Защита атмосферы. Технические и технологические средства защиты атмосферы от промышленных загрязнений Методы защиты атмосферы от пыли

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Пассивные методы делятся на:

1) ограничение выбросов:

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>

Методы обеспыливания воздуха. Основные технические показатели пылеуловителей.

Для очистки от пыли используют сухие и мокрые пылеуловители, а также сухие и мокрые электрофильтры. Выбор метода и аппарата для улавливания аэрозолей зависит от дисперсного состава (размера частиц, находящихся в воздухе), эффективности, расхода или производительности аппарата.

Эффективность улавливания или степень очистки - выражается количеством уловленного материала, поступившего в газоочистной аппарат с газовым потоком за определенный период времени. (G 1 , G 2 - массовый расход (концентрация) частиц пыли, содержащихся в газе на входе и на выходе из аппарата [кг/ч]).

В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. К основным аппаратам сухой очистки относятся: пылеосадительные камеры, циклоны, фильтры, электрофильтры.

«+»- температура выбросов после очистки достигает до 50()°С (есть возможность утилизации):

При выбросе горячих газов улучшается их рассеивание в атмосфере;

Отсутствие потребления воды и образования сточных вод;

Возможность возвратить уловленную пыль обратно в производство.

«-» - возможная конденсация паров на стенках аппарата, что приводит к коррозии стенок и образование трудно улавливаемых отложений пыли;

Трудности с удалением уловленной пыли (возможность вторичного загрязнения воздуха).

Центробежные пылеуловители.

К ним относятся различные типы циклонов и вихревые пылеуловители.

Циклон . Получили наибольшее распространение в промышленности (для улавливания золы на ТЭС, на деревообрабат-их заводах). η=90%, d>10мкм.

«+» -отсутствие движущихся частей в аппарате;

Надежность работы при высоких температурах (до 500°C)-при работе с более высокими °t изготовляются из спец. материалов;

Возможность улавливания абразивных материалов (внутренняя поверхность циклона обрабатывается спец.покрытием);

Постоянное гидравлическое сопротивление;

Хорошая работа при высоких давлениях газа;

Простота изготовления.

«-» -низкая эффективность при улавливании частиц меньше 5мкм;

Высокое гидравлическое сопротивление (1,2-1,5кПа).

1-входной патрубок

В циклоне происходит спиралеобразное закручивание потока, в результате чего частицы отбрасываются к стенкам и постепенно опускаются в бункер 2. ОВ через выходное отверстие 3 выбрасывается в атмосферу. Частицы аэрозоли движутся вдоль результирующей силы Fp и прижимаются к внутренним поверхностям корпуса (трубы) и по этой поверхности скользят вниз и попадают в пылесборник. Периодически нижняя часть пылесборника открывается и таким образом удаляется пыль, на это время заслонку на патрубке закрывают. Эффективность улавливания частиц пыли в циклоне прямо пропорциональна скорости газа в степени ½ и обратно пропорциональна диаметру аппарата.

Для увеличения центробежной силы Fц необходимо (для повышения эффективности):

Увеличивать скорость пылевоздушной струи;

Уменьшать диаметр циклона.

Из практики известно, что скорость струи должна быть от 15 до 18 м/с. Отношение высоты циклона к D д.б. 2/3.

При больших расходах очищенных газов применяются групповые/батарейные циклоны – это позволяет не увеличивать D циклона. Запыленный газ входит в общий коллектор и распределяется по циклонам (работают параллельно).

Вихревые пылеуловители. Η<90%, d>2мкм.

Основным отличием от циклонов является наличие вспомогательного закручив-ся потока. В аппарате соплового типа запыленный газовый поток подается снизу аппарата и закручивается при помощи лопаточного завихрителя. Закрученный газовый поток движется вверх, при этом подвергаясь действию нескольких струй вторичного газа. Вторичный газ подается из тангенциально расположенных сопел вверху аппарата. Под действием центробежных сил частицы отбрасываются к периферии корпуса аппарата, а оттуда в создаваемый струями поток вторичного газа, направляющий их вниз в кольцевое межтрубное пространство. Кольцевое межтрубное пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей спуск пыли в бункер.

1-камера; 2-выходной патрубок; 3-сопла;

4-лопаточный завихритель; 5-входной патрубок; 6-подпорная шайба;

7-пылевой бункер.

Электрофильтры.

Электрофильтр - наиболее современный пылеулавливающий аппарат. η=99-99,5%, d=0,01-100мкм. температура очищ-го газа до 450°C.

В электрофильтре используется высоковольтное электростатическое поле. Напряжение на электродах до 50 кВ. Частицы проходят через 2 зоны. В 1-й зоне частица приобретает Эл. потенциал (заряжается), во 2-й зоне заряженная пыль движется к противоположенному электростатическому заряду и оседает на нем. Поэтому для очистки воздуха от пыли используется 3 вида сил: сила тяжести; сила воздушного напора и электростатическая сила.

По конструкции они м.б. вертикальными игоризонтальными.

1 – коронирующий электрод

2 – осадительный электрод

3 – бункер

4 – источник напряжения

При подаче высоковольтного напряжения между коронирующим и осадительным электродами создается электростатическое поле высокой напряженности. При поступлении загрязненного воздуха через патрубок образуется ламинарная струя (поток), которая движется ветрикально вверх через электростатическое поле. При этом на частицу действуют силы: G, Fh, и Рэл.ст.. При этом Fh превышает G на несколько процентов. При такой схеме сил частица отклоняется от вертикальной оси и движется в сторону осадительного электрода и прилипает к внутренней поверхности трубы. Происходит передача отрицательного заряда частицам пыли и их осаждение на осадительных электродах. Регенерация фильтра осуществляется встряхиванием.

«-» большой расход энергии (0,36-1,8 МДж на 1000 м 3 газа).

Чем выше напряженность поля и ниже скорость газа в аппарате, тем лучше улавливание пыли.

Процеживание и отстаивание.

Процеживание - это процесс пропускания сточных вод через решётки и сита перед более тонкой очисткой

Решётки улавливают примеси не менее 10-20 мм, решётки периодически очищают;

Эффективность работы не более 70%

Процеживание используется только для предварительной очистки СВ

В некоторых областях используют сита с размером ячеек до 1 мм, которые позволяют удалять вещества 0,5-1 мм.

С помощью расчёта осуществляется подбор решётки, и определяются потери напора в ней.

Отстаивание - это осаждение грубодисперсных примесей под действием силы тяжести.

Используются:

1) песколовки, применяются для удаления минеральных частиц и песка (0,15-0,25 мм). Песколовка - это резервуар с тропецеидальным или треугольным основанием (<0,3м/с, эффективность не более 95%).

Бывают: - вертикальные (движение снизу вверх); - горизонтальные; -аэрируемые.

Н = 0,25 – 2 м

v = 0,15 -0,3 м/с

В = 3 – 4,5 м

Длина рабочей части:

L = (1000*k s *H s *υ s)/ u s, где:

H s -расчётная глубина песколовки, k s – к-т, принимаемый в зависимости от типа песколовки, υ s – скорость движения воды в песколовке, u s – гмдравлическая крупность (14 – 24 мм/с)

2) отстойники.

По конструктивному исполнению: горизонтальные, вертикальные, радиальные, трубчатые и с наклонными пластинами. По назначению: первичные, - вторичные.

Горизонтальные – прямоугольные резервуары, имеющие 2 и более одновременно работающих отделения.

1 – входной латок;

2 – выходной лоток;

3 – камера отстаивания;

4 –лоток для удаления всплывших примесей.

Q – более 15 000 м 3 / сут

Н =1,5 – 4 м, L = 8 -27м, В = 3-6 м, v =0,01 м/с.

Вертикальные – круглые в плане резервуары, диаметром 4, 6, 9м с коническим днищем. Сточную воду подводят по центру к трубе, и после поступления внутрь она движется снизу вверх.

1- центральная труба;

2- жёлоб для отверстия;

3- цилиндрическая часть;

4- коническая часть.

Q – менее 20000 м 3 / сут;

Диаметр – 4, 6, 9; высота- 4 -5 м, скорость – 0,5 – 0,6 м/с.

Радиальные – круглые в плане резервуары, вода поступает через центр трубы и движется от центра к периферии.

2- распределительное устройство;

3- скребковый механизм;

Q – более 20000 м 3 / сут;

Высота – 1,5–5 м, диаметр – 16 – 60 м.

Расчёт отстойника производиться по кинетике выпадения взвешенных веществ с учётом необходимого эффекта осветления. Расчётом определяется гидравлическая крупность, по которой рассчитываются параметры отстойника.

Увеличить эффективность осаждения можно:

Увеличив размеры частиц коагуляцией; - уменьшая вязкость воды (например, нагреванием); - увеличив площадь отстаивания.

3) нефтеловушка

1- корпус;

2- слой нефти;

3- труба для сбора нефти (жира);

4- перегородка для удержания всплывших нефтепродуктов;

5- приямок для осадков

Степень очистки менее 70%. Для увеличения эффективности снизу подают воздух. Рассчитываются как отстойники с учётом гидравлической крупности всплывающих частиц.

Осветлители, применяются для очистки природных вод и для предварительного осветления СВ. в осветлителях создается взвешенный слой осадка через который фильтруются СВ.

Процесс отстаивания используется и для очистки частиц, имеющих плотность меньше, чем плотность воды, такие частицы всплывают и убираются с поверхности отстойника (жироловушки и нефтеловушки). Эффективность для нефти 96-98% для жира не более 70%..

Методы защиты атмосферы, их классификация.

Активные - они предусматривают экологизацию технологических процессов, т.е. создание безотходных технологий, создание замкнутых технологических циклов (редко).

Пассивные методы делятся на:

1) ограничение выбросов:

Усовершенствование топлива и замена другим видом;

Обеспечение более полного сгорания топлива;

Предварительная очистка сырья от летучих примесей;

Повышение роли безотходных источников энергии (АЭС, солнечная, ветровая).

2) рассредоточение, локализация и рассеивание выбросов

Выбор производится на стадии проектирования, строительства объекта выброса;

Нельзя строить в местах застоя воздуха;

На определенном расстоянии от жилых зон с учетом розы ветров;

Д. б. минимальное количество дней в году, в которые ветер дует от предприятия к городу;

Расположение производственных и жилых зданий должны способствовать сквозному проветриванию;

При компоновке зданий около магистрали следует: в центре больницы, дет. сады...

Локализация - это устройство вытяжных шкафов для удаления ЗВ. Централизация - несколько мелких источников объединяют в один крупный источник для наиболее эффективной работы очистных сооружений (низкая стоимость очистки воздуха). Рассеивание - выброс ЗВ в верхний слой атмосферы через трубы и дальнейшее его разбавление с чистым (наиболее опасен из низких труб). Рассредоточение – расположение предприятий на территории с учетом расположения города, розы ветров (на стадии проектировния).

3) устройство санитарно-защитных зон:

Для снижения воздействия предприятий на окружающую среду вокруг них делаются санитарно-защитные зоны;

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>=60% от площади) и благоустроена (кроме больниц, парков, стадионов...)

4) очистка выбросов - это улавливание ЗВ из отходящих газов.

Все выбросы делятся на парогазовые и аэрозольные выбросы, на производстве всегда производится очистка от пыли затем от газов.

Очистка от пыли: -сухие методы (пылеосадительные камеры, пылеуловители (инерционные, динамические, вихревые), циклоны, фильтры (волокнистые, тканевые, зернистые, керамические)); -мокрые методы (газопромыватели (полые, насадочные, тарельчатые, ударно-инерционные, центробежные, механические, скоростные)); -электрические методы (сухие и мокрые электрофильтры).

Очистка от туманов и брызг: - фильтры туманоуловители; - сетчатые брызгоуловители.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Защита атмосферы Для атмосферы характерна чрезвычайно высокая динами чность, обусловленная как бы стрым перемещением воздушных масс в латера льном и вертикальном направлениях, так и вы сокими скоростями, разнообр азием протекающих в ней физико-химических реакций. Атмо сфера рассматри вается как огромный «химический котел», который находится под воздейст вием многочисленных и изменчивых антропогенных и природных факторов. Г азы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реак ционной способностью. Пыль и сажа, возникающие при сгорании топлива, лес ных пожарах, сорбируют тяжелые ме таллы и радионуклиды и при осаждении н а поверхность могут загрязнить обширные террито рии, проникнуть в орган изм человека через органы дыхания. Загрязнением атмосферы считается прямое или косвенное введени е в нее любого вещества в таком количестве, которое воздействует на каче ство и состав наружного воздуха, нанося вред людям, живой и неживой приро де, экосистемам, строительным материалам, природным ресурсам – всей окр ужающей среде. Очистка воздуха от при месей. Для защиты атмосферы о т негативного антропогенного воздействия используют следующие меры: - экологизацию технологических процессов; - очистку газовых выбросов от вредных примесей; - рассеивание газовых выбросов в атмосфере; - устройство санитарно-защитных зон, архитектурно-планировочные решени я. Безотходная и малоотх одная технология Экологизация тех проц ессов – это создание замкнутых технологических циклов, безотходных и м алоотходных технологий, исключающих попадание в атмосферу вредных заг рязняющих веществ. Наиболее надежным и самым экономичным способом охраны биосферы от вред ных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые пр едложен академиком Н.Н. Семеновым. Под ним подразумевается создание опти мальных технологических систем с замкнутыми материальными и энергети ческими потоками. Такое производство не должно иметь сточных вод, вредн ых выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функциониро вания производств, при рациональном использовании всех компонентов сы рья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потреблен ие – вторичные сырьевые ресурсы). Конечно же, понятие «безотходное производство» имеет несколько условн ый характер; это идеальная модель производства, так как в реальных услов иях нельзя полностью ликвидировать отходы и избавиться от влияния прои зводства на окружающую среду. Точнее следует называть такие системы мал оотходными, дающими минимальные выбросы, при которых ущерб природным эк осистемам будет минимален. Малоотходная технология является промежуто чной ступенью при создании безо тходного про изводства. В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных техноло гий: 1) разработка и внедрение п ринципиально новых технологических процессов и систем, работающих по з амкнутому циклу, позволяющих исключить образование основного количест ва отходов; 2) переработка отходов производства и потребления в качес тве вторичного сырья; 3) создание территориально-промышленных комплексов с замк нутой структурой материальных потоков сырья и отходов внутри комплекс а. Важность экономного и рационального использования природных р есурсов не требует обоснований. В мире непрерывно растет потребность в с ырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациона льное использования вторичных ресурсов требует принятия межотраслевы х решений. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образов ание основного количества отходов, является основным направлением тех нического прогресса. Очистка газовых выбро сов от вредных примесей Газовые выбросы класс ифицируются по организации отвода и контроля – на организованные и нео рганизованные, по температуре на нагретые и холодные. Организованный выброс – это выброс, поступающий в атмосф еру через специально сооруженные газоходы, воздуховоды, трубы. Неорганизованные называют промышленные выбросы, поступающие в атмосфе ру в виде ненаправленных потоков газа в результате нарушения герметичн ости оборудования. Отсутствие или неудовлетворительной работы оборудо вания по отсосу газа в местах загрузки, выгрузки и хранения продукта. Для снижения загрязнения атмосферы от промышленных выбросов использую т системы очистки газов. Под очисткой газов понимают отделение от газа и ли превращение в безвредное состояние загрязняющего вещества, поступа ющего от промышленного источника. Средства защиты атмосферы должны ограничивать налич ие вредных веществ в воздухе среды обитания человека на уровне не выше П ДК. Во всех случаях должно соблюдаться усло вие: С+Сф 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%. Диаметр частиц, ул авливаемых циклоном на 50%, можно опреде лить по эмпирической формуле Гидравлическое сопротивление высокопроизводительных циклонов соста вляет около 1080 Па. Ци клоны широко применяют при грубой и средней очистке газа от аэрозолей. Другим типом центробежного пылеуловителя служит ротоклон, состоящий и з ротора и вентилятора, помещенного в осадительный кожух. Лопасти вентил ятора, вращаясь, направляют пыль в канал, который ведет в приемник пыли. Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежнос ть работы при температуре газов до 500 0 С, улавл ивание пыли в сухом виде, почти постоянное гидравлическое сопротивлени е аппарата, простота изготовления, высокая степень очистки. Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавлив ание частиц размером меньше 5мкм. Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фи льтрующие материалы. Фильтрующие перегородки состоят из волокнистых и ли зернистых элементов и условно подразделяются на следующие типы. Гибкие пористые перегородки – тканевые материалы из природных, синтет ических или минеральных волокон, нетканные волокнистые материалы (войл оки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мемб ранные фильтры). Фильтрация - весьма распространенный прием тонкой очистки газов. Ее п реимущества - сравн ительная низкая стоимость оборудования (за исключением металлокерамич еских фильтров) и высокая эффективность тонкой очистки. Недостатки филь трации высокое гидравлическое сопротивление и быстрое забивание фильт рующего материала пылью. Очистка выбросов газообразных веществ промышленных пред приятий В настоящее время, когд а безотходная технология находится в периоде становления и полностью б езотходных предприятий еще нет, основной задачей газоочистки служит до ведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами. Промышленные способы очистки газовых выбросов от газо- и парообразных т оксичных примесей можно разделить на пять основных групп: 1 Метод абсорбции – заключается в поглощении отде льных компонентов газообразной смеси абсорбентом (поглотителем) в каче стве которого выступает жидкость. Абсорбенты, применяемые в промышленности, оце ниваются по следующим показателям: 1) абсорбционная ем кость, т. е. растворимость извлекаемого компонента в поглотителе в завис имости от температуры и давления; 2) селективность, ха рактеризуемая соотношением растворимостей разделяемых газов и скорос тей их абсорбции; 3) минимальное давл ение паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие корро зирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелоч ей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, окс идов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента исполь зуют воду, для улавливания водяных паров – серную кислоту, для улавлива ния ароматических углеводородов – масла. Абсорбционная очистка - непрерывный и, как правило, ц иклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цик ла очистки. При физической абсорбции регенерацию абсорбента проводят н агреванием и снижением давления, в результате чего происходит десорбци я поглощенной газовой примеси и ее концентрированно. Для реализа ции процесса очистки применяют абсорберы различных конструкций (плено чные, насадочные, трубчатые и др.). Наиболее распространен насадочный скр уббер, применяемый для очистки газов от диоксида серы, сероводорода, хло роводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивно го гидродинамического режима этих реакторов, работающих при скорости г аза 0,02-0,7 м/с. Объемы ап паратов поэтому велики и установки громоздки. Абсорбционные методы характеризуются непрерывностью и универсальн остью процесса, экономичностью и возможностью извлечения больших коли честв примесей из газов. Недостаток этого метода в том, что насадочные ск рубберы, барботажные и даже пенные аппараты обеспечивают достаточно вы сокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технол огические схемы мокрой очистки, как правило, сложны, многоступенчаты и о чистные реакторы (особенно скрубберы) име ют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличн ости и безотходности. Но и циклические системы мокрой очистки конкур ентоспособны только тогда, когда они совмещены с пылеочисткой и охлажде нием газа. 2. Метод хемосорбции – основан на поглощении газов и паров твердыми и жид кими поглотителями, в результате чего образуются мало летучие и малорас творимые соединения. Большинство хемосорбционных процессов газоочист ки обратимы, т. е. при повышении температуры поглотительного раствора хи мические соединения, образовавшиеся при хемосорбции, разлагаются с рег енерацией активных компонентов поглотительного раствора и с десорбцие й поглощенной из газа примеси. Этот прием положен в основу регенерации х емосорбентов в циклических системах газоочистки. Хемосорбция в особен ности применима для тонкой очистки газов при сравнительно небольшой на чальной концентрации примесей. 3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высоко пористых материалов, обладающих развитой удельной поверхностью. Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделени ем фракций, осушка газов и для санитарной очистки газовых выхлопов. В пос леднее время адсорбционные методы выходят на первый план как надежное с редство защиты атмосферы от токсичных газообразных веществ, обеспечив ающее возможность концентрирования и утилизации этих веществ. Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уго ль, силикагель, алюмогель, природные и синтетические цеолиты (молекулярн ые сита). Основные требования к промышленным сорбентам - высокая поглотительная сп особность, избирательность действия (селективность), термическая устой чивость, длительная служба без изменения структуры и свойств поверхнос ти, возможность легкой регенерации. Чаще всего для санитарной очистки га зов применяют активный уголь благодаря его высокой поглотительной спо собности и легкости регенерации. Известны различные конструкции адсорбентов (вертикальн ые, используемые при малых расходах, горизонтальные, при больших расхода х, кольцевые). Очистку газа осуществляют через неподвижные слои адсорбен та и движущиеся слои. Очищаемый газ проходит адсорбер со скоростью 0,05-0,3 м/с. После очистки ад сорбер переключается на регенерацию. Адсорбционная установка, состоящ ая из нескольких реакторов, работает в целом непрерывно, так как одновре менно одни реакторы находятся на стадии очистки, а другие - на стадиях регенерации, ох лаждения и др. Реген ерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азо та). Иногда адсорбент, потерявший активность (экранированный пылью, смол ой), полностью заменяют. Наиболее перспективны непрерывные циклические процессы адсорбцион ной очистки газов в реакторах с движущимся или взвешенным слоем адсорбе нта, которые характеризуются высокими скоростями газового потока (на по рядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная ле гкость регенерации этих примесей с превращением их в товарный продукт и ли возвратом в производство; таким образом осуществляется принцип безо тходной технологии. Адсорбционный метод особенно рационален для удале ния токсических примесей (органических соединений, паров ртути и др.), сод ержащихся в малых концентрациях, т. е. как завершающий этап санитарной оч истки отходящих газов. Недостатки большинства адсорбционных установок - периодичность 4. Метод каталитического окисления – основан на удалении примес ей из очищаемого газа в присутствии катализаторов. Действие катализаторов проявляется в промежуточном химическом взаимодействии катализатора с реагирующими веществами, в р езультате чего образуется промежуточные соединения. В качестве катализаторов применяют металлы и их соединения (оксиды меди, марганца и др.) Катализаторы имеют вид шаров, к олец или другую форму. Особенно широко этот метод используется для очист ки выхлопных газов ДВС. В результате каталитических реакций примеси, находящиес я в газе, превращаются в другие соединения, т. е. в отличие от рассмотренны х методов примеси не извлекаются из газа, а трансформируются в безвред ные соединения, присутстви е которых допустимо в выхлопном газе, либо в соединения, ле гко удаляемые из газового потока. Если образовавшиеся вещества подлежа т удалению, то тре буются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоки х температурах и обычном давлении, а также при весьма малых начальных ко нцентрациях примесей. Каталитические методы позволяют утилизировать р еакционную теплоту, т.е. создавать энерготехнологические системы. Устан овки каталитической очистки просты в эксплуатации и ма логабаритны. Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбц ия), что усложняет установку и снижает общий экономический эффект. 5.Термический метод заключается в очистке газов перед выбросом в атмосферу путем высокотемпературного дожигания. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителе й или оксида углерода. Простейший метод - факельное сжигание - возможен, когда концентра ция горючих загрязнителей близка к нижнему пределу воспламенения. В это м случае примеси служат топливом, температура процесса 750- 900 °С и теплоту горения прим есей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламене ния, то необходимо подводить некоторое количество теплоты извне. Чаще вс его теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточ но высоком содержании горючих примесей, иначе возрастает расход добавл яемого горючего газа. Рассеивание пылегазовых выбросов в атмосферу. При любом способе очис тке, часть пыли и газов остается в воздухе, выбрасываемом в атмосферу. Рас сеивание газовых выбросов используют для снижения опасных концентраци й примесей до уровня соответствующего ПДК. Используют различные технол огические средства для осуществления процесса рассеивания: трубы, вент иляционные устройства. На процессы рассеивания выбросов существенное влияние оказывает состо яние атмосферы, расположение предприятий и источников выбросов, характ ер местности и т. д. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное – распределением температур в вертикальном направлении. При распределении концентрации вредных веществ в атмосфере над факело м организованного высокого источника выброса выделяют 3 зоны загрязнен ия атмосферы: Рис. 1. Переброс факела выбросов, характеризующийся относительно невысоким с одержанием вредных веществ в приземном слое атмосферы. 2. Зона задымления с максимальным содержанием вредных веществ и постепен ное снижение уровня загрязнения. Эта зона является наиболее опасной для населения. Размеры этой зоны в зависимости от метеорологических услови й находятся в пределах 10-49 высоты трубы. 3. Зона постепенного сниж ения уровня загрязнения. При невозможности достигнуть ПДК очисткой иногда при меняют многократное разбавление токсичных веществ или выброс газов че рез высокие дымовые трубы для рассеивания примесей в верхних слоях атмо сферы. Теоретическое определение концентрации примесей в нижних слоях атмосферы в зависимости от высоты трубы и других факторов связано с зако нами турбулентной диффузии в атмосфере и пока разработано не полностью. Высоту трубы, необходимую, чтобы обеспечить ПДК токсичных веществ в нижн их слоях атмосферы, на уровне дыхания, определяют по приближенным формул ам, например: ПДВ = где ПДВ - предельно допустимый выброс вредных примесей в атмосферу, обеспечивающий концен трацию этих веществ в приземном слое воздуха не выше ПДК, г/с; Н - высота трубы, м; V - объем газового выброса, м^с; ∆ t - разность между температурами газового выброса и окружаю щего воздуха, °С; А - коэффициент, определяющий условия вертикального и горизонтального рас сеив ания вредных веществ в воздухе; F - безразмерный к оэффициент, учи тывающий скорость седиментации вредных веществ в атмос фере; т - коэффициент, учитывающий условия выхода газа из устья тр убы, его определяют графически или приближенно по формуле: Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом, т ак как не предохраняет атмосферу, а лишь переносит загрязнения из одного района в другие. Устройство санитарно-защитных зон Санитарно-з ащитная зона - это полоса, отделяющая источники промышленного загрязнен ия от жилых или общественных зданий для защиты населения от влияния вред ных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от класса пр оизводства, степени вредности и количества, выделенных в атмосферу веще ств, и принимают равной от 50 до 1000 м. Санитарно-защитная зона должна быть благоустроена и озеленена. Различают 3 типа зон: Круговые, при полном окружении предприятия жилой застройкой; Секторные, при частичном окружении предприятия жилой застройкой и прим ыкания завода к естественной природной преграде. Трапециидальные, при отрыве предприятия от селитебной зоны. Устройство са н-защитных зон – вспомогательное средство защиты, так как очень дорогос тоящее мероприятие, это увеличение протяженности дорог, коммуникаций и т.д. Архитектур но-планировочные мероприятия включают правильное взаимное размещение источников выброса в населенных пунктах с учетом направления ветра, выб ор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход на селенных пунктов и др.

Способы защиты атмосферы от загрязняющих веществ?

Атмосфера - это газовая оболочка планеты Земля, которая вращается вместе с ней. Смесь газов атмосферы называют воздухом.

Загрязнение бывает первичным и вторичным. Первичное загрязнение происходит тогда, когда вещества, попадающие в атмосферу, оказывают неблагоприятное влияние на живые организмы. Например, газ фосген является ядом для всего живого. Вторичное загрязнение происходит тогда, когда относительно безопасное вещество в атмосфере превращается во вредное. Так, фреон малоактивное химическое вещество, но под действием ультрафиолета разлагается с выделением вредного хлора.

Загрязняющие вещества, попадающие в атмосферу, бывают в твердом, жидком и газообразном агрегатных состояниях. Существенный вклад в эмиссию вредных веществ вносят бытовые системы отопления, а точнее твердотопливные печи. Также, большое количество загрязнителей поступает в атмосферу с выхлопными газами различных видов транспорта. Все виды промышленности являются виновниками загрязнения воздуха наиболее токсичными веществами. Немалую роль в загрязнении атмосферы играют животноводческие комплексы.

  1. Методы очистки от загрязняющих веществ промышленных выбросов:
    • Гравитация. Применяется для осаждения крупных пылевых частиц.
    • Фильтрование. Подходит для отделения веществ в твердом агрегатном состоянии с различным диаметром частиц, происходит в специальных аппаратах: циклонах, скрубберах, фильтрах, пылеосадителях.
    • Сорбция. Применяется для очистки выбросов от жидких и газообразных веществ. Заключается в поглощении специальными веществами молекул загрязнителей. Проводится в адсорберах или абсорберах.
    • Конденсация. Применяется для отделения жидких или газообразных загрязнителей. Проводится в специальных реакторах или конденсаторах.
    • Окисление-восстановление. Метод подходит для обезвреживания веществ в различных агрегатных состояниях путем их химического превращения в безопасные. Проводится в специальных реакторах под действием катализаторов или в горелках для термического превращения.
  2. Защита атмосферы от выхлопных газов транспорта :
    • Изменение качества или вида топлива, например, перевод автомобилей на сжиженный газ, спирт и т.д.
    • Установка каталитических, пламенных или жидкостных нейтрализаторов на выхлопную систему автомобилей.
    • Переход на электромобили.
  3. Защита атмосферы от загрязняющих веществ животноводческих комплексов :
    • физико-химические методы, улавливание и нейтрализация вредных веществ происходит в различных фильтрах, скрубберах, пылеосадительных камерах;
    • биологические - извлечение из воздуха углекислого газа и сероводорода с помощью специально выращиваемых растений.
  4. Способы снижения загрязнения воздуха от твердотопливных печей :
    • использование современных каталитических и некаталитических печей, устройство которых способствует полному сгоранию топлива и дожиг дымовых газов;
    • использовать для отопления пеллеты или топливные брикеты, при сгорании которых образуется почти вдвое меньше вредных веществ, чем от угля или дров;
    • переход на газовое или электрическое отопление.

Выбросы промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы их очистки и типы газо- и пылеуловителей - аппаратов, предназначенных для очистки выбросов от загрязняющих веществ.

Методы очистки промышленных выбросов от пыли можно разделить на две группы: методы улавливания пыли «сухим» способом и методы улавливания пыли «мокрым» способом . Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.

Наиболее распространенными установками сухого пылеулавливания являются циклоны различных типов.

Они используются для улавливания мучной и табачной пыли, золы, образующейся при сжигании топлива в котлоагрегатов. Газовый поток поступает в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса. Под действием центробежной силы частицы пыли отбрасываются к стенке циклона и под действием силы тяжести опадают в бункер для сбора пыли 4, а очищенный газ выходит через выходную трубу 3. Для нормальной работы циклона необходима его герметичность, если циклон не герметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Задачи по очистке газов от пыли могут успешно решаться цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М, СКД-ЦН-33) циклонами, разработанными НИИ по промышленной и санитарной очистке газов (НИИОГАЗ). Для нормального функционирования избыточное давление газов, поступающих в циклоны, не должно превышать 2500 Па. При этом во избежание конденсации паров жидкости t газа выбирается на 30 – 50 о С выше t точки росы, а по условиям прочности конструкции – не выше 400 о С. Производительность циклона зависит от его диаметра, увеличиваясь с ростом последнего. Эффективность очистки циклонов серии ЦН падает с ростом угла входа в циклон. С увеличением размера частиц и уменьшением диаметра циклона эффективность очистки возрастает. Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем и рекомендованы к использованию для предварительной очистки газов на входе фильтров и электрофильтров. Циклоны ЦН-15 изготавливают из углеродистой или низколегированной стали. Канонические циклоны серии СК, предназначенные для очистки газов от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН за счет большего гидравлического сопротивления.



Для очистки больших масс газов применяют батарейные циклоны, состоящие из большего числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Отечественная промышленность выпускает батарейные циклоны типа БЦ-2, БЦР-150у и др.

Ротационные пылеуловители относятся к аппаратам центробежного действия, которые одновременно с перемещением воздуха очищают его от фракции пыли крупнее 5 мкм. Они обладают большой компактностью, т.к. вентилятор и пылеуловитель обычно совмещены в одном агрегате. В результате этого при монтаже и эксплуатации таких машин не требуется дополнительных площадей, необходимых для размещения специальных пылеулавливающих устройств при перемещении запыленного потока обыкновенным вентилятором.

Конструктивная схема простейшего пылеуловителя ротационного типа представлена на рисунке. При работе вентиляторного колеса 1 частицы пыли за счет центробежных сил отбрасываются к стенке спиралеобразного кожуха 2 и движутся по ней в направлении выхлопного отверстия 3. Газ, обогащенный пылью, через специальное пылеприемное отверстие 3 отводится в пылевой бункер, а очищенный газ поступает в выхлопную трубу 4.

Для повышения эффективности пылеуловителей такой конструкции необходимо увеличить переносную скорость очищаемого потока в спиральном кожухе, но это ведет к резкому повышению гидравлического сопротивления аппарата, или уменьшить радиус кривизны спирали кожуха, но это снижает его производительность. Такие машины обеспечивают достаточно высокую эффективность очистки воздуха при улавливании сравнительно крупных частиц пыли – свыше 20 – 40 мкм.

Более перспективными пылеотделителями ротационного типа, предназначенными для очистки воздуха от частиц размером > 5 мкм, являются противопоточные ротационные пылеотделители (ПРП). Пылеотделитель состоит из встроенного в кожух 1 полого ротора 2 с перфорированной поверхностью и колеса вентилятора 3. Ротор и колесо вентилятора насажены на общий вал. При работе пылеотделителя запыленный воздух поступает внутрь кожуха, где закручивается вокруг ротора. В результате вращения пылевого потока возникают центробежные силы, под действием которых взвешенные частицы пыли стремятся выделиться из него в радиальном направлении. Однако на эти частицы в противоположном направлении действуют силы аэродинамического сопротивления. Частицы, центробежная сила которых больше силы аэродинамического сопротивления, отбрасываются к стенкам кожуха и поступают в бункер 4. Очищенный воздух через перфорацию ротора с помощью вентилятора выбрасывается наружу.

Эффективность очистки ПРП зависит от выбранного соотношения центробежной и аэродинамической сил и теоретически может достигать 1.

Сравнение ПРП с циклонами свидетельствует о преимуществах ротационных пылеуловителей. Так, габаритные размеры циклона в 3 – 4 раза, а удельные энергозатраты на очистку 1000 м 3 газа на 20 – 40 % больше, чем у ПРП при прочих равных условиях. Однако широкое распространение пылеуловители ротационного действия не получили из-за относительной сложности конструкции и процесса эксплуатации по сравнению с другими аппаратами сухой очистки газов от механических загрязнений.

Для разделения газового потока на очищенный газ и обогащенный пылью газ используют жалюзийный пылеотделитель. На жалюзийной решетке 1 газовый поток расходом Q разделяется на два протока расходом Q 1 и Q 2 . Обычно Q 1 = (0.8-0.9)Q, а Q 2 =(0.1-0.2)Q. Отделение частиц пыли от основного газового потока на жалюзийной решетке происходит под действием инерционных сил, возникающих при повороте газового потока на входе в жалюзийную решетку, а также за счет эффекта отражении частиц от поверхности решетки при соударении. Обогащенный пылью газовый поток после жалюзийной решетки направляется к циклону, где очищается от частиц, и вновь вводится в трубопровод за жалюзийной решеткой. Жалюзийные пылеотделители отличаются простотой конструкции и хорошо компонуются в газоходах, обеспечивая эффективность очистки 0,8 и более для частиц размером более 20 мкм. Они применяются для очистки дымовых газов от крупнодисперсной пыли при t до 450 – 600 о С.

Электрофильтр. Электрическая очистка один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Осадительные электроды 2 присоединяют к положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды подсоединяют к отрицательному полюсу. Частицы, поступающие в электрофильтр, ок положительному полюсу выпрямителя 4 и заземляют, а коронирующее электроды приедаче заряда ионов примесей ана. бычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Таким образом, отрицательно заряженные частицы движутся к осадительному электроду, а положительно заряженные частицы оседают на отрицательном коронирующем электроде.

Фильтры широко используют для тонкой очистки газовых выбросов от примесей. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтро-

элементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3.

По типу перегородок фильтры бывают:- с зернистыми слоями (неподвижные свободно насыпанные зернистые материалы) состоящие из зерен различной формы, используют для очистки газов от крупных примесей. Для очистки газов от пылей механического происхождения (от дробилок, сушилок, мельниц и др.) чаще используют фильтры из гравия. Такие фильтры дешевы, просты в эксплуатации и обеспечивают высокую эффективность очистки (до 0,99) газов от крупнодисперсной пыли.

С гибкими пористыми перегородками (ткани, войлоки, губчатая резина, пенополиуретан и др.);

С полужесткими пористыми перегородками (вязанные и тканые сетки, прессованные спирали и стружка и др.);

С жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Наибольшее распространение в промышленности для сухой очистки газовых выбросов от примесей имеют рукавные фильтры. В корпусе фильтра 2 устанавливается необходимое число рукавов 1, во внутреннюю полость которых подается запыленный газ от входящего патрубка 5. Частицы загрязнений за счет ситового и других эффектов оседают в ворсе и образуют пылевой слой на внутренней поверхности рукавов. Очищенный воздух выходит из фильтра через патрубок 3.При достижении максимально допустимого перепада давления на фильтре его отключают от системы и производят регенерацию встряхиванием рукавов с обработкой их продувкой сжатым газом. Регенерация осуществляется специальным устройством 4.

Пылеуловители различных типов, в том числе и электрофильтры, применяют при повышенных концентрациях примесей в воздухе. Фильтры используют для тонкой очистки воздуха с концентрациями примесей не более 50 мг/м 3 , если требуемая тонкая очистка воздуха идет при больших начальных концентрациях примесей, то очистку ведут в системе последовательно соединенных пылеуловителей и фильтров.

Аппараты мокрой очистки газов имеют широкое распространение, т.к. характеризуются высокой эффективностью очистки от мелкодисперсных пылей с d ч ≥ (0,3-1,0) мкм, а также возможностью очистки от пылей горячих и взрывоопасных газов.. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения: образования в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель жидкости, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике более применимы скрубберы Вентури . Основная часть скруббера – сопло Вентури 2, в конфузорную часть которого подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости 15-20 м/с до скорости в узком сечении сопла 30-200 м/с, а в диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона. Скрубберы Вентури обеспечивают высокую эффективность очистки аэрозолей со средним размером частиц 1-2 мкм при начальной концентрации примесей до 100 г/м 3 .

К мокрым пылеуловителям относят барботажго-пенные пылеуловители с провальной и переливной решетками. В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, проходя через слой жидкости или пены 2, под давлением, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе аппарата c 1 до 2-2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажго-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли ≈ 0,95-0,96 при удельных расходах воды 0,4-0,5 л/м 3 . Но эти аппараты весьма чувствительны к неравномерности подачи газа под провальные решетки, что приводит к местному сдуву пленки жидкости с решетки. Решетки склонны к засорению.

Методы очистки промышленных выбросов от газообразных загрязнителей по характеру протекания физико-химических процессов делят на пять основных групп: промывка выбросов растворителями примесей (абсорбция); промывка выбросов растворами реагентов, связывающих примеси химически (хемосорбция); поглощение газообразных примесей твердыми активными веществами (адсорбция); термическая нейтрализация отходящих газов и применение каталитического превращения.

Метод абсорбции . В технике очистки газовых выбросов про­цесс абсорбции часто называют скрубберным процессом. Очистка газовых выбросов методом абсорбции заключается в разделении газовоздушной смеси на составные части путем поглощения одно­го или нескольких газовых компонентов (абсорбатов) этой смеси жидким поглотителем (абсорбентом) с образованием раствора.

Движущей силой здесь является градиент концентрации на гра­нице фаз газ - жидкость. Растворенный в жидкости компонент газовоздушной смеси (абсорбат) благодаря диффузии проникает во внутренние слои абсорбента. Процесс протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффициенты диффузии, т. е. в процессе проектирования абсор­беров особое внимание следует уделять организации контакта га­зового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).

Решающим условием при выборе абсорбента является раство­римость в нем извлекаемого компонента и ее зависимость от тем­пературы и давления. Если растворимость газов при 0°С и пар­циальном давлении 101,3 кПа составляет сотни граммов на 1 кг растворителя, то такие газы называют хорошо растворимыми.

Организация контакта газового потока с жидким растворите­лем осуществляется либо пропусканием газа через насадочную колонну, либо распылением жидкости, либо барботажем газа че­рез слой абсорбирующей жидкости. В зависимости от реализуе­мого способа контакта газ - жидкость различают: насадочиые башни: форсуночные и центробежные скрубберы, скрубберы Вентури; барботажно-пенные и другие скрубберы.

Общее устройство противопоточной насадочной башни приве­дено на рисунке. Загрязненный газ входит в нижнюю часть башни, а очищенный покидает ее через верхнюю часть, куда при помощи одного или нескольких разбрызгивателей 2 вводят чистый погло­титель, а из нижней отбирают отработанный раствор. Очищенный газ обычно сбрасывают в атмосферу. Жидкость, покидающую абсорбер, подвергают регенерации, десорбируя загрязняющее вещество, и возвра­щают в процесс или выводят в качестве отхода (побочного продукта). Химически инертная на­садка 1, заполняющая внутреннюю полость ко­лонны, предназначена для увеличения поверх­ности жидкости, растекающейся по ней в виде пленки. В качестве насадки используют тела разной геометрической формы, каждая из кото­рых характеризуется собственной удельной по­верхностью и сопротивлением движению газово­го потока.

Выбор метода очистки определяется технико-экономическим расчетом и зависит от: концентрации загрязнителя в очищаемом газе и требуемой степенью очистки, зависящей от фонового за­грязнения атмосферы в данном регионе; объемов очищаемых га­зов и их температуры; наличия сопутствующих газообразных при­месей и пыли; потребности в тех или иных продуктах утилизации и наличии требуемого сорбента; размеров площадей, имеющихся для сооружения газоочистной установки; наличия необходимого катализатора, природного газа и т. д.

При выборе аппаратурного оформления для новых технологи­ческих процессов, а также при реконструкции действующих уста­новок газоочистки необходимо руководствоваться следующими требованиями: максимальная эффективность процесса очистки в широком диапазоне нагрузочных характеристик при малых энер­гетических затратах; простота конструкции и ее обслуживания; компактность и возможность изготовления аппаратов или отдель­ных узлов из полимерных материалов; возможность работы на циркуляционном орошении или на самоорошении. Главный прин­цип, который должен быть положен в основу проектирования очистных сооружений, - это максимально возможное удержание вредных веществ, теплоты и возврат их в технологический про­цесс.

Задача №2 : На зерноперерабатывающем предприятии установлено оборудование, являющиеся источником выделения зерновой пыли. Для её удаления из рабочей зоны, оборудование снабжено аспирационной системой. С целью очистки воздуха перед выбросом его в атмосферу применяется пылеулавливающая установка, состоящая из одиночного или батарейного циклона.

Определить: 1. Предельно допустимый выброс зерновой пыли.

2. Подобрать конструкцию пылеулавливающей установки, состоящей из циклонов НИИ по промышленной и санитарной очистке газов (НИИ ОГАЗ), определить её эффективность по графику и рассчитать концентрацию пыли на входе и выходе из циклона.

Высота источника выброса Н = 15 м,

Скорость выхода газовоздушной смеси из источника w о = 6 м/с,

Диаметр устья источника Д = 0,5 м,

Температура выброса Т г = 25 о С,

Температура окружающего воздуха Т в = _ -14 о С,

Средний размер частиц пыли d ч = 4 мкм,

ПДК зерновой пыли = 0,5 мг/м 3 ,

Фоновая концентрация зерновой пыли С ф = 0,1 мг/м 3 ,

Предприятие находится в Московской области,

Рельеф местности спокойный.

Решение.1.Определяем ПДВ зерновой пыли:

М пдв = , мг/м 3

из определения ПДВ имеем: С м =С пдк – С ф = 0,5-0,1=0,4 мг/м 3 ,

Расход газовоздушной смеси V 1 = ,

DT = Т г – Т в = 25 – (-14) = 39 о С,

определяем параметры выброса: f =1000 , тогда

m = 1/(0,67+0,1 + 0,34 ) = 1/(0,67 + 0,1 +0,34 ) = 0,8 .

V м = 0,65 , тогда

n = 0,532V м 2 – 2,13V м + 3,13= 0,532×0,94 2 – 2,13×0,94 + 3,13 = 1,59, и

М пдв = г/с.

2. Выбор очистной установки и определение её параметров.

а) Выбор пылеулавливающей установки производится по каталогам и таблицам («Вентиляция, кондиционирование и очистка воздуха на предприятиях пищевой промышленности» Е.А.Штокман, В.А.Шилов, Е.Е.Новгородский и др., М.,1997). Критерием выбора является производительность циклона, т.е. величина расхода газовоздушной смеси, при которой циклон обладает max эффективностью. При решении задачи воспользуемся таблицей:

В первой строчке приводятся данные для одиночного циклона, во второй – для батарейного циклона.

Если расчетная производительность находится в интервале между табличными значениями, то выбирают конструкцию пылеулавливающей установки с ближайшей большей производительностью.

Определяем часовую производительность очистной установки:

V ч = V 1 × 3600 = 1.18 × 3600 = 4250 м 3 /ч

Согласно таблице по ближайшей большей величине V ч = 4500 м 3 /ч выбираем пылеулавливающую установку в виде одиночного циклона ЦН-11 с диаметром 800 мм.

б) По графику рис.1 приложения эффективность пылеулавливающей установки при среднем диаметре частиц пыли 4 мкм составляет h оч = 70%.

в) Определяем концентрацию пыли на выходе из циклона(в устье источника):

С вых =

Максимальную концентрацию пыли в очищаемом воздухе С вх определяем:

С вх = .

Если фактическое значение С вх больше 1695 мг/м 3 , то пылеулавливающая установка не даст нужного эффекта. В этом случае необходимо использовать более совершенные методы очистки.

3. Определяем показатель загрязнения

Р = ,

где М – масса выброса загрязняющего вещества, г/с,

Показатель загрязнения показывает, какое количество чистого воздуха необходимо для «растворения» загрязняющего вещества, выделяемого источником за единицу времени, до ПДК с учетом фоновой концентрации.

Р = .

Показатель загрязнения за год – суммарный показатель загрязнения. Для его определения находим массу выброса зерновой пыли за год:

М год = 3,6 × М ПДВ × Т × d ×10 -3 = 3,6 × 0,6 × 8 × 250 × 10 -3 = 4,32 т/год, тогда

åР = .

Показатель загрязнения необходим для сравнительной оценки различных источников выбросов.

Для сравнения посчитаем åР для сернистого ангидрида из предыдущей задачи за такой же период времени:

М год = 3,6 × М ПДВ × Т × d × 10 -3 = 3,6 × 0,71 × 8 × 250 × 10 -3 = 5,11 т/год, тогда

åР =

И в заключении необходимо начертить эскиз выбранного циклона по размерам, приведенным в приложении, в произвольном масштабе.

Контроль над загрязнением окружающей среды. Плата за наносимый ущерб окружающей среды.

При расчете количества загрязняющего вещества, т.е. массы выброса, определяют две величины: валовый выброс (т/год) и максимально разовый выброс (г/с) . Величина валового выброса применяется для общей оценки загрязнения атмосферы данным источником или группой источников, а также является основой для расчета платежей за загрязнение ОПС.

Максимально разовый выброс позволяет оценить состояние загрязнения атмосферного воздуха в данный момент времени и является исходной величиной для расчета максимальной приземной концентрации загрязняющего вещества и его рассеивания в атмосфере.

При разработке мероприятий по снижению выбросов загрязняющих веществ в атмосферу необходимо знать, какой вклад вносит каждый источник в общую картину загрязнения атмосферного воздуха в районе расположения предприятия.

ВСВ – временно согласованный выброс. Если на данном предприятии или группе предприятий, расположенных в одном районе (С Ф большая), значение ПДВ по объективным причинам не могут быть достигнуты в настоящее время, то по согласованию с органом, осуществляемым государственный контроль за охраной атмосферы от загрязнения, природопользователю назначается ВСВ с принятием поэтапного снижения выбросов до величин ПДВ и разработкой конкретных мер для этого.

Взимание платы осуществляется за следующие виды вредного воздействия на окружающую природную среду: - выброс в атмосферу загрязняющих веществ от стационарных и передвижных источников;

Сброс загрязняющих веществ в поверхностные и подземные водные объекты;

Размещение отходов;

Др. виды вредного воздействия (шум, вибрация, электромагнитное и радиационное воздействия и т.п.).

Установлены два вида базовых нормативов платы:

а) за выбросы, сбросы загрязняющих веществ и размещение отходов в пределах допустимых нормативов

б) за выбросы, сбросы загрязняющих веществ и размещение отходов в пределах установленных лимитов (временно согласованных нормативов).

Базовые нормативы платы устанавливаются по каждому ингредиенту ЗВ(отходу) с учетом степени опасности их для ОПС и здоровья населения.

Ставки платы за загрязнение ОПС указаны в Постановлении Правительства РФ от 12 июня 2003г. № 344 «О нормативах платы за выбросы в атмосферный воздух ЗВ стационарными и передвижными источниками, сбросы ЗВ в поверхностные и подземные водные объекты, размещение отходов производства и потребления» за 1 т в рублях:

Плата за выбросы загрязняющих веществ, не превышающих установленные природопользователю нормативы:

П = С Н × М Ф, при М Ф £ М Н,

где М Ф – фактический выброс загрязняющего вещества, т/год;

М Н – предельно допустимый норматив этого загрязняющего вещества;

С Н – ставка платы за выброс 1 т данного загрязняющего вещества в пределах допустимых нормативов выбросов, руб/т.

Плата за выбросы загрязняющих веществ в пределах установленных лимитов выбросов:

П = С Л (М Ф – М Н)+ С Н М Н, при М Н < М Ф < М Л, где

С Л – ставка платы за выброс 1 т загрязняющего вещества в пределах установленных лимитов выбросов, руб/т;

М Л – установленный лимит выброса данного загрязняющего вещества, т/год.

Плата за сверхлимитный выброс загрязняющих веществ:

П = 5× С Л (М Ф – М Л) + С Л (М Л – М Н) + С Н × М Н, при М Ф > М Л.

Плата за выброс загрязняющих веществ, когда природопользователю не установлены нормативы выбросов загрязняющих веществ или штраф:

П = 5 × С Л × М Ф

Платежи за предельно-допустимые выбросы, сбросы ЗВ, размещение отходов осуществляются за счет себестоимости продукции (работ, услуг), а за превышение их – за счет прибыли, оставшейся в распоряжении природопользователя.

Платежи за загрязнение ОПС поступают:

19% в Федеральный бюджет,

81% в бюджет субъекта Федерации.

Задача № 3. «Расчет технологических выбросов и плата за загрязнение окружающей природной среды на примере хлебозавода»

Основная масса загрязняющих веществ, таких как этиловый спирт, уксусная кислота, уксусный альдегид, образуются в пекарных камерах, откуда удаляются по вытяжным каналам за счет естественной тяги или выбрасываются в атмосферу через металлические трубы или шахты высотой не менее 10 – 15 м. Выбросы мучной пыли, в основном, происходят на складах муки. Окислы азота и углерода образуются при сжигании в пекарных камерах природного газа.

Исходные данные:

1. Годовая выработка хлебозавода г.Москвы – 20.000 т/год хлебобулочных изделий, в т.ч. хлебобулочных изделий из пшеничной муки – 8.000 т/год, хлебобулочных изделий из ржаной муки – 5.000 т/год, хлебобулочных изделий из смешанных валок – 7.000 т/год.

2. Рецептура валок: 30% - пшеничная мука и 70% - ржаная мука

3. Условие хранения муки – бестарное.

4. Топливо в печах и котлах– природный газ.

I. Технологические выбросы хлебозавода.

II. Плату за загрязнение атмосферы, если ПДВ по:

Этиловому спирту – 21т/год,

Уксусной кислоте – 1,5 т/год (ВСВ – 2,6 т/год),

Уксусный альдегид – 1 т/год,

Мучная пыль – 0,5 т/год,

Окислы азота – 6,2 т/год,

Окислы углерода – 6 т/год.

1. В соответствии с методикой ВНИИ ХП технологические выбросы при выпечке хлебобулочных изделий определяются методом удельных показателей:

М = В × m , где

М – количество выбросов загрязняющего вещества в кг за единицу времени,

В – выработка продукции в т за этот же промежуток времени,

m – удельный показатель выбросов загрязняющего вещества на единицу выпускаемой продукции, кг/т.

Удельные выбросы ЗВ в кг/т готовой продукции.

1.Этиловый спирт: хлебобулочные изделия из пшеничной муки – 1,1 кг/т,

хлебобулочные изделия из ржаной муки – 0,98 кг/т.

2. Уксусная кислота: хлебобулочные изделия из пшеничной муки – 0,1 кг/т,

хлебобулочные изделия из ржаной муки – 0,2 кг/т.

3. Уксусный альдегид – 0,04 кг/т.

4. Мучная пыль – 0,024 кг/т (для бестарного хранения муки), 0,043 кг/т (для тарного хранения муки).

5. Оксиды азота- 0,31 кг/т.

6. Оксиды углерода – 0,3 кг/т.

I. Расчет технологических выбросов:

1. Этиловый спирт:

М 1 = 8000 × 1,1 = 8800 кг/год;

М 2 = 5000 × 0,98 = 4900 кг/год;

М 3 = 7000(1,1×0,3+0,98×0,7) = 7133 кг/год;

общий выброс М = М 1 +М 2 +М 3 = 8800+4900+7133 = 20913 кг/год.

2. Уксусная кислота:

Хлебобулочные изделия из пшеничной муки

М 1 = 8000 × 0,1 = 800 кг/год;

Хлебобулочные изделия из ржаной муки

М 2 = 5000 × 0,2 =1000 кг/год;

Хлебобулочные изделия из смешанных валок

М 3 = 7000(0,1×0,3+0,2×0,7) = 1190 кг/год,

общий выброс М = М 1 + М 2 + М 3 = 800 + 1000 + 1190 = 2990 кг/год.

3. Уксусный альдегид М = 20000 × 0,04 = 800 кг/год.

4. Мучная пыль М = 20000 × 0,024 = 480 кг/год.

5. Оксиды азота М = 20000 × 0,31 = 6200 кг/год.

6. Оксиды углерода М = 20000 × 0,3 = 6000 кг/год.

II. Расчет платы за загрязнение ОПС.

1. Этиловый спирт: М Н = 21 т/год, М Ф = 20,913 т/год Þ П = С Н × М ф = 0,4 × 20,913 = 8,365 руб.

2. Кислота уксусная: М Н =1,5 т/год, М Л = 2,6 т/год, М Ф =2,99 т/год Þ П=5С Л (М Ф –М Л)+С Л (М Л – М Н)+С Н × М Н =

5×175×(2,99-2,6) + 175 ×(2,6 – 1,5) + 35×1,5= 586,25 руб.

3. Альдегид уксусный: М Н = 1 т/год, М Ф = 0,8 т/год Þ П = С Н × М Ф = 68 × 0,8 = 54,4 руб.

4. Пыль мучная: М Н = 0,5 т/год, М Ф = 0,48 т/год Þ П = С Н × М Ф = 13,7 × 0,48 = 6,576 руб.

5. Азота оксид: М Н = 6,2 т/год, М Ф = 6,2 т/год Þ П = С Н × М Ф = 35 × 6,2 = 217 руб.

6. Углерода оксид: М Н = 6 т/год, М Ф = 6т/год Þ

П = С Н × М Ф = 0,6 × 6 = 3,6 руб.

Коэффициент, учитывающий экологические факторы, для Центрального района РФ = 1,9 для атмосферного воздуха, для города коэффициент равен 1,2.

åП = 876,191 · 1,9 ·1,2 = 1997,72 руб

КОНТРОЛЬНЫЕ ЗАДАНИЯ.

Задание 1

№ варианта Производитель- ность котельной Q об, МДж/час Высота источника Н, м Диаметр устья Д, м Фоновая концентрация SO 2 С ф, мг/м 3
0,59 0,004
0,59 0,005
0,6 0,006
0,61 0,007
0,62 0,008
0,63 0,004
0,64 0,005
0,65 0,006
0,66 0,007
0,67 0,008
0,68 0,004
0,69 0,005
0,7 0,006
0,71 0,007
0,72 0,008
0,73 0,004
0,74 0,005
0,75 0,006
0,76 0,007
0,77 0,008
0,78 0,004
0,79 0,005
0,8 0,006
0,81 0,007
0,82 0,008
0,83 0,004
0,84 0,005
0,85 0,006
0,86 0,007
0,87 0,004
0,88 0,005
0,89 0,006

Министерство Образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

ИНЖЕНЕРНО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Гуманитарный факультет

Кафедра современного естествознания и экологии

КОНТРОЛЬНАЯ работа по дисциплине

ПРИРОДООХРАННЫЕ СИСТЕМЫ И СООРУЖЕНИЯ

На тему: Защита атмосферы

Санкт-Петербург


Защита атмосферы

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается как огромный «химический котел», который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Загрязнением атмосферы считается прямое или косвенное введение в нее любого вещества в таком количестве, которое воздействует на качество и состав наружного воздуха, нанося вред людям, живой и неживой природе, экосистемам, строительным материалам, природным ресурсам – всей окружающей среде.

Очистка воздуха от примесей.

Для защиты атмосферы от негативного антропогенного воздействия используют следующие меры:

Экологизацию технологических процессов;

Очистку газовых выбросов от вредных примесей;

Рассеивание газовых выбросов в атмосфере;

Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Безотходная и малоотходная технология.

Экологизация технологических процессов – это создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ.

Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функционирования производств, при рациональном использовании всех компонентов сырья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потребление – вторичные сырьевые ресурсы).

Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Малоотходная технология является промежуточной ступенью при создании безотходного производства.

В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных технологий:

1) разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

2) переработка отходов производства и потребления в качестве вторичного сырья;

3) создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов внутри комплекса.

Важность экономного и рационального использования природных ресурсов не требует обоснований. В мире непрерывно растет потребность в сырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациональное использования вторичных ресурсов требует принятия межотраслевых решений.

Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса.

Очистка газовых выбросов от вредных примесей

Газовые выбросы классифицируются по организации отвода и контроля – на организованные и неорганизованные, по температуре на нагретые и холодные.

Организованный промышленный выброс – это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы.

Неорганизованные называют промышленные выбросы, поступающие в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования. Отсутствие или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.

Для снижения загрязнения атмосферы от промышленных выбросов используют системы очистки газов. Под очисткой газов понимают отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего от промышленного источника.

Механическая очистка газов

Она включает сухие и мокрые методы.

Очистка газов в сухих механических пылеуловителях.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный (пылеосадительная камера), инерционный (камеры, осаждение пыли в которых происходит в результате изменения направления движения газового потока или установки на его пути препятствия) и центробежный.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах(рис.1). Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

Пылеосадительные камеры (рис. 1 ). Осаждение взвешенных в газовом потоке частиц в пылеосадительных камерах происходит под действием сил тяжести. Простейшими конструкциями аппаратов этого типа являются отстойные газоходы, снабжаемые иногда вертикальными перегородками для лучшего осаждения твердых частиц. Для очистки горячих печных газов широко применяют многополочные пылеосадительные камеры.Пылеосадительная камера состоит: 1 - входной патрубок; 2 - выходной патрубок; 3 - корпус; 4 - бункер взвешенных частиц.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100 - 400 Па (10 - 40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Данные аппараты отличаются простотой изготовления и эксплуатации, их достаточно широко используют в промышленности. Но эффективность улавливания не всегда достаточна.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны (рис.2) различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м 3 /ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%.

Рис. 2 Рис. 3

На рис. 2 воздух вводится тангенциально во входной патрубок (4) циклона, представляющую собой закручивающий аппарат. Сформировавшийся здесь вращающийся поток опускается по кольцевому пространству, образованному цилиндрической частью циклона (3) и выхлопной трубой (5), в его конусную часть (2), а затем, продолжая вращаться, выходит из циклона через выхлопную трубу. (1) - пылевыпускное устройство.Аэродинамические силы искривляют траекторию частиц. При вращательно-нисходящем движении запыленного потока пылевые частицы достигают внутренней поверхности цилиндра, отделяются от потока. Под влиянием силы тяжести и увлекающего действия потока отделившиеся частицы опускаются и через пылевыпускное отверстие проходят в бункер.Более высокая степень очистки воздуха от пыли по сравнению с сухим циклоном может быть получена в пылеуловителях мокрого типа (рис.3), в которых пыль улавливается в результате контакта частиц со смачивающей жидкостью. Этот контакт может осуществляться на смоченных стенках, обтекаемых воздухом, на каплях или на свободной поверхности воды.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»