересечение этих перпендикуляров (точка В") дает новое положение точки (шарнира) В.

4. На рис. 2.10, г диаграмма перемещений точки В изо­бражена в более крупном масштабе.

5. Горизонтальное пере­мещение точки В

Вертикальное

где составляющие отрезки определяются из рис. 2.10, г;

Подставляя числовые значения, окончательно получаем

При вычислении перемещений в формулы подстав­ляются абсолютные значения удлинений (укорочений) стержней.

Контрольные вопросы и задания

1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)

2. Что характеризует коэффициент поперечной деформации?

3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.

4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?

5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?

6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?

7. Ответьте на вопросы тестового задания.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»