Таблица минус на минус дает плюс. Действия с минусом

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Минус на минус даёт плюс – это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению.

С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т.д. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа – так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время.

Только с VII века н.э. отрицательные числа использовались в некоторых счётных системах, как вспомогательные величины, которые позволяли получить положительное число в ответе.

Рассмотрим пример , 6х – 30 = 3х – 9. Чтобы найти ответ, необходимо члены с неизвестными оставить в левой части, а остальные - в правую: 6х – 3х = 30 – 9, 3х = 21, х = 7. При решении этого уравнения нам даже не встретились отрицательные числа. Мы могли бы члены с неизвестными перенести в правую часть, а без неизвестных - в левую: 9 – 30 = 3х – 6х, (-21) = (-3х). При деление отрицательного числа на отрицательное получаем положительный ответ: х = 7.

Что мы видим?

Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий – они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу.

Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними (в математике они называются аксиомами). Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Инструкция

Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с будет четыре типа. Отрицательные числа внутри примера выделяются для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).

Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак "+" меняется на противоположный, далее из большего (по модулю) числа "6" отнимается меньшее - "3", после чего ответу присваивается знак большего, то есть "-".
2) -3+6=3. Этот можно записать по- ("6-3") или по принципу "из большего отнимать меньшее и присваивать ответу знак большего".
3) -3+(-6)=-3-6=-9. При раскрытии замена действия сложения на вычитание, затем суммируются модули и результату ставиться знак "минус".

Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2) -9-3=-12. Элементы примера складываются и получает общий знак "-".
3) -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на "+", далее из большего числа отнимается меньшее и у ответа - знак большего числа.

Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с ответу присваивается знак "минус", если числа с одинаковыми знаками - у результата всегда знак "плюс".1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.

Источники:

  • таблица с минусами

Как решать примеры ? С таким вопросом часто обращаются дети к родителям, если уроки требуется сделать дома. Как правильно объяснить ребенку решение примеров на сложение и вычитание многозначных чисел? Попробуем в этом разобраться.

Вам понадобится

  • 1. Учебник по математике.
  • 2. Бумага.
  • 3. Ручка.

Инструкция

Прочитайте пример. Для этого каждое многозначное разбить на классы. Начиная с конца числа, отсчитываем по три цифры и ставим точку (23.867.567). Напомним, что первые три цифры с конца числа к единиц, следующие три - к классу , далее идут миллионы. Читаем число: двадцать три восемьсот шестьдесят семь тысяч шестьдесят семь.

Запишите пример . Обратите внимание, что единицы каждого разряда записываются строго друг под другом: единицы под единицами, десятки под десятками, сотни под сотнями и т.д.

Выполните сложение или вычитание. Начинайте выполнять действие с единиц. Результат записывайте под тем разрядом, действие с которым выполняли. Если получилось число(), то единицы записываем на месте ответа, а число десятков прибавляем к единицам разряда. Если количество единиц какого-либо разряда в уменьшаемом меньше, чем в вычитаемом, занимаем 10 единиц следующего разряда, выполняем действие.

Прочитайте ответ.

Видео по теме

Обратите внимание

Запретите ребенку использование калькулятора даже для проверки решения примера. Сложение проверяется вычитанием, а вычитание - сложением.

Полезный совет

Если ребенок хорошо усвоит приемы письменных вычислений в пределах 1000, то действия с многозначными числами, выполненные по-аналогии, не вызовут затруднений.
Устройте ребенку соревнование: сколько примеров он может решить за 10 минут. Такие тренировки помогут автоматизировать вычислительные приемы.

Умножение - одна из четырех основных математических операций, которая лежит в основе многих более сложных функций. При этом фактически умножение основывается на операции сложения: знание об этом позволяет правильно решить любой пример.

Для понимания сущности операции умножения необходимо принять во внимание, что в ней участвуют три основных компонента. Один из них носит название первого множителя и представляет собой число, которое подвергается операции умножения. По этой причине у него имеется второе, несколько менее распространенное название - «множимое». Второй компонент операции умножения принято называть вторым множителем: он представляет собой число, на которое умножается множимое. Таким образом, оба эти компонента носят название множителей, что подчеркивает их равноправный статус, а также то, что их можно поменять местами: результат умножения от этого не изменится. Наконец, третий компонент операции умножения, получающийся в ее результате, носит название произведения.

Порядок операции умножения

Сущность операции умножения основывается на более простом арифметическом действии - . Фактически умножение представляет собой суммирование первого множителя, или множимого, такое количество раз, которое соответствует второму множителю. Например, для того, чтобы умножить 8 на 4 необходимо 4 раза сложить число 8, получив в результате 32. Этот способ, помимо обеспечения понимания сущности операции умножения, можно использовать для проверки результата, получившегося при вычислении искомого произведения. При этом следует иметь в виду, осуществление проверки обязательно предполагает, что слагаемые, участвующие в суммировании, одинаковы и соответствуют первому множителю.

Решение примеров на умножение

Таким образом, для того, чтобы решить , связанный с необходимостью осуществления умножения, может быть достаточно заданное количество раз сложить необходимое число первых множителей. Такой способ может быть удобен для осуществления практически любых расчетов, связанных с этой операцией. Вместе с тем, в математике достаточно часто встречаются типовые , в которых участвуют стандартные целые однозначные числа. Для того, чтобы облегчить их расчет, была создана так называемая умножения, которая включает в себя полный перечень произведений целых положительных однозначных чисел, то есть чисел от 1 до 9. Таким образом, однажды выучив , можно существенно облегчить себе процесс решения примеров на умножение, основанных на использовании таких чисел. Однако для более сложных вариантов необходимо будет осуществлять эту математическую операцию самостоятельно.

Видео по теме

Источники:

  • Умножение в 2019

Умножение - одна из четырех основных арифметических операций, которая часто встречается как в учебе, так и в повседневной жизни. Как можно быстро перемножить два числа?

Основу самых сложных математических вычислений составляют четыре основных арифметических операции: вычитание, сложение, умножение и деление. При этом, несмотря на свою самостоятельность, эти операции при ближайшем рассмотрении оказываются связанными между собой. Такая связь существует, например, между сложением и умножением.

Операция умножения чисел

В операции умножения участвуют три основных элемента. Первый из них, который обычно называют первым множителем или множимым, представляет собой число, которое будет подвергнуто операции умножения. Второй, который именуют вторым множителем, является числом, на которое будет умножен первый множитель. Наконец, результат осуществленной операции умножения чаще всего носит название произведения.

При этом следует помнить, что сущность операции умножения фактически основывается на сложении: для ее осуществления необходимо сложить между собой определенное количество первых множителей, причем количество слагаемых этой суммы должно быть равно второму множителю. Помимо вычисления самого произведения двух рассматриваемых множителей, этот алгоритм можно использовать также для проверки получившегося результата.

Пример решения задания на умножение

Рассмотрим решения задачи на умножение. Предположим, по условиям задания необходимо вычислить произведение двух чисел, среди которых первый множитель равен 8, а второй 4. В соответствии с определением операции умножения, это фактически означает, что нужно 4 раза сложить цифру 8. В результате получается 32 - это и есть произведение рассматриваемых чисел, то есть результат их умножения.

Кроме того, необходимо помнить, что в отношении операции умножения действует так называемый переместительный закон, который устанавливает, что от изменения мест множителей в первоначальном примере его результат не изменится. Таким образом, можно 8 раз сложить цифру 4, получив в результате то же произведение - 32.

Таблица умножения

Понятно, что решать таким способом большое количество однотипных примеров - довольно утомительное занятие. Для того чтобы облегчить эту задачу, была придумана так называемая умножения. Фактически она представляет собой перечень произведений целых положительных однозначных чисел. Проще говоря, таблица умножения - это совокупность результатов перемножения между собой от 1 до 9. Один раз выучив эту таблицу, можно уже не прибегать к осуществлению умножения всякий раз, когда потребуется решить пример на такие простые числа, а просто вспомнить его результат.

Видео по теме

Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное.

Законы математики

Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель...

Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-».

Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере.

Аксиома кольца

Существует несколько математических законов.

  • Первый из них переместительный, согласно ему, C + V = V + C.
  • Второй называется сочетательным (V + C) + D = V + (C + D).

Им же подчиняется и умножение (V х C) х D = V х (C х D).

Никто не отменял и правил, по которым открываются скобки (V + C) х D = V х D + C х D, также верно, что C х (V + D) = C х V + C х D.

Кроме того, установлено, что в кольцо можно ввести специальный, нейтральный по сложению элемент, при использовании которого будет верно следующее: C + 0 = C. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как (-C). При этом C + (-C) = 0.

Выведение аксиом для отрицательных чисел

Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак?» Зная аксиому про умножение отрицательных чисел, необходимо подтвердить, что действительно (-C) х V = -(C х V). А также, что верно такое равенство: (-(-C)) = C.

Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Из этого следует, что C + V = 0 и C + D = 0, то есть C + V = 0 = C + D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Логично, что V = V + 0 = V + (C + D) = V + C + D, ведь значение C + D, как было принято выше, равняется 0. Значит, V = V + C + D.

Точно так же выводится и значение для D: D = V + C + D = (V + C) + D = 0 + D = D. Исходя из этого, становится ясно, что V = D.

Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента (-C) противоположными являются C и (-(-C)), то есть между собой они равны.

Тогда очевидно, что 0 х V = (C + (-C)) х V = C х V + (-C) х V. Из этого следует, что C х V противоположно (-)C х V, значит, (-C) х V = -(C х V).

Для полной математической строгости необходимо еще подтвердить, что 0 х V = 0 для любого элемента. Если следовать логике, то 0 х V = (0 + 0) х V = 0 х V + 0 х V. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю.

Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел.

Умножение и деление двух чисел со знаком «-»

Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами.

Допустим, что C - (-V) = D, исходя из этого, C = D + (-V), то есть C = D - V. Переносим V и получаем, что C + V = D. То есть C + V = C - (-V). Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением.

(-C) х (-V) = D, в выражение можно добавить и вычесть два одинаковых произведения, которые не поменяют его значения: (-C) х (-V) + (C х V) - (C х V) = D.

Вспомная о правилах работы со скобками, получаем:

1) (-C) х (-V) + (C х V) + (-C) х V = D;

2) (-C) х ((-V) + V) + C х V = D;

3) (-C) х 0 + C х V = D;

Из этого следует, что C х V = (-C) х (-V).

Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное.

Общие математические правила

Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа. Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-». Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат. Ведь «плюс» умножить на «минус» дает «минус». Правда, в дети не слишком-то пытаются вникнуть во все математические нюансы.

Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила. Все принимают как данность то, что преподают им учителя, не затрудняясь вникать во все сложности, которые таит в себе математика. «Минус» на «минус» дает «плюс» - об этом знают все без исключения. Это верно как для целых, так и для дробных чисел.

«Враг моего врага - мой друг»


Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.

Давным-давно людям были известны только натуральные числа: Их использовали для подсчета утвари, добычи, врагов и т. д. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число (математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения). Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями (например, делая покупки, мы складываем и умножаем), и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа.

Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. (Если у меня есть конфет и я отдам сестре , то у меня останется конфеты, а вот отдать ей конфет я при всем желании не могу.) Этим можно объяснить, почему люди долго не пользовались отрицательными числами.

В индийских документах отрицательные числа фигурируют с VII века н.э.; китайцы, видимо, начали употреблять их немного раньше. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» (в XVII веке!).

Рассмотрим для примера уравнение . Его можно решать так: перенести члены с неизвестным в левую часть, а остальные - в правую, получится , , . При таком решении нам даже не встретились отрицательные числа.

Но можно было случайно сделать и по-другому: перенести слагаемые с неизвестным в правую часть и получить , . Чтобы найти неизвестное, нужно разделить одно отрицательное число на другое: . Но правильный ответ известен, и остается заключить, что .

Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного (если уравнение окажется посложнее, с большим числом слагаемых) поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку.

Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами.

Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов (такой подход характерен для всей современной математики).

В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила (их называют аксиомами), которым подчиняются действия, а не природа элементов множества (вот он, новый уровень абстракции!). Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. д. Отталкиваясь от аксиом, можно выводить другие свойства колец.

Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс.

Кольцом называется множество с двумя бинарными операциями (т. е. в каждой операции задействованы два элемента кольца), которые по традиции называют сложением и умножением, и следующими аксиомами:

Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости (т. е. делить можно не всегда), ни существования единицы - нейтрального элемента по умножению. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец.

Теперь докажем, что для любых элементов и произвольного кольца верно, во-первых, , а во-вторых . Из этого легко следуют утверждения про единицы: и .

Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента есть два противоположных: и . То есть . Рассмотрим сумму . Пользуясь сочетательным и переместительным законами и свойством нуля, получим, что, с одной стороны, сумма равна , а с другой стороны, она равна . Значит, .

Заметим теперь, что и , и являются противоположными к одному и тому же элементу , поэтому они должны быть равны.

Первый факт получается так: , то есть противоположно , значит, оно равно .

Чтобы быть математически строгими, объясним еще, почему для любого элемента . В самом деле, . То есть прибавление не меняет сумму. Значит, это произведение равно нулю.

А то, что в кольце ровно один ноль (ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность!), мы оставим читателю в качестве несложного упражнения.

Евгений Епифанов
«Элементы»

Комментарии: 0

    Жак Сезиано

    За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.

    Проскуряков И. В.

    Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два - четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.

    Илья Щуров

    Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.

    Леон Тахтаджян

    Это будут четыре коротеньких рассказика. Начнем мы с чисел, потом поговорим о движении, об изменении, затем мы обсудим формы и размеры, а затем - начало и конец. В таком несколько зашифрованном стиле мы и попробуем посмотреть на математику изнутри и снаружи, причем именно как на предмет. То, о чем математики мыслят и чем живут, - об этом мы с вами сможем поговорить потом.

    Владлен Тиморин

    Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.

    Жак Сезиано

    Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.

    Мир математики немыслим без них – без простых чисел. Что такое простые числа, что в них особенного и какое значение они имеют для повседневной жизни? В этом фильме британский профессор математики Маркус дю Сотой откроет тайну простых чисел.

    Георгий Шабат

    В школе нам всем прививается ошибочное представление о том, что на множестве рациональных чисел Q имеется единственное естественное расстояние (модуль разности), относительно которого все арифметические операции непрерывны. Однако существует ещё бесконечное множество расстояний, так называемых p-адических, по одному на каждое число p. Согласно теореме Островского, «обычное» расстояние вместе со всеми p-адическими уже действительно исчерпывают все разумные расстояние Q. Термин адельная демократия введен Ю. И. Маниным. Согласно принципу адельной демократии, все разумные расстояния на Q равны перед законами математики (может быть, лишь традиционное «чуть=чуть равнее…». В курсе будет введено кольцо аделей, позволяющее работать со всеми этими расстояниями одновременно.

    Владимир Арнольд

    Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x - квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов , которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.

    Рид Майлс

    I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension ⩽3, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension ⩾4. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin–Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of Q-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.

Минус на минус даёт плюс – это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению.

С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т.д. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа – так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10. Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время.

Только с VII века н.э. отрицательные числа использовались в некоторых счётных системах, как вспомогательные величины, которые позволяли получить положительное число в ответе.

Рассмотрим пример , 6х – 30 = 3х – 9. Чтобы найти ответ, необходимо члены с неизвестными оставить в левой части, а остальные - в правую: 6х – 3х = 30 – 9, 3х = 21, х = 7. При решении этого уравнения нам даже не встретились отрицательные числа. Мы могли бы члены с неизвестными перенести в правую часть, а без неизвестных - в левую: 9 – 30 = 3х – 6х, (-21) = (-3х). При деление отрицательного числа на отрицательное получаем положительный ответ: х = 7.

Что мы видим?

Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий – они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу.

Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними (в математике они называются аксиомами). Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»