Урок "взаимное расположение прямой и окружности". Конспект урока "взаимное расположения прямой и окружности"

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

В данном уроке мы изучим различные варианты взаимодействия окружности и прямой. Напомним определения, широко используемые в этом случае. Прямой называется неопределяемая аксиоматическая геометрическая фигура, представляющая собой ровную прямую линию без начала и конца. Окружностью именуется множество точек, равноудаленно лежащих от общего центра (центра окружности), соединенных общей кривой. Иначе говоря, окружность - это правильная замкнутая кривая, обрисовывающая максимально возможную площадь.

Собственно говоря, существуют три варианта взаимного расположения окружности и прямой. В первом случае, прямая пролегает полностью вне заданной окружности, нигде её не пересекая и не затрагивая. Если же прямая затрагивает ровно одну определенную точку из множества на окружности, то эта линия именуется касательной, по отношению к данной окружности.

Касательная имеет одно важнейшее свойство. Радиус, проведенный к точке касания, является перпендикуляром к самой прямой. На видео представлена окружность с центром О, прямой А и точкой касания К. Так как эта точка в единственном числе, то прямая А касательна данной окружности. А угол при К, образованный радиусом и любой частью прямой, является прямым - равен 90 градусам. Стоит также отметить важную особенность - касательная имеет исключительно одну точку касания. Невозможно провести прямую так, чтобы касательно затронуть две точки на окружности.
Если же наша прямая А проходит через всю окружность, затрагивая её внутреннюю область, то это уже третий частный случай взаимодействия данных фигур. При этом, прямая проходит строго через две точки на окружности - скажем, В и С. Она именуется секущей окружности. Секущая всегда проходит только через две любые точки из множества на кривой. Так как точек в окружности множество, то реализуемо провести бесконечное число секущих (равно как и касательных) для заданной окружности.

Внутренняя часть секущей прямой, по сути отрезок ВС, является хордой для окружности. Если секущая проходит через центр окружности, то внутренняя ее часть представлена наибольшей хордой - диаметром. При этом, точки пересечения В и С находятся на наибольшем удалении друг от друга (по свойству диаметра). Легко понять, что противоположный частный случай - это секущая, образующая хорду с бесконечно малым значением, по сути, - это уже касательная.

В задачах часто встречается отрезок Р - он соединяет наиболее коротким путем подходящую точку на прямой и центр самой окружности. Иначе говоря, Р - это отрезок ТО, где Т - точка на прямой ВС. Этот отрезок является перпендикуляром для прямой, его продолжение до самой окружности - ее радиусом. Линейное значение этого отрезка можно вычислить через косинус угла, образованного радиусом и секущей прямой, с вершиной в точке сечения.

Напомним важное определение - определение окружности]

Определение:

Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R.

Обратим внимание на то, что окружностью называют именно множество всех точек, удовлетворяющих описанному условию. Рассмотрим пример:

Точки A, B, C, D квадрата равноудалены от точки Е, но они не являются окружностью (рис. 1).

Рис. 1. Иллюстрация к примеру

В данном случае фигура является окружностью, так как это все множество точек, равноудаленных от центра.

Если соединить любые две точки окружности - получаем хорду. Хорда, проходящая через центр, называется диаметром.

MB - хорда; АВ - диаметр; MnB - дуга, она стягивается хордой МВ;

Угол называется центральным.

Точка О - центр окружности.

Рис. 2. Иллюстрация к примеру

Таким образом, мы вспомнили, что такое окружность и основные ее элементы. Теперь перейдем к рассмотрению взаимного расположения окружности и прямой.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Считаем, что точка О не лежит на прямой Р.

По заданным окружности и прямой нам необходимо найти число общих точек.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

В первом случае, когда расстояние d меньше радиуса окружности r, точка М лежит внутри окружности. От этой точки мы отложим два отрезка - МА и МВ, длинна которых будет . Значения r и d нам известны, d меньше r, значит, выражение существует и точки А и В существуют. Эти две точки лежат на прямой по построению. Проверим, лежат ли они на окружности. Вычислим по теореме Пифагора расстояние ОА и ОВ:

Рис. 3. Иллюстрация к случаю 1

Расстояние от центра до двух точек равно радиусу окружности, таким образом, мы доказали, что точки А и В принадлежат окружности.

Итак, точки А и В принадлежат прямой по построению, принадлежат окружности по доказанному - окружность и прямая имеют две общих точки. Докажем, что других точек нет (рис. 4).

Рис. 4. Иллюстрация к доказательству

Для этого возьмем на прямой произвольную точку С и предположим, что она лежит на окружности - расстояние ОС=r. В таком случае треугольник равнобедренный и его медиана ON, которая не совпадает с отрезком ОМ, является высотой. Мы получили противоречие: из точки О опущено два перпендикуляра на прямую.

Таким образом, на прямой Р нет других общих точек с окружностью. Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки.

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности (рис. 5):

Рис. 5. Иллюстрация к случаю 2

Напомним, что расстояние от точки до прямой - это длина перпендикуляра, в данном случае ОН - перпендикуляр. Так как, по условию, длина ОН равна радиусу окружности, то точка Н принадлежит окружности, таким образом, точка Н общая для прямой и окружности.

Докажем что других общих точек нет. От противного: предположим, что точка С на прямой принадлежит окружности. В таком случае, расстояние ОС равно r, и тогда ОС равно ОН. Но в прямоугольном треугольнике гипотенуза ОС больше катета ОН. Получили противоречие. Таким образом, предположение неверно и нет никакой точки кроме Н, общей для прямой и окружности. Мы доказали, что в данном случае общая точка единственная.

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Расстояние от точки до прямой - длина перпендикуляра. Проводим из точки О перпендикуляр к прямой Р, получаем точку Н, которая не лежит на окружности, так как ОН по условию больше радиуса окружности. Докажем, что любая другая точка прямой не лежит на окружности. Это хорошо видно из прямоугольного треугольника , гипотенуза ОМ которого больше катета ОН, а значит, больше радиуса окружности, таким образом, точка М не принадлежит окружности, как и любая другая точка на прямой. Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 6).

Рис. 6. Иллюстрация к случаю 3

Рассмотрим теорему . Предположим, что прямая АВ имеет две общих точки с окружностью (рис. 7).

Рис. 7. Иллюстрация к теореме

Имеем хорду АВ. Точка Н, по условию, - середина хорды АВ и лежит на диаметре СD.

Требуется доказать, что в таком случае диметр перпендикулярен хорде.

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как .

Точка Н, по условию, - середина хорды, значит середина медианы АВ равнобедренного треугольника. Мы знаем, что медиана равнобедренного треугольника перпендикулярна его основанию, значит, является высотой: , отсюда , таким образом, доказано, что диаметр, проходящий через середину хорды, перпендикулярен ей.

Справедлива и обратная теорема : если диаметр перпендикулярен хорде, то он проходит через ее середину.

Задана окружность с центром О, ее диаметр СD и хорда АВ. Известно, что диаметр перпендикулярен хорде, нужно доказать, что он проходит через ее середину (рис. 8).

Рис. 8. Иллюстрация к теореме

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как . ОН, по условию, - высота треугольника, так как диаметр перпендикулярен хорде. Высота в равнобедренном треугольнике одновременно является медианой, таким образом, АН=НВ, значит, точка Н является серединой хорды АВ, значит, доказано, что диаметр, перпендикулярный хорде, проходит через ее середину.

Прямую и обратную теорему можно обобщить следующим образом.

Теорема:

Диаметр перпендикулярен хорде тогда и только тогда, когда он проходит через ее середину.

Итак, мы рассмотрели все случаи взаимного расположения прямой и окружности. На следующем уроке мы рассмотрим касательную к окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Edu.glavsprav.ru ().
  2. Webmath.exponenta.ru ().
  3. Fmclass.ru ().

Домашнее задание

Задание 1. Найти длины двух отрезков хорды, на которые разделяет ее диаметр окружности, если длина хорды - 16 см, а диаметр ей перпендикулярен.

Задание 2. Указать количество общих точек прямой и окружности, если:

а) расстояние от прямой до центра окружности - 6 см, а радиус окружности - 6,05 см;

б) расстояние от прямой до центра окружности - 6,05 см, а радиус окружности - 6 см;

в) расстояние от прямой до центра окружности - 8 см, а радиус окружности - 16 см.

Задание 3. Найти длину хорды, если диаметр ей перпендикулярен, а один из отрезков, отсекаемых диаметром от нее, равен 2 см.

Пусть на плоскости даны окружность и некоторая прямая. Опустим на эту прямую перпендикуляр из центра окружности С; обозначим через основание этого перпендикуляра. Точка может занимать относительно окружности три возможных положения: а) лежать вне окружности, б) на окружности, в) внутри окружности. В зависимости от этого и прямая будет занимать относительно окружности одно из трех возможных различных положений, описываемых ниже.

а) Пусть основание перпендикуляра опущенного из центра С окружности на прямую а, лежит вне окружности (рис. 197). Тогда прямая не пересекает окружности, все ее точки лежат во внешней области. Действительно, в указанном случае по условию удалена от центра на расстояние, большее радиуса). Тем более для любой точки М прямой а имеем т. е. каждая точка данной прямой лежит вне круга.

б) Пусть основание перпендикуляра попадет на окружность (рис. 198). Тогда прямая а имеет с окружностью ровно одну общую точку . Действительно, если М - любая другая точка прямой, то (наклонные длиннее перпендикуляра) и точка М лежит во внешней области. Такая прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности в этой точке. Покажем, что и обратно, если прямая имеет с окружностью единственную общую точку, то радиус, проведенный в эту точку, перпендикулярен к данной прямой. Действительно, опустим из центра перпендикуляр на данную прямую. Если бы его основание лежало внутри окружности, то прямая имела бы с ней, как показано в в), две общие точки. Если бы оно лежало вне окружности, то в силу а) прямая не имела бы с окружностью общих точек.

Поэтому остается допустить, что перпендикуляр попадает в общую точку прямой и окружности - в точку их касания. Доказана важная

Теорема. Прямая, проходящая через точку окружности, тогда и только тогда касается окружности, когда она перпендикулярна к радиусу, проведенному в эту точку.

Заметим, что определение касательной к окружности, данное здесь, не переносится на другие кривые. Более общее определение касательной прямой к кривой линии связано с понятиями теории пределов и рассматривается подробно в курсе высшей математики. Здесь мы дадим о нем только общее понятие. Пусть даны окружность и на ней точка А (рис. 199).

Возьмем еще точку А на окружности и соединим обе точки прямой АА. Пусть точка А двигаясь по окружности, занимаетпоследовательно ряд новых положений приближаясь все больше к точке А. Прямая АА, вращаясь вокруг А, принимает ряд положений: при этом по мере сближения движущейся точки с точкой А прямая стремится к совпадению с касательной АТ. Поэтому можно говорить о касательной как о предельном положении секущей, проходящей через данную точку и точку кривой, неограниченно с ней сближающуюся. В такой форме определение касательной применимо к кривым весьма общего вида (рис. 200).

в) Пусть, наконец, точка лежит внутри окружности (рис. 201). Тогда . Будем рассматривать наклонные, проведенные к прямой а из центра С окружности, с основаниями удаляющимися от точки в любом из двух возможных направлений. Длина наклонной будет монотонно возрастать по мере удаления ее основания от точки это возрастание длины наклонной происходит постепенно («непрерывно») от значений, близких к до значений, сколь угодно больших, поэтому кажется ясным, что при некотором положении оснований наклонных длина их будет точно равна соответствующие точки К и L прямой будут лежать на окружности.


Составила учитель математики

МБОУ СШ №18 г. Красноярск

Андреева Инга Викторовна

Взаимное расположение прямой и окружности

О R – радиус

С D – диаметр

AB - хорда


  • Окружность с центром в точке О радиуса r
  • Прямая, которая не проходит через центр О
  • Расстояние от центра окружности до прямой обозначим буквой s

Возможны три случая:

  • 1) s
  • меньше радиуса окружности, то прямая и окружность имеют две общие точки .

Прямая АВ называется секущей по отношению к окружности.


Возможны три случая:

  • 2 ) s = r
  • Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку .

s = r


r Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек. sr r O" width="640"

Возможны три случая:

  • 3 ) sr
  • Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек .

Касательная к окружности

Определение: П рямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

s = r


  • прямая – секущая
  • прямая – секущая
  • общих точек нет
  • прямая – секущая
  • прямая - касательная
  • r = 15 см, s = 11 см
  • r = 6 см, s = 5 ,2 см
  • r = 3,2 м, s = 4 ,7 м
  • r = 7 см, s = 0,5 дм
  • r = 4 см, s = 4 0 мм

Решите № 633.

  • OABC- квадрат
  • AB = 6 см
  • Окружность с центром O радиуса 5 см

секущие из прямых OA , AB , BC , АС


Свойство касательной: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

m – касательная к окружности с центром О

М – точка касания

OM - радиус


Признак касательной: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна радиусу, то она является к асательной.

окружность с центром О

радиуса OM

m – прямая, которая проходит через точку М

m – касательная


Свойство касательных, проходящих через одну точку:

Отрезки касательных к

окружности, проведенные

из одной точки, равны и

составляют равные углы

с прямой, проходящей через

эту точку и центр окружности.

▼ По свойству касательной

∆ АВО, ∆ АСО–прямоугольные

∆ АВО= ∆ АСО–по гипотенузе и катету:

ОА – общая,

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»