Вписанные первые несколько чисел геометрической прогрессии. Геометрическая прогрессия — Гипермаркет знаний

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Геометрическая прогрессия, наряду с арифметической, является важным числовым рядом, который изучается в школьном курсе алгебры в 9 классе. В данной статье рассмотрим знаменатель геометрической прогрессии, и то, как его значение влияет на ее свойства.

Определение прогрессии геометрической

Для начала приведем определение этого числового ряда. Прогрессией геометрической называют такой ряд рациональных чисел, который формируется путем последовательного умножения его первого элемента на постоянное число, носящее название знаменателя.

Например, числа в ряду 3, 6, 12, 24, ... - это прогрессия геометрическая, поскольку если умножить 3 (первый элемент) на 2, то получим 6. Если 6 умножить на 2, то получим 12, и так далее.

Члены рассматриваемой последовательности принято обозначать символом ai, где i - это целое число, указывающее на номер элемента в ряду.

Приведенное выше определение прогрессии можно записать на языке математики следующим образом: an = bn-1 * a1, где b - знаменатель. Проверить эту формулу легко: если n = 1, то b1-1 = 1, и мы получаем a1 = a1. Если n = 2, тогда an = b * a1, и мы снова приходим к определению рассматриваемого ряда чисел. Аналогичные рассуждения можно продолжить для больших значений n.

Знаменатель прогрессии геометрической


Число b полностью определяет, какой характер будет носить весь числовой ряд. Знаменатель b может быть положительный, отрицательный, а также иметь значение больше единицы или меньше. Все перечисленные варианты приводят к разным последовательностям:

  • b > 1. Имеет место возрастающий ряд рациональных чисел. Например, 1, 2, 4, 8, ... Если элемент a1 будет отрицательным, тогда вся последовательность будет возрастать только по модулю, но убывать с учетом знака чисел.
  • b = 1. Часто такой случай не называют прогрессией, поскольку имеет место обычный ряд одинаковых рациональных чисел. Например, -4, -4, -4.

Формула для суммы

Перед тем как перейти к рассмотрению конкретных задач с использованием знаменателя рассматриваемого вида прогрессии, следует привести важную формулу для суммы ее первых n элементов. Формула имеет вид: Sn = (bn - 1) * a1 / (b - 1).

Получить это выражение можно самостоятельно, если рассмотреть рекурсивную последовательность членов прогрессии. Также заметим, что в приведенной формуле достаточно знать только первый элемент и знаменатель, чтобы найти сумму произвольного числа членов.

Бесконечно убывающая последовательность


Выше было дано пояснение, что она собой представляет. Теперь, зная формулу для Sn, применим ее к этому числовому ряду. Так как любое число, модуль которого не превышает 1, при возведении в большие степени стремится к нулю, то есть b∞ => 0, если -1

Поскольку разность (1 - b) всегда будет положительной, независимо от значения знаменателя, то знак суммы убывающей бесконечно прогрессии геометрической S∞ однозначно определяется знаком ее первого элемента a1.

Теперь рассмотрим несколько задач, где покажем, как применять полученные знания на конкретных числах.

Задача № 1. Вычисление неизвестных элементов прогрессии и суммы

Дана прогрессия геометрическая, знаменатель прогрессии 2, а ее первый элемент 3. Чему будут равны ее 7-й и 10-й члены, и какова сумма ее семи начальных элементов?

Условие задачи составлено достаточно просто и предполагает непосредственное использование вышеназванных формул. Итак, для вычисления элемента с номером n используем выражение an = bn-1 * a1. Для 7-го элемента имеем: a7 = b6 * a1, подставляя известные данные, получаем: a7 = 26 * 3 = 192. Аналогичным образом поступаем для 10-го члена: a10 = 29 * 3 = 1536.

Воспользуемся известной формулой для суммы и определим эту величину для 7-ми первых элементов ряда. Имеем: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определение суммы произвольных элементов прогрессии

Пусть -2 равен знаменатель прогрессии в геометрической прогрессии bn-1 * 4, где n - целое число. Необходимо определить сумму с 5-го по 10-й элемент этого ряда включительно.

Поставленная проблема не может быть решена непосредственно с использованием известных формул. Решить ее можно 2-мя различными методами. Для полноты изложения темы приведем оба.

Метод 1. Идея его проста: необходимо рассчитать две соответствующие суммы первых членов, а затем вычесть из одной другую. Вычисляем меньшую сумму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Теперь вычисляем большую сумму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Отметим, что в последнем выражении суммировались только 4 слагаемых, поскольку 5-е уже входит в сумму, которую требуется вычислить по условию задачи. Наконец, берем разницу: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тем, как подставлять цифры и считать, можно получить формулу для суммы между членами m и n рассматриваемого ряда. Поступаем абсолютно так же, как в методе 1, только работаем сначала с символьным представлением суммы. Имеем: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В полученное выражение можно подставлять известные числа и вычислять конечный результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Чему равен знаменатель?


Пусть a1 = 2, найдите знаменатель прогрессии геометрической, при условии, что ее бесконечная сумма составляет 3, и известно, что это убывающий ряд чисел.

По условию задачи нетрудно догадаться, какой формулой следует пользоваться для ее решения. Конечно же, для суммы прогрессии бесконечно убывающей. Имеем: S∞ = a1 / (1 - b). Откуда выражаем знаменатель: b = 1 - a1 / S∞. Осталось подставить известные значения и получить требуемое число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можно качественно проверить этот результат, если вспомнить, что для этого типа последовательности модуль b не должен выходить за пределы 1. Как видно, |-1 / 3|

Задача № 4. Восстановление ряда чисел

Пусть даны 2 элемента числового ряда, например, 5-й равен 30 и 10-й равен 60. Необходимо по этим данным восстановить весь ряд, зная, что он удовлетворяет свойствам прогрессии геометрической.

Чтобы решить задачу, необходимо для начала записать для каждого известного члена соответствующее выражение. Имеем: a5 = b4 * a1 и a10 = b9 * a1. Теперь разделим второе выражение на первое, получим: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Отсюда определяем знаменатель, взяв корень пятой степени от отношения известных из условия задачи членов, b = 1,148698. Полученное число подставляем в одно из выражений для известного элемента, получаем: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Таким образом, мы нашли, чему равен знаменатель прогрессии bn, и геометрическую прогрессию bn-1 * 17,2304966 = an, где b = 1,148698.

Где применяются прогрессии геометрические?


Если бы не существовало применения этого числового ряда на практике, то его изучение сводилось бы к чисто теоретическому интересу. Но такое применение существует.


Ниже перечислены 3 самых знаменитых примера:

  • Парадокс Зенона, в котором ловкий Ахиллес не может догнать медленную черепаху, решается с использованием понятия убывающей бесконечно последовательности чисел.
  • Если на каждую клетку шахматной доски класть зерна пшеницы так, что на 1-ю клетку положить 1 зерно, на 2-ю - 2, на 3-ю - 3 и так далее, то чтобы заполнить все клетки доски понадобится 18446744073709551615 зерен!
  • В игре "Башня Ханоя", чтобы переставить диски с одного стержня на другой, необходимо выполнить 2n - 1 операций, то есть их число растет в геометрической прогрессии от количества используемых дисков n.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ l48. Сумма бесконечно убывающей геометрической прогрессии

До сих пор, говоря о суммах, мы всегда предполагали, что число слагаемых в этих суммах конечно (например, 2, 15, 1000 и т. д.). Но при решении некоторых задач (особенно высшей математики) приходится сталкиваться и с суммами бесконечного числа слагаемых

S = a 1 + a 2 + ... + a n + ... . (1)

Что же представляют из себя такие суммы? По определению суммой бесконечного числа слагаемых a 1 , a 2 , ..., a n , ... называется предел суммы S n первых п чисел, когда п -> :

S = S n = (a 1 + a 2 + ... + a n ). (2)

Предел (2), конечно, может существовать, а может и не существовать. Соответственно этому говорят, что сумма (1) существует или не существует.

Как же выяснить, существует ли сумма (1) в каждом конкретном случае? Общее решение этого вопроса выходит далеко за пределы нашей программы. Однако существует один важный частный случай, который нам предстоит сейчас рассмотреть. Речь будет идти о суммировании членов бесконечно убывающей геометрической прогрессии.

Пусть a 1 , a 1 q , a 1 q 2 , ...- бесконечно убывающая геометрическая прогрессия. Это означает, что | q |< 1. Сумма первых п членов этой прогрессии равна

Из основных теорем о пределах переменных величин (см. § 136) получаем:

Но 1 = 1, a q n = 0. Поэтому

Итак, сумма бесконечно убывающей геометрической прогрессии равна первому члену этой прогрести, деленному на единицу минус знаменатель этой прогрессии.

1) Сумма геометрической прогрессии 1, 1 / 3 , 1 / 9 , 1 / 27 , ... равна

а сумма геометрической прогрессии 12; -6; 3; - 3 / 2 , ... равна

2) Простую периодическую дробь 0,454545 ... обратить в обыкновенную.

Для решения этой задачи представим данную дробь в виде бесконечной суммы:

Правая часть этого равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, первый член которой равен 45 / 100 , а знаменатель 1 / 100 . Поэтому

Описанным способом может быть получено и общее правило обращения простых периодических дробей в обыкновенные (см. гл. II, § 38):

Для обращения простой периодической дроби в обыкновенную нужно поступить следующим образом: в числителе поставить период десятичной дроби, а в знаменателе - число, состоящее из девяток, взятых столько раз, сколько знаков в периоде десятичной дроби.

3) Смешанную периодическую дробь 0,58333 .... обратить в обыкновенную.

Представим данную дробь в виде бесконечной суммы:

В правой части этого равенства все слагаемые, начиная с 3 / 1000 , образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен 3 / 1000 , а знаменатель 1 / 10 . Поэтому

Описанным способом может быть получено и общее правило обращения смешанных периодических дробей в обыкновенные (см. гл. II, § 38). Мы сознательно не приводим его здесь. Запоминать это громоздкое правило нет необходимости. Гораздо полезнее знать, что любую смешанную периодическую дробь можно представить в виде суммы бесконечно убывающей геометрической прогрессии и некоторого числа. А формулу

для суммы бесконечно убывающей геометрической прогрессии нужно, конечно, помнить.

В качестве упражнения предлагаем вам, помимо приведенных ниже задач № 995-1000, еще раз обратиться к задаче № 301 § 38 .

Упражнения

995. Что называется суммой бесконечно убывающей геометрической прогрессии?

996. Найти суммы бесконечно убывающих геометрических прогрессий:

997. При каких значениях х прогрессия

является бесконечно убывающей? Найти сумму такой прогрессии.

998. В равносторонний треугольник со стороной а вписан посредством соединения середин его сторон новый треугольник; в этот треугольник тем же способом вписан новый треугольник и так далее до бесконечности.

а) сумму периметров всех этих треугольников;

б) сумму их площадей.

999. В квадрат со стороной а вписан путем соединения середин его сторон новый квадрат; в этот квадрат таким же образом вписан квадрат и так далее до бесконечности. Найти сумму периметров всех этих квадратов и сумму их площадей.

1000. Составить бесконечно убывающую геометрическую прогрессию, такую, чтобы сумма ее равнялась 25 / 4 , а сумма квадратов ее членов равнялась 625 / 24 .

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Еще одно важное свойство геометрической прогрессии, которое и дало геометрической прогрессии

Рассмотрим теперь вопрос о суммировании бесконечной геометрической прогрессии. Назовем частичной суммой данной бесконечной прогрессии сумму ее первых членов. Обозначим частичную сумму символом

Для каждой бесконечной прогрессии

можно составить (также бесконечную) последовательность ее частичных сумм

Пусть последовательность при неограниченном возрастании имеет предел

В этом случае число S, т. е. предел частичных сумм прогрессии, называют суммой бесконечной прогрессии. Мы докажем, что бесконечная убывающая геометрическая прогрессия всегда имеет сумму, и выведем формулу для этой суммы (можно также показать, что при бесконечная прогрессия не имеет суммы, не существует).

Запишем выражение частичной суммы как суммы членов прогрессии по формуле (91.1) и будем рассматривать предел частичной суммы при

Из теоремы п. 89 известно, что для убывающей прогрессии ; поэтому, применяя теорему о пределе разности, найдем

(здесь также использовано правило: постоянный множитель выносится за знак предела). Существование доказано, и одновременно получена формула суммы бесконечно убывающей геометрической прогрессии:

Равенство (92.1) можно также писать в виде

Здесь может казаться парадоксальным, что сумме бесконечного множества слагаемых приписывается вполне определенное конечное значение.

Можно привести наглядную иллюстрацию в пояснение такого положения. Рассмотрим квадрат со стороной, равной единице (рис. 72). Разделим этот квадрат горизонтальной линией на две равные части и верхнюю часть приложим к нижней так, чтобы образовался прямоугольник со сторонами 2 и . После этого правую половину этого прямоугольника снова разделим горизонтальной линией пополам и верхнюю часть приложим к нижней (как показано на рис. 72). Продолжая этот процесс, мы все время преобразуем исходный квадрат с площадью, равной 1, в равновеликие фигуры (принимающие вид лестницы с утоньшающимися ступеньками).

При бесконечном продолжении этого процесса вся площадь квадрата разлагается в бесконечное чьсло слагаемых - площадей прямоугольников с основаниями, равными 1, и высотами Площади прямоугольников как раз образуют при этом бесконечную убывающую прогрессию ее сумма

т. е., как и следовало ожидать, равна площади квадрата.

Пример. Найти суммы следующих бесконечных прогрессий:

Решение, а) Замечаем, что у этой прогрессии Поэтому по формуле (92.2) находим

б) Здесь значит, по той же формуле (92.2) имеем

в) Находим, что у этой прогрессии Поэтому данная прогрессия не имеет суммы.

В п. 5 было показано применение формулы суммы членов бесконечно убывающей прогрессии к обращению периодической десятичной дроби в обыкновенную дробь.

Упражнения

1. Сумма бесконечно убывающей геометрической прогрессии равна 3/5, а сумма ее первых четырех членов равна 13/27. Найти первый член и знаменатель прогрессии.

2. Найти четыре числа, образующие знакочередующуюся геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

3. Показать, что если последовательность

образует бесконечно убывающую геометрическую прогрессию, то и последовательность

при любом образует бесконечно убывающую геометрическую прогрессию. Сохранится ли это утверждение при

Вывести формулу для произведения членов геометрической прогрессии.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»