Биотехнология. История и достижения

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности, базируясь на использовании каталитического потенциала биологических агентов и систем различной степени организации и сложности - микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток.

Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25-30 лет. Основу этих событий составили новые представления в области молекулярной биологии и молекулярной генетики. В то же время нельзя не отметить, что развитие и достижения биотехнологии теснейшим образом связаны с комплексом знаний не только наук биологического профиля, но также и многих других.

Расширение практической сферы биотехнологии обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством на пороге ХХ1 в., как дефицит чистой воды и пищевых веществ (особенно белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость получения новых, экологически чистых материалов, развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому для жизнеобеспечения человека, повышения качества жизни и ее продолжительности становится все более необходимым освоение принципиально новых методов и технологий.

Развитие научно-технического прогресса, сопровождающееся повышением темпов материальных и энергетических ресурсов, к сожалению, приводит к нарушению баланса в биосферных процессах. Загрязняются водные и воздушные бассейны городов, сокращается воспроизводительная функция биосферы, вследствие накопления тупиковых продуктов техносферы нарушаются глобальные круговоротные циклы биосферы.

Стремительность темпов современного научно-технического прогресса человечества образно описал швейцарский инженер и философ Эйхельберг: «Полагают, что возраст человечества равен 600 000 лет. Представим себе движение человечества в виде марафонского бега на 60 км, который где-то начинаясь, идет по направлению к центру одного из наших городов, как к финишу... Большая часть дистанции пролегает по весьма трудному пути -через девственные леса, и мы об этом ничего не знаем, ибо только в самом конце, на 58-59 км бега, мы находим, наряду с первобытным орудием, пещерные рисунки, как первые признаки культуры, и только на последнем километре появляются признаки земледелия.

За 200 м до финиша дорога, покрытая каменными плитами, ведет мимо римских укреплений. За 100 м бегунов обступают средневековые городские строения. До финиша остается 50 м, где стоит человек, умными и понимающими глазами следящий за бегунами, -это Леонардо да Винчи. Осталось 10 м. Они начинаются при свете факелов и скудном освещении масляных ламп. Но при броске на последних 5 м происходит ошеломляющее чудо: свет заливает ночную дорогу, повозки без тяглового скота мчатся мимо, машины шумят в воздухе, и пораженный бегун ослеплен светом прожекторов фото- и телекамер...», т.е. за 1 м человеческий гений совершает ошеломляющий рывок в области научно-технического прогресса. Продолжая этот образ, можно добавить, что в момент приближения бегуна к финишной ленточке оказывается прирученным термоядерный синтез, стартуют космические корабли, расшифрован генетически код.

Биотехнология - основа научно-технического прогресса и повышения качества жизни человека

Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности, обеспечивая при этом сохранение баланса в системе взаимоотношений «человек - природа - общество», ибо биологические технологии (биотехнологии), базирующиеся на использовании потенциала живого по определению нацелены на дружественность и гармонию человека с окружающим его миром. В настоящее время биотехнология подразделяется на несколько наиболее значимых сегментов: это «белая», «зеленая», «красная», «серая» и «синяя» биотехнология.

К «белой» биотехнологии относят промышленную биотехнологию, ориентированную на производство продуктов, ранее производимых химической промышленностью, - спирта, витаминов, аминокислот и др. (с учетом требований сохранения ресурсов и охраны окружающей среды).

Зеленая биотехнология охватывает область, значимую для сельского хозяйства. Это исследования и технологии, направленные на создание биотехнологических методов и препаратов для борьбы с вредителями и возбудителями болезней культурных растений и домашних животных, создание биоудобрений, повышение продуктивности растений, в том числе с использованием методов генетической инженерии.

Красная (медицинская) биотехнология - наиболее значимая область современной биотехнологии. Это производство биотехнологическими методами диагностикумов и лекарственных препаратов с использованием технологий клеточной и генетической инженерии (зеленые вакцины, генные диагностикумы, моноклональные антитела, конструкции и продукты тканевой инженерии и др.).

Серая биотехнология занимается разработкой технологий и препаратов для защиты окружающей среды; это рекультивация почв, очистка стоков и газовоздушных выбросов, утилизация промышленных отходов и деградация токсикантов с использованием биологических агентов и биологических процессов.

Синяя биотехнология в основном ориентирована на эффективное использование ресурсов Мирового океана. Прежде всего, это использование морской биоты для получения пищевых, технических, биологически активных и лекарственных веществ.

Современная биотехнология - это одно из приоритетных направлений национальной экономики всех развитых стран. Путь повышения конкурентности биотехнологических продуктов на рынках сбыта является одним из основных в общей стратегии развития биотехнологии промышленно развитых стран. Стимулирующим фактором выступают специально принимаемые правительственные программы по ускоренному развитию новых направлений биотехнологии.

Госпрограммы предусматривают выдачу инвесторам безвозмездных ссуд, долгосрочных кредитов, освобождение от уплаты налогов. В связи с тем что проведение фундаментальных и ориентированных работ становится все более дорогостоящим, многие страны стремятся вывести значительную часть исследований за пределы национальных границ.

Как известно, вероятность успеха осуществления проектов НИОКР в целом не превышает 12-20 %, около 60 % проектов достигают стадии технического завершения, 30 % - коммерческого освоения и только 12 % оказываются прибыльными.

Особенности развития исследований и коммерциализации биологических технологий в США, Японии, странах ЕС и России

США. Лидирующее положение в биотехнологии по промышленному производству биотехнологических продуктов, объемам продаж, внешнеторговому обороту, ассигнованиям и масштабам НИОКР занимают США, где уделяется огромное внимание развитию данного направления. В этом секторе к 2003 г. было занято свыше 198 300 чел.

Ассигнования в этот сектор науки и экономики в США значительны и составляют свыше 20 млрд дол. США ежегодно. Доходы биотехнологической индустрии США выросли с 8 млрд дол. в 1992 г. до 39 млрд дол. в 2003 г.

Эта отрасль находится под пристальным вниманием государства. Так, в период становления новейшей биотехнологии и возникновения ее направлений, связанных с манипулированием генетическим материалом, в середине 70-х гг. прошлого столетия конгресс США уделял большое внимание вопросам безопасности генетических исследований. Только в 1977 г. состоялось 25 специальных слушаний и было принято 16 законопроектов.

В начале 90-х гг. акцент сместился на разработку мер по поощрению практического использования биотехнологии для производства новых продуктов. С развитием биотехнологии в США связывают решение многих ключевых проблем: энергетической, сырьевой, продовольственной и экологической.

Среди биотехнологических направлений, близких к практической реализации или находящихся на стадии промышленного освоения, следующие:
- биоконверсия солнечной энергии;
- применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редких металлов;
- конструирование штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия синтеза для получения принципиально новых соединений;
- применение бактериальных стимуляторов роста растений, изменение генотипа злаковых и их приспособление к созреванию в экстремальных условиях (без вспашки, полива и удобрений);
- направленный биосинтез эффективного получения целевых продуктов (аминокислот, ферментов, витаминов, антибиотиков, пищевых добавок, фармакологических препаратов;
- получение новых диагностических и лечебных препаратов на основе методов клеточной и генетической инженерии.

Роль лидера США обусловлена высокими ассигнованиями государства и частного капитала на фундаментальные и прикладные исследования. В финансировании биотехнологии ключевую роль играют Национальный научный фонд (ННФ), министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, Национальное управление по аэронавтике и исследованию космического пространства (НАСА), внутренних дел. Ассигнования выделяются по программно-целевому принципу, т.е. субсидируются и заключаются контракты на исследовательские проекты.

При этом крупные промышленные компании устанавливают деловые отношения с университетами и научными центрами. Это способствует формированию комплексов в той или иной сфере, начиная от фундаментальных исследований до серийного выпуска продукта и поставки на рынок. Такая «система участия» предусматривает формирование специализированных фондов с соответствующими экспертными советами и привлечение наиболее квалифицированных кадров.

При выборе проектов с высокой коммерческой результативностью стало выгодным использовать так называемый «анализ с учетом заданных ограничений». Это позволяет существенно сократить сроки реализации проекта (в среднем с 7-10 до 2-4 лет) и повысить вероятность успеха до 80 %. Понятие «заданные ограничения» включают потенциальную возможность успешной продажи продукта и получения прибыли, увеличения годового производства, конкурентоспособность продукта, потенциальный риск с позиций сбыта, возможности перестройки производства с учетом новых достижений и т.д.

Ежегодные общие государственные расходы США на генно-инженерные и биотехнологические исследования составляют миллиарды долларов. Инвестиции частных компаний существенно превосходят эти показатели. Только на создание диагностических и противоопухолевых препаратов ежегодно выделяется несколько миллиардов долларов. В основном это следующие направления: методы рекомбинации ДНК, получение гибридов, получение и применение моноклональных антител, культуры тканей и клеток.

В США стало обычным, когда компании, не связанные ранее с биотехнологией, начинают приобретать пакеты акций действующих компаний и строить собственные биотехнологические предприятия (табл. 1.1). Это, например, практика таких химических гигантов, как Philips Petrolium, Monsanto, Dow Chemical. Около 250 химических компаний имеют в настоящее время интересы в области биотехнологии. Так, у гиганта химической индустрии США - компании De Pont есть несколько биотехнологических комплексов стоимостью 85-150 тыс. дол. со штатом 700-1 000 чел.

Подобные комплексы созданы в структуре Monsanto, более того, в настоящее время до 75 % бюджета (свыше 750 млн дол.) направляется в сферу биотехнологии. В сфере внимания этих компаний - производство генно-инженерного гормона роста, а также ряда генно-инженерных препаратов для ветеринарии и фармакологии. Кроме этого, фирмы совместно с университетскими исследовательскими центрами подписывают контракты на проведение совместных НИОКР.

Таблица 1.1. Крупнейшие концерны и фармацевтические фирмы США, производящие медицинские биотехнологические препараты


Существует мнение, что все необходимые условия для становления и развития биотехнологии в США подготовил венчурный бизнес. Для крупных фирм и компаний венчурный бизнес является хорошо отработанным приемом, позволяющим за более короткий срок получить новые разработки, привлекая для этого мелкие фирмы и небольшие коллективы, нежели заниматься этим собственными силами.

Например, в 80-е гг. General Electric с помощью мелких фирм стал осваивать производство биологически активных соединений, только в 1981 г. его рисковые ассигнования в биотехнологии составили 3 млн дол. Риск с участием мелких фирм обеспечивает крупным компаниям и корпорациям механизм отбора экономически оправданных нововведений с большими коммерческими перспективами.

Н.А. Воинов, Т.Г. Волова

Биотехнология как наука и сфера производства. Предмет, цели и задачи биотехнологии, связь с фундаментальными дисциплинами.

Биотехнология - это технологические процессы с использованием биотехнологических систем - живых организмов и компонентов живой клетки. Системы могут быть разными - от микробов и бактерий до ферментов и генов. Биотехнология - это производство, основанное на достижениях современной науки: генетической инженерии, физико-химии ферментов, молекулярной диагностики и молекулярной биологии, селекционной генетики, микробиологии, биохимии, химии антибиотиков.

В сфере производства лекарственных средств биотехнология вытесняет традиционные технологии, открывает принципиально новые возможности. Биотехнологическим способом производят генно-инженерные белки (интерфероны, интерлейкины, инсулин, вакцины против гепатита и т.п.), ферменты, диагностические средства (тест-системы на наркотики, лекарственные вещества, гормоны и т.п.), витамины, антибиотики, биодеградируемые пластмассы, биосовместимые материалы.

Иммунная биотехнология, с помощью которой распознают и выделяют из смесей одиночные клетки, может применяться не только непосредственно в медицине для диагностики и лечения, но и в научных исследованиях, в фармакологической, пищевой и других отраслях промышленности, а также использоваться для получения препаратов, синтезируемых клетками защитной системы организма.

В настоящее время достижения биотехнологии перспективны в следующих отраслях:

В промышленности (пищевая, фармацевтическая, химическая, нефтегазовая) - использование биосинтеза и биотрансформации новых веществ на основе сконструированных методами генной инженерии штаммов бактерий и дрожжей с заданными свойствами на основе микробиологического синтеза;

В экологии - повышение эффективности экологизированной защиты растений, разработка экологически безопасных технологий очистки сточных вод, утилизация отходов агропромышленного комплекса, конструирование экосистем;

В энергетике - применение новых источников биоэнергии, полученных на основе микробиологического синтеза и моделированных фотосинтетических процессов, биоконверсии биомассы в биогаз;

В сельском хозяйстве - разработка в области растениеводства трансгенных агрокультур, биологических средств защиты растений, бактериальных удобрений, микробиологических методов, рекультивации почв; в области животноводства - создание эффективных кормовых препаратов из растительной, микробной биомассы и отходов сельского хозяйства, репродукция животных на основе эмбриогенетических методов;

В медицине - разработка медицинских биопрепаратов, мо-ноклональных антител, диагностикумов, вакцин, развитие иммунобиотехнологии в направлении повышения чувствительности и специфичности иммуноанализа заболеваний инфекционной и неинфекционной природы.

По сравнению с химической технологией биотехнология имеет следующие основные преимущества:

Возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

Проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

Микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы. Например, с помощью микроорганизмов в ферментере объемом 300 м 3 за сутки можно выработать 1 т белка (365 т/год). Чтобы такое же количество белка в год выработать с помощью крупного рогатого скота, нужно иметь стадо 30 000 голов. Если же использовать для получения такой скорости производства белка бобовые растения, например горох, то потребуется иметь поле гороха площадью 5400 га;

В качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

Биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

Как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять раннюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакторов с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология - это совокупность технологических методов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекарственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и индустриального производства.

Современная биотехнология - это химия, где изменение и превращение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая.

1. Биообъекты как средство производства лечебных, реабилитационных, профилактических и диагностических средств. Классификация и общая характеристика биообъектов.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицеты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, пектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.



Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов.

Микробами среди растений являются микроскопические водоросли (Аlgае), а среди животных.- микроскопические простейшие (Рrotozoa). Из эукариот к микробам относятся грибы и, при определенных оговорках, лишайники, которые являются природными симбиотическими ассоциациями микроскопических грибов и микроводорослей или грибов и цианобактерий.

Аcaryotа - безъядерные, Рrосаrуоtа - предъядерные и Еuсаrуоtа - ядерные (от греч. а - нет, рrо - до, еu - хорошо, полностью, саrуоn - ядро). К первому относятея организованные частицы - вирусы и вироиды, ко второму - бактерии, к третьему - все другие организмы (грибы, водоросли, растения, животные).

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых также нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Пробиотики - препараты на основе биомассы отдельных видов микроорганизмов используются при дисбактериозах для нормализации микрофлоры желудочнокишечного тракта. Микроорганизмы необходимы также при производстве вакцин. Наконец, микробные клетки методами генной инженерии могут быть превращены в продуценты видоспецифических для человека белковых гормонов, белковых факторов неспецифического иммунитета и т.д.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным иеточником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительных тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.

2. Макробиообъекты животного происхождения. Человек как донор и объект иммунизации. Млекопитающие, птицы, рептилии и др.

В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта как человек, хотя на первый взгляд это кажется парадоксальным.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее ее экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических белков человека.

Важное значение в биотехнологии имеют макрообъекты, к которым относятся различные животные и птицы. В случае производства иммунной плазмы человек выступает, кроме того, в качестве объекта иммунизации.

Для получения различных вакцин в качестве объектов для размножения вирусов используют органы и ткани, в том числе эмбриональные, различных животных и птиц: Необходимо отметить, что термином «донор» в данном случае обозначен биообъект, поставляющий материал для процесса производства лекарственного средства без ущерба для собственной жизнедеятельности, а термином «донатор» - биообъект, у которого забор материала для производства лекарственного средства оказывается несовместимым с продолжением жизнедеятельности.

Из эмбриональных тканей наиболее широко используемыми являются эмбриональные ткани цыпленка. Особенной выгодой отличаются куриные эмбрионы (по доступности) десяти-двенадцатисуточного возраста, используемые преимущественно для репродукции вирусов и последующего изготовления вирусных вакцин. Куриные эмбрионы введены в вирусологическую практику в 1931 г. Г. М. Вудруфом и Е. У. Гудпасчером. Такие эмбрионы рекомендуют также для выявления, идентификации и определения инфицирующей дозы вирусов, для получения антигенных препаратов, применяемых в серологических реакциях.

Инкубированные при 38°С куриные яйца овоскопируют (просвечивают), отбраковывают, "прозрачные" неоплодотворенные экземпляры и сохраняют оплодотворенные, в которых хорошо видны наполненные кровеносные сосуды хорионаллантоисной оболочки и движения эмбрионов.

Заражение эмбрионов можно проводить вручную и автоматизированно. Последний способ применяют в крупномасштабном производстве, например, противогриппозных вакцин. Материал, содержащий вирусы, вводят с помощью шприца (батареи шприцов) в различные части эмбриона (эмбрионов).

Все этапы работы с куриными эмбрионами после овоскопии проводят в асептичных условиях. Материалом для заражения могут быть суспензия растертой мозговой ткани (применительно к вирусу бешенства), печени, селезенки, почек (применительно к хламидиям орнитоза) и т. д. В целях деконтаминации вирусного материала от бактерий или в целях предотвращения его бактериального загрязнения можно использовать соответствующие антибиотики, например, пенициллин с каким-либо ами-ногликозидом порядка 150 МЕ каждого на 1 мл суспензии виру-сосодержащего материала. Для борьбы с грибковым заражением эмбрионов целесообразно воспользоваться некоторыми антибио-тиками-полиенами (нистатин, амфотерицин В) или отдельными производными бензимидазола (например дактарин и др.).

Чаще всего суспензию вирусного материала вводят в аллантоисную полость или, реже, на хорионаллантоисную оболочку в количестве 0,05-0,1 мл, прокалывая продезинфицированную скорлупу (например, иодированным этанолом) на расчетную глубину. После этого отверстие закрывают расплавленным парафином и эмбрионы помещают в термостат, в котором поддерживается оптимальная температура для репродукции вируса, например 36-37,5°С. Продолжительность инкубации зависит от типа и активности вируса. Обычно через 2-4 суток можно наблюдать изменение оболочек с последующей гибелью эмбрионов. Зараженные эмбрионы контролируют ежедневно 1-2 раза (овоскопируют, поворачивают другой стороной). Погибшие эмбрионы затем передают в отделение сбора вирусного материала. Там их дезинфицируют, аллантоисную жидкость с вирусом отсасывают и переносят в стерильные емкости. Инактивацию вирусов при определенной температуре проводят обычно с помощью формалина, фенола или других веществ. Применяя высокоскоростное центрифугирование или афинную хроматографию (см.), удается получать высокоочищенные вирусные частицы.

Собранный вирусный материал, прошедший соответствующий контроль, подвергают лиофильной сушке. Контролю подлежат следующие показатели: стерильность, безвредность и специфическая активность. Применительно к стерильности имеют в виду отсутствие: живого гомологичного вируса в убитой вакцине, бактерий и грибов. Безвредность и специфическую активность оценивают на животных и только после этого вакцину разрешают испытывать на волонтерах или добровольцах; после успешного проведения клинической апробации вакцину разрешают применять в широкой медицинской практике.

На куриных эмбрионах получают, например, живую противогриппозную вакцину. Она предназначается для интраназального введения (лицам старше 16 лет и детям от 3 до 15 лет). Вакцина представляет собой высушенную аллантоисную жидкость, взятую от зараженных вирусом куриных эмбрионов. Тип вируса подбирают согласно эпидемиологической ситуации и прогнозам. Поэтому препараты могут выпускаться в виде моновакцины или дивакцины (напрмер, включающая вирусы А2 и В) в ампулах с 20 и 8 прививочными дозами для соответствующих групп населения. Высушенная масса в ампулах обычно имеет светло-желтый цвет, который сохраняется и после растворения содержимого ампулы в прокипяченой остуженной воде.

Живые противогриппозные вакцины для взрослых и детей готовят и для приема через рот. Такие вакцины представляют собой специальные вакцинные штаммы, репродукция которых происходила в течение 5-15 пассажей (не менее и не более) на культуре почечной ткани куриных эмбрионов. Их выпускают в сухом виде во флаконах. При растворении в воде цвет из светло-желтого переходит в красноватый.

Из других вирусных вакцин, получаемых на куриных эмбрионах, можно назвать противопаротитную, против желтой лихорадки.

Из прочих эмбриональных тканей используют эмбрионы мышей или других млекопитающих животных, а также абортированные плоды человека.

Эмбриональные перевиваемые ткани доступны после обработки трипсином, поскольку в таких тканях еще не формируется большого количества межклеточных веществ (в том числе небелковой природы). Клетки разделяются и после необходимых обработок их культивируют в специальных средах в монослое или в суспендированном состоянии.

Ткани, изолируемые от животных после рождения, относятся к разряду зрелых. Чем их возраст больше, тем с большим трудом они культивируются. Однако после успешного выращивания они затем "выравниваются" и мало чем отличаются от эмбриональных клеток.

Кроме полиомиелита специфическую профилактику живыми вакцинами проводят при кори. Противокоревую живую сухую вакцину изготавливают из вакцинного штамма, репродукция которого осуществлялась на клеточных культурах почек морских свинок или фибробластах японских перепелок.

3. Биообъекты растительного происхождения. Дикорастущие растения и культуры растительных клеток.

Для растений характерны: способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала.

Водоросли - важный источник различных полисахаридов и других биологичоски активных веществ. Размножаются оии вегетативио, бесполым и половым путями. Как биообъекты используются недостаточно, хотя, например, ламинария под названием морской капусты производится промышленностью разлнчных стран. Хоро-шо известны агар-агар и альгинаты, получаемые из водорослей.

Клетки высших растеиий. Высшие растения (порядка 300 000 видов) - зто дифференцированные многоклеточные, преимущественно наземные организмы. Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриоиальной стадии развития в течение всей жизни растения, называготся инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей - конечные клетки.

В зависимости от топологии в растении меристемы подразделяют на верхушечные, или апикальные (отлат. арех - верхушка), боковые, или латеральные (от лат. lateralis - боковой) и промежуточные, или интеркалярные (от лат. Intercalaris - промежугочный, вставной.

Тотипотентность - это свойство соматических клеток растений полностью реализовать свой потенциал развития вплоть до образования целого растения.

Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток - каллус (отлат. callus - мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого расгения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах. Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопласгов. Последующие клеточно-иижснерныс эксперименты с ними заманчивы по возможным ценным результатам.

4. Биообъекты - микроорганизмы. Основные группы получаемых биологически активных веществ.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицсты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, само-регулируемого и, следовательно, целенаправленного биохимиче-ского производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов,.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

5. Биообъекты - макромолекулы с ферментативной активностью. Использование в биотехнологических процессах.

В последнее время группа ферментных препаратов получила новое направление применения - это инженерная энзимология, которая является разделом биотехнологии, где биообъектом выступает фермент.

Органотерапия, т.е. лечение органами и препаратами из органов, тканей и выделений животных, долгое время покоилась на глубоком эмпиризме и противоречивых представлениях, занимая видное место в медицине всех времен и народов. Лишь во второй половине XIX столетия в результате успехов, достигнутых биологической и органической химией, и развития экспериментальной физиологии органотерапия становится на научную основу. Это связано с именем французского физиолога Броун-Секара. Особое внимание привлекали работы Броун-Секара связанные с введением в организм человека вытяжек из семенников быка, оказавших положительное влияние на работоспособность и самочувствие.

Первыми официнальными препаратами (ГФ VII) были адреналин, инсулин, питуитрин, пепсин и панкреатин. В дальнейшем в результате обширных исследований, проведенных советскими эндокринологами и фармакологами, оказалось возможным последовательно расширить круг официнальных и неофицинальных органопрепаратов.

Тем не менее, некоторые аминокислоты получают химическим синтезом, например глицин, а также D-, L-метионин, D-изомер которого малотоксичен, поэтому медицинский препарат на основе метионина содержит D- и L-формы, хотя за рубежом в медицине используется препарат, содержащий только L-форму метионина. Там рацемическую смесь метионина разделяют биоконверсией D-формы в L-форму под влиянием специальных ферментов живых клеток микроорганизмов.

Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании их в прикладных целях по сравнению с нативными предшественниками. Во-первых, гетерогенный катализатор легко отделить от реакционной среды, что дает возможность: а) остановить в нужный момент реакцию; б) использовать катализатор повторно; в) получать продукт, не загрязненный ферментом. Последнее особенно важно в ряде пищевых и фармацевтических производств.

Во-вторых, использование гетерогенных катализаторов позволяет проводить ферментативный процесс непрерывно, например в проточных колоннах, и регулировать скорость катализируемой реакции, а также выход продукта путем изменения скорости потока.

В-третьих, иммобилизация или модификация фермента способствует целенаправленному изменению свойств катализатора, в том числе его специфичности (особенно в отношении к макромолекулярным субстратам), зависимости каталитической активности от рН, ионного состава и других параметров среды и, что очень важно, его стабильности по отношению к различного рода денатурирующим воздействиям. Отметим, что крупный вклад в разработку общих принципов стабилизации ферментов был сделан советскими исследователями.

В-четвертых, иммобилизация ферментов дает возможность регулировать их каталитическую активность путем изменения свойств носителя под действием некоторых физических факторов, таких, как свет или звук. На этой основе создаются механо- и звукочувствительные датчики, усилители слабых сигналов и бессеребряные фотографические процессы.

В результате внедрения нового класса биоорганических катализаторов - иммобилизованных ферментов, перед прикладной энзимологией открылись новые, ранее недоступные пути развития. Одно лишь перечисление областей, в которых находят применение иммобилизованные ферменты, могло бы занять немало места.

6. Направления совершенствования биообъектов методами селекции и мутагенеза. Мутагены. Классификация. Характеристика. Механизм их действия.

Что мутации - это первоисточник изменчивости организмов, создающий основу для эволюции. Однако во второй половине XIX в. для микроорганизмов был открыт еще один источник изменчивости - перенос чужеродных генов - своего рода «генная инженерия природы».

Долгое время понятие мутации относили только к хромосомам у прокариот и хромосомам (ядру) у эукариот. В настоящее время кроме хромосомных мутаций появилось также понятие мутаций цитоплазматических (плазмидных - у прокариот, митохондриальных и плазмидных - у эукариот).

Мутации могут быть обусловлены как перестройкой репликона (изменением в нем числа и порядка расположения генов), так и изменениями внутри индивидуального гена.

Применительно к любым биообъектам, но особенно часто в случае микроорганизмов, выявляются так называемые спонтанные мутации, обнаруживаемые в популяции клеток без специального воздействия на нее.

По выраженности почти любого признака клетки в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака. Отклонения «+» и «–» от среднего значения встречаются в популяции тем реже, чем больше величина отклонения в любую сторону (рис. I). Первоначальный, самый простой подход к совершенствованию биообъекта заключался в отборе отклонений «+» (предполагая, что именно эти отклонения соответствуют интересам производства). В новом клоне (генетически однородное потомство одной клетки; на твердой среде - колония), полученном из клетки с отклонением «+» вновь проводился отбор по тому же принципу. Однако такая процедура при ее неоднократном повторении довольно быстро теряет эффективность, т. е. отклонения «+» становятся в новых клонах все меньше по величине.

Мутагенез осуществляется при обработке биообъекта физическими или химическими мутагенами. В первом случае, как правило, это ультрафиолетовые, гамма, рентгеновские лучи; во втором - нитрозометилмочевина, нитрозогуанидин, акридиновые красители, некоторые природные вещества (например, из ДНК–тропных антибиотиков вследствие их токсичности не применяемых в клинике инфекционных заболеваний). Механизм активности как физических, так и химических мутагенов связан с их непосредственным действием на ДНК (прежде всего на азотистые основания ДНК, что выражается в сшивках, димеризации, алкилировании последних, интеркаляции между ними).

Подразумевается, естественно, что повреждения не приводят к летальному исходу. Таким образом, после обработки биообъекта мутагенами (физическими или химическими) их воздействие на ДНК приводит к частому наследственному изменению уже на уровне фенотипа (тех или иных его свойств). Последующей задачей является отбор и оценка именно нужных биотехнологу мутаций. Для их выявления обработанную культуру высеивают на твердые питательные среды разных составов, предварительно разведя ее с таким расчетом, чтобы на твердой среде не было сплошнбго роста, а формировались отдельные колонии, образуемые при размножении именно отдельных клеток. Затем каждую колонию пересеивают и полученную культуру (клон) проверяют по тем или иным признакам в сравнении с исходной. Эта селекционная часть работы в целом весьма трудоемка, хотя приемы, позволяющие повысить ее эффективность, постоянно совершенствуются.

Так, изменяя состав твердых питательных сред, на которых вырастают колонии, можно сразу получить первоначальные сведения о свойствах клеток этой колонии в сравнении с клетками исходной культуры. Для высеивания клонов с разными особенностями метаболизма используют так называемый «метод отпечатков», разработанный Дж. Ледербергом и Э.Ледерберг. Популяцию микробных клеток разводят так, чтобы на чашке Петри с питательной средой вырастало около ста колоний и они были бы четко разделены. На металлический цилиндр диаметром, близким к диаметру чашки Петри, надевают бархат; затем все стерилизуют, создавая, таким образом, «стерильное бархатное дно» цилиндра. Далее прикладывают это дно к поверхности среды в чашке с выросшими на ней колониями. При этом колонии как бы «отпечатываются» на бархате. Затем этот бархат прикладывают к поверхности сред разного состава. Таким образом можно установить: какая из колоний в исходной чашке (на бархате расположение колоний отражает их расположение на поверхности твердой среды в исходной чашке) соответствует, например, мутанту, нуждающемуся в конкретном витамине, или конкретной аминокислоте; или какая колония соетоит из мутантных клеток, способных к образованию фермента, окисляюшего определенный субстрат; или какая колония состоит из клеток, получивших резистентность к тому или иному антибиотику и т.п.

В первую очередь биотехнолога интересуют мутантные культуры, обладающие повышенной способностью к образованию целевого продукта. Продуцент целевого вещества, наиболее перспективный в практическом отношении, может многократно обрабатываться разными мутагенами. Новые мутантные штаммы, получаемые в научных лабораториях разных стран мира, служат предметом обмена при творческом сотрудничестве, лицензионной продажи и т.п.

Потенциальные возможности мутагенеза (с последующей селекцией) обусловлены зависимостью биосинтеза целевого продукта от многих метаболических процессов в организме продуцента. Например, повышенную активность организма, образующего целевой продукт, можно ожидать, если мутация привела к дупликации (удвоению) или амплификации (умножению) структурных генов, включенных в систему синтеза целевого продукта. Далее активность можно повысить, если за счет разных типов мутаций будут подавлены функции репрессорных генов, регулирующих синтез целевого продукта. Весьма эффективный путь увеличения образования целевого продукта - нарушение системы ретроингибирования. Повысить активность продуцента можно также, изменив (за счет мутаций) систему транспорта предшественников целевого продукта в клетку. Наконец, иногда целевой продукт при резком увеличении его образования отрицательно влияет на жизнеспособность собственного продуцента (так называемый суицидный эффект). Повышение резистентности продуцента к образуемому им же веществу часто необходимо для получения, например, суперпродуцентов антибиотиков.

Помимо дупликации и амплификации структурных генов мутации могут носить характер делеции - «стирания», т.е. «выпадения» части генетического материала. Мутации могут быть обусловлены транспозицией (вставкой участка хромосомы в новое место) или инверсией (изменением порядка расположения генов в хромосоме). При этом геном мутантного организма претерпевает изменения, ведущие в одних случаях к потере мутантом определенного признака, а в других - к возникновению у него нового признака. Гены на новых местах оказываются под контролем иных регуляторных систем. Кроме того, в клетках мутанта могут появиться несвойственные исходному организму гибридные белки за счет того, что под контролем одного промотора оказываются полинуклеотидные цепи двух (или более) структурных генов, ранее отдаленных один от другого.

Немалое значение для биотехнологического производства могут иметь и так называемые «точечные» мутации. В этом случае изменения происходят впределах только одного гена. Например, выпадение или вставка одного или нескольких оснований, К «точечным» мутациям относятся трансверсия (когда происходит замена пурина на пиримидин) и транзиция (замена одного пурина на другой пурин или одного пиримидина на другой пиримидин). Замены в одной паре нуклеотидов (минимальные замены) при передаче генетического кода на стадии трансляции ведут к появлению в кодируемом белке вместо одной аминокислоты другой. Это может резко изменить конформацию данного белка и, соответственно, его функциональную активность, особенно в случае замены аминокислотного остатка в активном или аллостерическом центре.

Одним из самых блестящих примеров эффективности мутагенеза с последующей селекцией по признаку увеличения образования целевого продукта является история создания современных суперпродуцентов пенициллина. Работа с исходными биообъектами - штаммами (штамм - клоновая культура, однородность которой по определенным признакам поддерживается отбором) гриба Penicillium chrysogenum, выделенными из природных источников, велась с 1940х гг. в течение нескольких десгятилетий во многих лабораториях. Вначале некоторый успех был достигнут при отборе мутантов, появившихся в результате спонтанных мутаций. Затем перешли к индуцированию мутаций физическими и химическими мутагенами. В результате ряда удачных мутаций и ступенчатого отбора все более продуктивных мутантов активность штаммов Penicillium chrysogenum, используемых в промышленности стран, где производят пенициллин, сейчас в 100 тыс. раз выше, чем у обнаруженного А.Флемингом исходного штамма, с которого и началась история открытия пенициллина.

Производственные штаммы (применительно к биотехнологическому производству) с такой высокой продуктивностью (это относится не только к пенициллину, но и к другим целевым продуктам) крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме клеток штамма сами по себе для жизнеспособности этих клеток положительного значения не имеют. Поэтому мутантные штаммы требуют постоянного контроля при хранении: популяцию клеток высеивают на твердую среду и полученные из отдельных колоний культуры проверяют на продуктивность. При этом ревертанты - культуры с пониженной активностью отбрасывают. Реверсия объясняется обратными спонтанными мутациями, ведущими к возвращению участка генома (конкретного фрагмента ДНК) в его первоначальное состояние. Специальные ферментные системы репарации участвуют в реверсии к норме - в эволюционном механизме поддержания постоянства вида.

Совершенствование биообъектов применительно к производству не исчерпывается только повышением их продуктивности. Хотя это направление, несомненно, является главным, но оно не может быть единственным: успешная работа биотехнологического производства определяется многими факторами. С экономической точки зрения весьма важно получение мутантов, способных использовать более дешевые и менее дефицитные питательные среды. Если для работы в исследовательской лаборатории дорогие среды не создают особых финансовых проблем, то при крупнотоннажном производстве понижение их стоимости (хотя и без увеличения уровня активности продуцента) крайне важно.

Другой пример: в случае некоторых биообъектов культуральная жидкость после окончания ферментации имеет неблагоприятные в технологическом отношении реологические свойства. Поэтому в цехе выделения и очистки целевого продукта, работая с культуральной жидкостью повышенной вязкости, сталкиваются с трудностями при использовании сепараторов, фильтрпрессов и т.д. Мутации, соответствующим образом меняющие метаболизм биообъекта, в значительной мере снимают эти трудности.

Большое значение в отношении гарантии надежности производства приобретает получение фагоустойчивых биообъектов. Соблюдение асептических условий при проведении ферментации прежде всего касается предотвращения попадания в посевной материал (а также в ферментационный аппарат) клеток и спор посторонних бактерий и фибов (в более редких случаях водорослей и простейших). Предотвратить проникновение в ферментер фагов вместе с технологическим воздухом, стерилизуемым путем фильтрации, крайне трудно. Не случайно вирусы в первые годы после их открытия именовали «фильтрующимися». Поэтому основной путь борьбы с бактериофагами, актинофагами и фагами, поражающими грибы, - получение устойчивых к ним мутантных форм биообъектов.

Не касаясь специальных случаев работы с биообъектами–патогенами, следует подчеркнуть, что иногда задача совершенствования биообъектов исходит из требований промышленной гигиены. Например, выделенный из природного источника продуцент одного из важных беталактамных антибиотиков в значительном количестве образовывал летучие вешества с неприятным запахом гниющих овощей.

Мутации, ведущие к удалению генов, кодирующих ферменты, участвующие в синтезе этих летучих веществ, приобрели в данном случае практическое значение для производства.

Из всего изложенного следует, что современный биообъект, используемый в биотехнологической промышленности, - это суперпродуцент, отличающийся от исходного природного штамма не по одному, а, как правило, по нескольким показателям. Хранение таких штаммов–суперпродуцентов представляет серьезную самостоятельную проблему. При всех способах хранения их необходимо периодическй пересеивать и проверять как на продуктивность, так и на другие важные для производства свойства.

В случае применения высших растений и животных в качестве биообъектов для получения лекарственных средств возможности использования мутагенеза и селекции для их совершенствования ограничены. Однако в принципе мутагенез и селекция здесь не исключены. Особенно это относится к растениям, образующим вторичные метаболиты, которые используются как лекарственные вещества.

7. Направления создания новых биообъектов методами генетической инженерии. Основные уровни генетической инженерии. Характеристика.

С помощью методов генетической инженерии можно конструировать по определенному плану новые формы микроорганизмов, способных синтезировать самые различные продукты, в том числе продукты животного и растительного происхождения, При этом следует учитывать высокие скорости роста и продуктивность микроорганизмов, их способность к утилизации разнообразных видов сырья. Широкие перспективы перед биотехнологией открывает возможность микробиологического синтеза белков человека: таким способом получены соматостатин, интерфероны, инсулин, гормон роста.

Основные проблемы на пути конструирования новых микроорганизмов-продуцентов сводятся к следующему.

1. Продукты генов растительного, животного и человеческого происхождения попадают в чуждую для них внутриклеточную среду, где они подвергаются разрушению микробными протеаза-ми. Особенно быстро, за несколько минут, гидролизуются короткие пептиды типа соматостатина. Стратегия защиты генноинженерных белков в микробной клетке сводится к: а) использованию ингибиторов протеаз; так, выход человеческого интерферона возрастал в 4 раза при введении в плазмиду, несущую интерфе-роновый ген, фрагмента ДНК фага Т4 с геном pin, отвечающим за синтез ингибитора протеаз; б) получению интересующего пептида в составе гибридной белковой молекулы, для этого ген пептида сшивают с природным геном организма-реципиента; чаще всего используют ген белка А Staphylococcus aureus\ в) амплификации (увеличению числа копий) генов; многократное повторение гена человеческого проинсулина в составе плазмиды привело к синтезу в клетке Е. coli мультимера этого белка, который оказался значительно стабильнее к действию внутриклеточных протеаз, чем мономерный проинсулин. Проблема стабилизации чужеродных белков в клетках исследована еще недостаточно (В. И. Таняшин, 1985).

2. В большинстве случаев продукт трансплантированного гена не высвобождается в культуральную среду и накапливается внутри клетки, что существенно затрудняет его выделение. Так, принятый метод получения инсулина с помощью Е. coli предполагает разрушение клеток и последующую очистку инсулина. В связи с этим большое значение придается трансплантации генов, отвечающих за экскрецию белков из клеток. Имеются сведения о новом способе генноинженерного синтеза инсулина, который выделяется в культуральную среду (М. Sun, 1983).

Оправдана также переориентация биотехнологов с излюбленного объекта генетической инженерии Е. coli на другие биообъекты. Е. coli экскретирует сравнительно мало белков. Кроме того, клеточная стенка этой бактерии содержит токсическое вещество эндокотин, которое необходимо тщательно отделять от продуктов, используемых в фармакологических целях. Как объекты генетической инженерии перспективны поэтому грамположительные бактерии (представители родов Bacillus, Staphylococcus, Streptomyces). В частности Bas. subtilis выделяет более 50 различных белков в культуральную среду (С. Vard, 1984). В их число входят ферменты, инсектициды, а также антибиотики. Перспективны также эукариотические организмы. Они обладают рядом преимуществ, в частности, дрожжевой интерферон синтезируется в гликолизированной форме, как и нативный человеческий белок (в отличие от интерферона, синтезируемого в клетках Е. coti).

3. Большинство наследственных признаков кодируется несколькими генами, и генноинженерная разработка должна включать стадии последовательной трансплантации каждого из генов. Примером реализованного многогенного проекта является создание штамма Pseudomonas sp., способного утилизировать сырую нефть. С помощью плазмид штамм последовательно обогащался генами ферментов, расщепляющих октан, камфору, ксилол, нафталин (В. Г. Дебабов, 1982). В некоторых случаях возможна не последовательная, а одновременная трансплантация целых блоков генов с помощью одной плазмиды. В составе одной плазмиды может быть перенесен в клетку-реципиент nif-оперон Klebsiella pneumonia, отвечающий за фиксацию азота. Способность организма к фиксации азота определяется наличием по меньшей мере 17 различных генов, отвечающих как за структурные компоненты нитрогеназного комплекса, так и за регуляцию их синтеза.

Генетическая инженерия растений осуществляется на орга-низменном, тканевом и клеточном уровнях. Показанная, пусть для немногих видов (для томатов, табака, люцерны), возможность регенерации целого организма из одиночной клетки резко повысила интерес к генетической инженерии растений. Однако здесь, помимо чисто технических, предстоит решить проблемы, связанные с нарушениями структуры генома (изменения плоид-ности, хромосомные перестройки) культивируемых клеток растений. Примером реализованного генноинженерного проекта является синтез фазеолина, запасного белка фасоли, в регенерированных растениях табака. Трансплантация гена, отвечающего за синтез фазеолина, была проведена с использованием Ti-плазмиды в качестве вектора. С помощью Ti-плазмиды трансплантирован также ген устойчивости к антибиотику неомицину в растения табака, а с помощью CMV-вируса - ген устойчивости к ингибитору дигидрофолатредуктазы метотрексату в растения репы.

Генетическая инженерия растений включает манипуляции не только с ядерным геномом клеток, но также с геномом хлоро-пластов и митохондрий. Именно в хлоропластный геном наиболее целесообразно вводить ген азотфиксации для устранения потребности растений в азотных удобрениях. В митохондриях кукурузы найдены две плазмиды (S-1 и S-2), обусловливающие цитоплаз-матическую мужскую стерильность. Если селекционерам необходимо «запретить» самоопыление кукурузы и допустить лишь перекрестное опыление, они могут не заботиться об удалении тычинок вручную, если берут для оплодотворения растения с цитоплазматической мужской стерильностью. Такие растения могут быть выведены путем длительной селекции, однако генетическая инженерия предлагает более быстрый и целенаправленный метод - прямое введение плазмид в митохондрии клеток кукурузы. К разработкам в области генетической инженерии растений следует отнести также генетическую модификацию симбионтов растений - клубеньковых бактерий рода Rhizobium. В клетки этих бактерий с помощью плазмид предполагается вводить hup (hydrogen uptake)-ген, в природе существующий лишь у некоторых штаммов R. japonicum и R. leguminosarum. Нир-ген обусловливает поглощение и утилизацию газообразного водорода, высвобождаемого при функционировании азотфиксирующего ферментного комплекса клубеньковых бактерий. Рециклизаиия водорода позволяет избежать потерь восстановительных эквивалентов при симбиотической азотфиксации в клубеньках бобовых растений и значительно повысить продуктивность этих растений.

Отдаленной задачей пока остается применение методов генетической инженерии для улучшения пород сельскохозяйственных животных. Речь идет об увеличении эффективности использования кормов, повышении плодовитости, выхода молока и яиц, устойчивости животных к заболеваниям, ускорении их роста, улучшении качества мяса. Однако до сих пор не выяснена генетика всех этих признаков сельскохозяйственных животных, что препятствует попыткам генетических манипуляций в этой области.

8. Клеточная инженерия и ее использование в создании микроорганизмов и клеток растений. Метод слияния протопластов.

Клеточная инженерия - одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта - изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности - уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения зна чительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.

В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов - цитокининов - оказалось, что при совместном их действии с другим классом фитогормонов - ауксинами - появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.

В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккингом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод клонального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани«няньки». Этот мстод был разработан в России в 1969 г. в Институте физиологии растений им. К. А. Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.

Впервые термин «изолированные протопласты» был предложен Д. Ханстейном в 1880 г. Протопласт в целой клетке можно наблю-дать во время плазмолиза. Изолированный протопласт - это содержимое растительной клетки, окруженное плазмалеммой. Целлюлозная стенка у данного образования отсутствует. Изолированные протопласты - одни из наиболее ценных объектов в биотехнологии. Они позволяют исследовать различные свойства мембран, а также транспорт веществ через плазмалемму. Главное их преиму-щество состоит в том, что в изолированные протопласты достаточно легко вводить генетическую информацию из органелл и клеток других растений, прокариотических организмов и из клеток животных. Е. Коккинг установил, что изолированный протопласт благодаря механизму пиноцитоза способен поглощать из окружающей среды не только низкомолекулярные вещества, но и крупные моле-кулы, частицы (вирусы) и даже изолированные органеллы.

Большое значение в создании новых форм растений для изуче-ния взаимодействия ядерного генома и геномов органелл имеет способность изолированных протопластов сливаться, образуя гибридные клетки. Таким способом можно добиться получения гибридов от растений с разной степенью таксономической удален-ности, но обладающих ценными хозяйственными качествами.

Впервые протопласты были выделены Дж. Клернером в 1892 г. при изучении плазмолиза в клетках листа телореза {Stratiotes aloides) во время механического повреждения ткани. Поэтому этот метод назван механическим. Он позволяет выделить лишь небольшое количество протопластов (вьщеление возможно не из всех видов тканей); сам метод длительный и трудоемкий. Современный метод выделения протопластов заключается в удалении клеточной стенки с помощью поэтапного использования ферментов для ее разрушения: целлюлазы, гемицеллюлазы, пектиназы. Этот метод получил название ферментативного.

Первое успешное выделение протопластов из клеток высших растений данным методом сделано Е. Коккингом в 1960 г. По сравнению с механическим ферментативный метод имеет ряд преимуществ. Он позволяет сравнительно легко и быстро выделять большое количество протопластов, причем они не испытывают сильного осмотического шока. После действия ферментов смесь протопластов пропускают через фильтр и центрифугируют для удаления неразрушенных клеток и их осколков.

Выделить протопласты можно из клеток растительных тканей, культуры каллусов и суспензионной культуры. Оптимальные условия для изоляции протопластов для разных объектов индивидуальны, что требует кропотливой предварительной работы по подбору концентраций ферментов, их соотношения, времени обработки. Очень важным фактором, позволяющим выделять целые жизнеспособные протопласты, является подбор осмотического стабилизатора. В качестве стабилизаторов обычно используют различные сахара, иногда ионные осмотики (растворы солей СаС1 2 , Na 2 HP0 4 , КСІ). Концентрация осмотиков должна быть немного гипертонична, чтобы протопласты находились в состоянии слабого плазмолиза. В этом случае тормозятся метаболизм и регенерация клеточной стенки.

Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов.

9. Методы клеточной инженерии применительно к животным клеткам. Гибридомная технология и ее использование в биотехнологических процессах.

В 1975 г. Г. Келер и К. Мильштейн сумели впервые выделить клоны клеток, способные секретировать только один тип молекул антител и в то же время расти в культуре. Эти клоны клеток были получены слиянием антителообразующих и опухолевых клеток - клеток–химер, названных гибридомами, так как, с одной стороны, они наследовали способность к практически неограниченному росту в культуре, а с другой стороны, способность к продукции антител определенной специфичности (моноклональных антител).

Весьма существенно для биотехнолога то, что отобранные клоны могут длительно храниться в замороженном состоянии, поэтому в случае необходимости можно взять определенную дозу такого клона и ввести животному, у которого будет развиваться опухоль, продуцирующая моноклональные антитела заданной специфичности. Вскоре в сыворотке животного будут обнаружены антитела в очень высокой концентрации от 10 до 30 мг/мл. Клетки такого клона можно также выращивать in vitro, а секретируемые ими антитела получатъ из культуральной жидкости.

Создание гибридом, которые можно хранить в замороженном состоянии (криоконсервирование), позволило организовать целые гибридомные банки, что в свою очередь открыло большие перспективы по применению моноклональных антител. Сфера их применения помимо количественного определения разных веществ включает самую разнообразную диагностику, например идентификацию определенного гормона, вирусных или бактериальных антигенов, антигенов группы крови и тканевых антигенов.

Этапы получения гибридных клеток. Слиянию клеток предшествует установление тесного контакта между плазматическими мембранами. Этому препятствует наличие поверхностного заряда на природных мембранах, обусловленного отрицательно заряженными группами белков и липидов. Деполяризация мембран переменным электрическим или магнитным полем, нейтрализация отрицательного заряда мембран с помощью катионов способствует слиянию клеток. На практике широко используются ионами Са2+, хлорпромазином. Эффективным «сливающим» (фузогенным) агентом служит полиэтиленгликоль.

По отношению к животным клеткам применяют также вирус Сендай, действие которого как сливающего агента, по-видимому, связано с частичным гидролизом белков цитоплазматической мембраны. Участок субъединицы FI вируса обладает протеолитической активностью (С. Nicolau et al., 1984). Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки, при этом получаются протопласты. Клеточную стенку подвергают ферментативному гидролизу, применяя лизоцим (для бактериальных клеток), зимолиазу улитки (для клеток грибов), комплекс циллюлаз, гемицеллюлаз и пектиназ, продуцируемый грибами (для клеток растений). Набухание и последующее разрушение протопластов предотвращается созданием повышенной осмолярности среды. Подбор гидролитических ферментов и концентрации солей в среде с целью обеспечения максимального выхода протопластов представляет собой сложную задачу, решаемую в каждом случае отдельно.

Для скрининга полученных гибридных клеток используют различные подходы: 1) учет фенотипических признаков; 2) создание селективных условий, в которых выживают лишь гибриды, объединившие геномы родительских клеток.

Возможности метода слияния клеток. Метод слияния соматических клеток открывает перед биотехнологией значительные перспективы.

1. Возможность скрещивания филогенетически отдаленных форм живого. Путем слияния клеток растений получены плодовитые, фенотипически нормальные межвидовые гибриды табака, картофеля, капусты с турнепсом (эквивалентные природному рапсу), петунии. Имеются стерильные межродовые гибриды картофеля и томата, стерильные межтрибные гибриды арабидопсиса и турнепса, табака и картофеля, табака и беладонны, которые образуют морфологически ненормальные стебли и растения. Получены клеточные гибриды между представителями различных семейств, существующие, однако, лишь как неорганизованно растущие клетки (табака и гороха, табака и сои, табака и конских бобов). Получены межвидовые (Saccharomyces uvarum и S. diastalicus) и межродовые (Kluyveromyces lactis и S. cerevisiae) гибриды дрожжей. Имеются данные о слиянии клеток различных видов грибов и бактерий.

Несколько курьезными представляются опыты по слиянию клеток организмов, относящихся к различным царствам, например клеток лягушек Xenopus taevis и протопластов моркови. Гибридная растительно-животная клетка постепенно одевается клеточной стенкой и растет на средах, на которых культивируют растительные клетки. Ядро животной клетки, по-видимому, достаточно быстро теряет свою активность (Е. С. Cocking, 1984).

2. Получение асимметричных гибридов, несущих полный набор генов одного из родителей и частичный набор другого родителя. Такие гибриды часто возникают при слиянии клеток организмов, филогенетически удаленных друг от друга. В этом случае вследствие неправильных делений клеток, обусловленных некоординированным поведением двух разнородных наборов хромосом, в ряду поколений теряются частично или полностью хромосомы одного из родителей.

Асимметричные гибриды бывают устойчивее, плодовитее и жизнеспособнее, чем симметричные, несущие полные наборы генов родительских клеток. В целях асимметричной гибридизации возможна избирательная обработка клеток одного из родителей для разрушения части его хромосом. Возможен прицельный перенос из клетки в клетку нужной хромосомы. Представляет также интерес получение клеток, у которых гибридной является только цитоплазма. Цитоплазматические гибриды образуются, когда после слияния клеток ядра сохраняют свою автономию и при последующем делении гибридной клетки оказываются в разных дочерних клетках. Скрининг таких клеток проводится по генам-маркерам ядерного и цитоплазматических (митохондриального и хлоропластного) геномов.

Клетки со слившейся цитоплазмой (но не ядрами) содержат ядерный геном одного из родителей и в то же время совмещают Цитоплазматические гены слившихся клеток. Есть указания на рекомбинацию ДНК митохондрий и хлоропластов в гибридных клетках.

Получение гибридов путем слияния трех и более родительских клеток. Из таких гибридных клеток могут быть выращены растения (грибы)-регенеранты.

Гибридизация клеток, несущих различные программы развития, - слияние клеток различных тканей или органов, слияние нормальных клеток с клетками, программа развития которых изменена в результате злокачественного перерождения. В этом случае получаются так называемые гибридомные клетки, или гибридомы, наследующие от нормальной родительской клетки способность к синтезу того или иного полезного соединения, а от злокачественной - способность к быстрому и неограниченному росту.

Гибридомная технология. Получение гибридом на сегодняшний день - наиболее перспективное направление клеточной инженерии. Основная цель - «обессмертить» клетку, продуцирующую ценные вещества путем слияния с раковой клеткой и клонирования полученной гибридомной клеточной линии. Гибридомы получены на основе клеток - представителей различных царств живого. Слияние клеток растений, растущих в культуре обычно медленно, с клетками растительных опухолей позволяет получить клоны быстрорастущих клеток - продуцентов нужных соединений. Многообразны применения гибридомной технологии к животным клеткам, где с ее помощью планируется получение неограниченно размножающихся продуцентов гормонов и белковых факторов крови, Наибольшее практическое значение имеют гибридомы - продукты слияния клеток злокачественных опухолей иммунной системы (миелом) с нормальными клетками той же системы-лимфоцитами.

При попадании в организм животного или человека чужеродного агента - бактерий, вирусов, «чужих» клеток или просто сложных органических соединений - лимфоциты мобилизуются для обезвреживания введенного агента. Имеется несколько популяций лимфоцитов, функции которых различаются. Существуют так называемые Т-лимфоциты, среди которых выделяются Т-киллеры («убийцы»), непосредственно атакующие чужеродный агент с целью его инактивации, и В-лимфоциты, основная функция которых состоит в продукции иммунных белков (иммуноглобулинов), обезвреживающих чужеродный агент путем связывания с его поверхностными участками (антигенными детерминантами), иными словами, В-лимфоциты вырабатывают иммунные белки, представляющие собой антитела к чужеродному агенту - антигену.

Слияние Т-лимфоцита-киллера с опухолевой клеткой дает клон неограниченно размножающихся клеток, выслеживающих определенный антиген - тот, к которому был специфичен взятый Т-лимфоцит. Подобные Т-киллерные гибридомные клоны пытаются использовать для борьбы с раковыми клетками непосредственно в организме больного (Б. Фукс и др., 1981; 1983),

При слиянии В-лимфоцита с миеломной клеткой получаются В-гибридомные клоны, широко применяемые как продуценты антител, нацеленных на тот же антиген, что и антитела, синтезируемые породившим клон В-лимфоцитом, т. е. моноклопальных антител. Моноклональные антитела однородны по своим свойствам, они обладают одинаковым сродством к антигену и связываются с. одной единственной антигенной детерминантой. В этом состоит важное преимущество моноклональных антител - продуктов В-гибридом, по сравнению с антителами, получаемыми без применения клеточной инженерии, путем иммунизации лабораторного животного избранным антигеном с последующим выделением антител из сыворотки его крови или в результате непосредственного взаимодействия антигена с популяцией лимфоцитов в культуре ткани. Подобные традиционные методы дают смесь антител, различных по специфичности и сродству к антигену, что объясняется участием в выработке антител многих различных клонов В-лимфоцитов и наличием у антигена нескольких детерминант, каждая из которых соответствует особому типу антител. Таким образом, моноклональные антитела избирательно связываются лишь с одним антигеном, инактивируя его, что имеет большое практическое значение для распознавания и лечения заболеваний, вызываемых чужеродными агентами - бактериями, грибками, вирусами, токсинами, аллергенами и трансформированными собственными клетками (раковые опухоли), Моноклональные антитела успешно применяют в аналитических целях для изучения клеточных органелл, их структуры или отдельных биомолекул.

До недавнего времени для гибридизации использовали исключительно миеломные клетки и В-лимфоциты мыши и крысы. Продуцируемые ими моноклональные антитела имеют ограниченное терапевтическое применение, так как они сами представляют чужеродный белок для человеческого организма. Освоение технологии получения гибридом на основе иммунных клеток человека связано со значительными трудностями: человеческие гиб-ридомы растут медленно, сравнительно мало стабильны. Однако уже получены гибридомы человека - продуценты моноклональ-ных антител. Оказалось, что и человеческие моноклональные антитела в некоторых случаях вызывают иммунные реакции, и их клиническая эффективность зависит от правильного подбора класса антител, гибридомных линий, подходящих для данного больного. К достоинствам человеческих моноклональных антител относится способность распознавать тонкие различия в структуре антигена, которые не распознаются моноклональными антителами мыши или крысы. Предприняты попытки получения химерных гибридом, сочетающих мышиные миеломные клетки и человеческие В-лимфоциты; такие гибридомы находят пока лишь ограниченное применение tK- Haron, 1984).

Наряду с несомненными преимуществами моноклональные антитела имеют и недостатки, порождающие проблемы при их практическом использовании. Они не стабильны при хранении в высушенном состоянии, в то же время в смеси обычных (поли-клональных) антител всегда присутствует группа антител, устойчивая при избранных условиях хранения. Таким образом, неоднородность обычных антител дает им дополнительный резерв стабильности при изменении внешних условий, что соответствует одному из основных принципов повышения надежности систем. Моноклональные антитела нередко имеют слишком низкое сродство к антигену и чрезмерно узкую специфичность, что препятствует их применению против изменчивых антигенов, характерных для инфекционных агентов и опухолевых клеток. Необходимо отметить также очень высокую стоимость моноклональных антител на международном рынке.

Общая схема получения гибридом на основе миеломных клеток и иммунных лимфоцитов включает следующие этапы.

1. Получение мутантных опухолевых клеток, погибающих при последующей селекции гибридомных клеток. Стандартным подходом является выведение линий миеломных клеток, не способных к синтезу ферментов запасных путей биосинтеза пуринов и пиримидинов из гипоксантина и тимидина соответственно (рис 6). Отбор таких мутантов опухолевых клеток проводят с применением токсических аналогов гипоксантина и тимидина. В среде, содержащей эти аналоги, выживают только мутантные клетки, которые лишены ферментов гипоксантингуанинфосфори-бозилтрансферазы и тимидинкиназы, необходимых для запасных путей биосинтеза нуклеотидов.

Имеете ли вы представление, что такое биотехнологии?

Безусловно, вы, что то о них слышали. Это инновационное направление в современной биологии, которое стоит в одном ряду с такими науками как математика или физика.

Биотехнология занимается созданием нужных человеку продуктов и материалов с помощью живых культур и микроорганизмов таких как, дрожи, споры грибов, культивируемые клетки растений и животных и др. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе. Биоинженеры, имеют дело с живыми системами природы, используют их возможности для решения медицинских задач, генной инженерии, сельского хозяйства, химической отрасли, косметической индустрии и пищевой промышленности. Биотехнология – это наука на стыке смежных отраслей.

Интересно, что проникновение биотехнологий в экономику мирового хозяйства отражается в том, что сформировались новые термины для обозначения глобальности данного процесса. В промышлености даже появились разноцветные биотехнологии:

  • "красная" биотехнология – биотехнология, связанная с обеспечением здоровья человека и потенциальной коррекцией его генома, а также с производством биофармацевтических препаратов (протеинов, ферментов, антител);
  • "зеленая" биотехнология - направлена на разработку и создание генетически модифицированных (ГМ) растений, устойчивых к биотическим и абиотическим стрессам, определяет современные методы ведения сельского и лесного хозяйства;
  • "белая" - промышленная биотехнология, объединяющая производство биотоплива, биотехнологии в пищевой, химической и нефтеперерабатывающей промышленности;
  • "серая" - связана с природоохранной деятельностью, биоремедиацией;
  • "синяя" биотехнология – связана с использованием морских организмов и сырьевых ресурсов.

Появились и новые профессии: биофармаколог, бионик, архитектор живых систем, урбанист-эколог и другие. Ну а экономика, объединяющая все эти инновационные области, стала назваться «биоэкономика».

Сегодня наша страна по уровню производства на основе высоких биотехнологий отстаёт от стран, являющихся технологическими лидерами в этой области. Политика нашего государства по импортозамещению направлена как раз на то, чтобы не только создавать новые биотехнологии, но осуществлять к нам в страну трансфер зарубежных решений, уже получившие признание в мире.

Трансфер технологий сопровождается поиском самых новых и прогрессивных решений. Но есть один важный момент, помимо факта прогрессивности технологии сегодня, нужно уметь предсказывать ее перспективы для прогресса будущего.

Иногда для таких стратегических предсказаний трудятся целые научно- исследовательские институты, группы ученых и практиков. А иногда, перспективность и прорывной характер технологии способен предсказать всего один человек. Такой как Стив Джобс или Бил Гейц.

В сфере биотехнологий тоже имеются свои проницательные лидеры из сферы бизнеса. Один из них Яковлев Максим Николаевич , генеральный директор представительства биотехнологической корпорации Unhwa, Южная Корея, расположенного в городе Санкт – Петербурге.

Биотехнология, которой Максим Яковлев определил прорывное будущее в разных сегментах экономики находится в сфере культивирования растительных клеток, обладающих функциями «естественных природных биофабрик» по производству ценных ингредиентов из любых растений, в том числе и уникальных.

Эта перспективная биотехнология, по мнению бизнесмена, способна из одной выделенной клетки растения создавать натуральное питание прямо на борту космических кораблей, выращивать плоды овощей и фруктов с нужными характеристиками и размерами, создавать экосистем других планет и питание для человека в промышленных масштабах из любого растения без выращивания этого растений на живой земле.

Возможно такие перспективы биотехнологии еще трудно осознать и принять как возможное. Но все мы знаем, что есть люди способны видеть дальше масс, потому что, они сами уже живут в будущем и зовут нас за собой.



Добавить свою цену в базу

Комментарий

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности.

В 1916–1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака.

Огромный вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах, создавший важное прикладное направление биохимии – техническую биохимию. А. Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств (чая, табака и т. п.) были важнейшими предпосылками возникновения современной биотехнологии.

В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. За послевоенные годы микробиологическая промышленность приобрела принципиально новые черты: микроорганизмы стали использовать не только как средство повышения интенсивности биохимических процессов, но и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток ценнейшие и сложнейшие химические соединения. Перелом был связан с открытием и началом производства антибиотиков.

Первый антибиотик – пенициллин – был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

Виды биотехнологии

Биоинженерия

Биоинженерия или биомедицинская инженерия – это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженерия/биомедицинская инженерия – это применение технических подходов для решения медицинских проблем в целях улучшения охраны здоровья. Эта инженерная дисциплина направлена на использование знаний и опыта для нахождения и решения проблем биологии и медицины.

Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач.

Среди важных достижений биоинженерии можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов («drug design»).

Биомедицина

Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Биомедицина включает накопленные сведения и исследования, в большей или меньшей степени общие медицине, ветеринарии, стоматологии и фундаментальным биологическим наукам, таким, как химия, биологическая химия, биология, гистология, генетика, эмбриология, анатомия, физиология, патология, биомедицинский инжиниринг, зоология, ботаника и микробиология.

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения. Фактически, биофармакология – это плод конвергенции двух традиционных наук – биотехнологии, а именно, той её ветви, которую именуют «красной», медицинской биотехнологией, и фармакологии, ранее интересовавшейся лишь низкомолекулярными химическими веществами, в результате взаимного интереса.

Объекты биофармакологических исследований – изучение биофармацевтических препаратов, планирование их получения, организация производства. Биофармакологические лечебные средства и средства для профилактики заболеваний получают с использованием живых биологических систем, тканей организмов и их производных, с использованием средств биотехнологии, то есть лекарственные вещества биологического и биотехнологического происхождения.

Биоинформатика

Совокупность методов и подходов, включающих в себя:

  1. математические методы компьютерного анализа в сравнительной геномике (геномная биоинформатика);
  2. разработка алгоритмов и программ для предсказания пространственной структуры белков (структурная биоинформатика);
  3. исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем.

В биоинформатике используются методы прикладной математики, статистики и информатики. Биоинформатика используется в биохимии, биофизике, экологии и в других областях.

Бионика

Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика – это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Различают :

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Биоремедиация

Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов.

Клонирование

Появление естественным путём или получение нескольких генетически идентичных организмов путём бесполого (в том числе вегетативного) размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул (молекулярное клонирование). Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток – клон.

Генетическая инженерия

Суть генетической инженерии заключается в искусственном создании генов с нужными свойствами и введение их в соответствующую клетку. Перенос гена осуществляет вектор (рекомбинантная ДНК) – специальная молекула ДНК, сконструированная на основе ДНК вирусов или плазмид, которая содержит нужный ген, транспортирует его в клетку и обеспечивает его встраивание в генетический аппарат клетки.

Для маркировки определенных клеток организмов в молекулярно-генетических исследованиях используют ген GFP, выделенный из медузы. Он обеспечивает синтез флуоресцентного белка, который светится в темноте.

Генетическая инженерия широко используется как в научных исследованиях, так и в новейших методах селекции.

Биотехнология – это совокупность промышленных методов, которые применяют для производства различных веществ с использованием живых организмов, биологических процессов или явлений. Традиционная биотехнология основана на явлении ферментации – использовании в производственных процессах ферментов микроорганизмов. Клеточная инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии культивирования клеток и тканей вне организма в искусственных условиях. Генетическая инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии выделения генов из организмов и отдельных клеток, их видоизменение и введение в другие клетки или организмы.

Некоторые этические и правовые аспекты применения биотехнологических методов

Этика – учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика – часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.

В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.

В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

Выделение этих клеток производят из эмбрионов и плодов человека 5-8 недель развития, полученных при медицинском прерывании беременности (в результате аборта), что порождает многочисленные вопросы относительно этической и юридической правомерности проведения исследований на эмбрионах человека, в том числе такие:

  • насколько необходимы и оправданы научные исследования на эмбриональных стволовых клетках человека?
  • допустимо ли ради прогресса медицины разрушать человеческую жизнь и насколько это морально?
  • достаточно ли проработана правовая база для применения этих технологий?

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования.

В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Рынок биотехнологий

Параллелей с современным биотехом у ИТ гораздо больше, чем может показаться на первый взгляд. Информационные технологии не появились сами по себе, их расцвету предшествовали фундаментальные открытия в физике, физике материалов, вычислительной математике и кибернетике. В результате сегодня ИТ – это область «легких стартапов», от возникновения идеи до принесения прибыли в которых проходит совсем немного времени, и мало кто задумывается о той работе, которая была проделана до сегодняшнего дня.

Ситуация с биотехнологиями аналогична, просто мы сейчас находимся на более раннем этапе, когда ещё идет разработка инструментов, программ. Биотехнологии ждут появления своего «персонального компьютера»”, только в нашем случае он не будет понятным массовым устройством – речь идёт скорее о наборе эффективных и недорогих инструментов.

Можно сказать, что сейчас ситуация подобна той, что была в 1990-е в ИТ. Технологии все еще развиваются и стоят достаточно дорого. Например, полное секвенирование человека стоит $1000. Это намного дешевле, чем цена в $3,3 млрд. у Human Genome Project, но она все еще невероятно высока для обывателя, а её применение для клинической диагностики на широком уровне пока еще невозможно. Для этого нужно, чтобы технология подешевела ещё раз в 10 и улучшила технические свойства настолько, чтобы ошибки секвенирования были нивелированы. В биотехе пока нет таких мощных проектов, как Facebook, но Illumina, Oxford Nanopore, Roche – всё это крайне успешные компании, чья деятельность часто напоминает Google, скупающий интересные стартапы. А Nanopore, например, стали миллиардерами, еще не выйдя на рынок, благодаря сочетанию хорошей исходной идеи, менеджмента и успехов в привлечении финансирования.

Сегодня биотехнологии – это ещё и рынок больших данных, и это продолжает параллели с ИТ, который в данном случае служит уже своего рода инструментом для более крупного и сложного биотеха. Такие компании как Editas Medicine (одни из создателей нашумевшей технологии редактирования генома CRISPR/Cas9) сделали свой IP на результатах секвенирования геномных данных бактерий из открытых источников. Они далеко не первыми стали пожинать плоды от накопленной информации, они даже не были первыми, кто открыл принцип действия кластера CRISPR, однако именно Editas Medicine создали биотехнологический продукт. Сегодня это компания стоимостью более $1 млрд.

И это не единственный бизнес, который возникнет благодаря анализу уже существующих данных. Более того, нельзя сказать, что за такими данными стоит очередь – их уже гораздо больше, чем можно проанализировать, а будет ещё больше, ведь учёные не перестают секвенировать. К сожалению, методы анализа еще несовершенны, поэтому не всем удается превратить данные в многомиллиардный продукт. Но если мы прикинем скорость развития инструментов анализа (подсказка: она очень высокая), несложно понять, что в будущем компаний, заметивших в больших данных генома что-то интересное, станет гораздо больше.

Может ли Россия стать биотехнологической страной?

Основная проблема биотехнологий в России – это не запрет ГМО, как многим кажется, а большое количество всевозможных бюрократических барьеров. Этот факт отмечают и в правительстве. Но даже к барьерам можно приспособиться. Последние 26 лет мы развиваемся под прессом реформ, постоянной смены правил игры, а бизнесу нужна стабильность и уверенность в том, что не будет происходить никаких потрясений.

Если российским биотехнологиям не мешать, они начнут развиваться. Также хочется отметить, что необдуманное желание помогать, те самые непродуманные госинвестиции, на самом деле, приводят к противоположному результату – субсидирование приучает компании к тому, что они будут поддерживаться государством постоянно. Как показывает практика, компании на госинвестициях становятся не эффективными. Везде нужна здоровая конкуренция, поэтому первоначальные вклады должны идти даже не от государства, а от бизнеса, который должен чувствовать уверенность в завтрашнем дня, с чем у нас пока проблемы.

Самое правильное для государства – это инвестировать в создания оптимальной среды для биотеха. У нас есть и умы, и люди с энергией и желанием созидать – важно не дать этому желанию пропасть.

Сегодня биотехнологии находятся в фазе интенсивного роста, но уже можно представить вектор их развития. Ведь сам смысл технологий не изменится, как он не изменился после появления компьютера: его идея в 1951 году не особо отличалась от той, что стоит за современными компьютерами. Существенно отличается только функционал и производительность. То же самое произойдёт и с биотехнологиями, а драйвер их развития даже понятнее – это вечное желание людей быть здоровыми и жить долго, не соблюдая при этом всех сложных правил здорового образа жизни. Поэтому в самом ближайшем будущем нас ждёт расцвет биотехнологий, и в конечном счёте это прекрасные новости для всего человечества.

Биотехнологии (Βιοτεχνολογία, от греч. Bios — жизнь, techne — искусство, мастерство и logos — слово, учение) — использование живых организмов и биологических процессов в производстве. Биотехнология — междисциплинарная область, возникшая на стыке биологических, химических и технических наук. С развитием биотехнологии связывают решение глобальных проблем человечества — ликвидацию нехватки продовольствия, энергии, минеральных ресурсов, улучшение состояния здравоохранения и качества окружающей среды.

Метод

Положительным фактором в применении биологического метода является его экологичность. Биологические средства можно использовать без ограничения кратности применения, в то время как количество обработок растений химическими пестицидами строго регламентирована.

Биологическая защита растений основывается на системном подходе и комплексной реализации двух основных направлений: сохранение и содействие деятельности естественных популяций полезных видов (энтомофагов, микроорганизмов), самозащиты культурных растений в агробиоценозах и обновления агробиоценозов полезными видами, которых не хватает или которые отсутствуют. Принципиальным отличием биологического метода защиты растений от любого другого является использование именно первого направления, осуществляют, применяя биологические препараты, способами сезонной колонизации, интродукции и акклиматизации зоофаги и микроорганизмов. Размножению и эффективности деятельности полезных видов способствуют агробиотехнични меры, и некоторые способы обработки почвы с помощью которых можно создавать благоприятные условия для жизнедеятельности зоофаги.

Выращивание устойчивых к вредным организмам сортов культурных растений способствует формированию маложиттездатних популяций вредителей.

Каждый из основных средств биологического метода (применение зоофаги, полезных в защите растений микроорганизмами) имеет свои особенности и эффективен в соответствующих условиях. Эти средства не исключают, а дополняют друг друга. Сейчас особое внимание уделяется поиску путей совместного применения биологической защиты с другими методами в интегрированных системах защиты растений от вредных организмов. Основной задачей этого метода является изучение условий, которые определяют эффективность естественных врагов вредных организмов и разработка способов регулирования их количества и взаимоотношений с популяциями вредных организмов.

Интродукция и акклиматизация применяются против карантинных вредителей, которые имеют ограниченное распространение в стране.

Естественные враги ограничивают размножение вредителя на его родине, а в новом географическом районе они отсутствуют. Эффективных зоофаги и микроорганизмов для завоза и акклиматизации находят на родине вредного организма и переселяют в новые районы. Наилучшие результаты получают при завозе узкоспециализированных видов, которые приспособлены к существованию за счет одного вредителя, болезни, сорняков. Внутришньоареальне переселения заключается в переселении эффективных, чаще специализированных, естественных врагов из старых очагов, где численность вредных организмов снижается, в новые в других частях ареала вида, где эти враги отсутствуют или еще не накопились.

Микроорганизмы, которые повреждают вредные виды, для защиты растений применяются в форме биологических препаратов. Большинство биологических бактериальных препаратов создано на основе кристалоутворюючих бактерий группы Bacillus thuringiensis Berl., Которые образуют споры и кристаллы, способные растворяться в кишечнике насекомых, куда они попадают с кормом.

Грибные препараты содержат споры энтомопатогенных грибов, принадлежащих к несовершенным.

Вирусные биологические препараты (Вериных) изготавливаются на основе вирусов полиэдроза и гранулезы, которые чаще всего поражают чешуекрылых.

В живых системах на всех уровнях организации распространенным способом передачи информации является химическая коммуникация. В последнее время большое внимание уделяется разработке и применению биологически активных веществ, которые обеспечивают взаимоотношения между живыми организмами в биоценозах, их рост и развитие. Основной группой биологически активных веществ является феромоны. Феромоны — химические вещества, которые производят и выделяют в окружающую среду насекомые. Эти вещества вызывают соответствующие поведенческие или физиологические реакции. Существуют различные группы феромонов — половые, агрегацию, следовые т. Наибольшее распространение в практике защиты растений приобрели половые феромоны, которые чаще всего выделяют самки для привлечения самцов. Наиболее изученными являются феромоны чешуекрылых, жесткокрылых, клопов, сетчатокрылых, термитов. На основе определения структуры природных феромонов насекомых созданы их синтетические аналоги. Половые феромоны используются для обнаружения и определения зоны распространения вредителей, для сигнализации сроков применения защитных мер, определение плотности популяций вредителей, а также для защиты посевов путем массового отлова самцов («самцевого вакуума») и дезориентации, привлечения самцов при химической стерилизации.

Способ дезориентации насекомых предусматривает насыщение площади высокими концентрациями синтетического феромона и нарушения феромонных коммуникации между самцами и самками. В результате неспаренных самки откладывают неоплодотворенные яйца, что и приводит к снижению численности вида. Установлено, что процессы метаморфозу, линьки, размножения и диапаузы насекомых регулируют гормоны. Наиболее изученными являются ювенильный (личиночный), экдизон (линочний) и мозговой. Гормоны были синтезированы и получены как химические соединения, по структуре отличаются от природных, но имитируют их биологическую активность — выполняют роль регуляторов роста и развития насекомых. В защите растений практического применения приобрели ингибиторы синтеза хитин и ювеноидив. Гормональные препараты по своему действию значительно отличаются от традиционных инсектицидов. Они не токсичны, но обусловливают нарушения эмбрионального развития, метаморфозу, вызывают стерилизацию. Ингибиторы хитина нарушают формирование кутикулы во время линьки. Ювеноидив вызывают гибель при завершении личиночного или лялечкового развития, являются ингибиторами синтеза хитин при очередной Линци.

Генетический метод борьбы с вредными организмами был разработан и предложен А. С. Серебровским (1938, 1950). Этот метод предусматривает насыщение природной популяции вредителя генетически неполноценными особями того же вида. Самки природной популяции, спариваясь с такими особями, откладывают нежизнеспособные яйца, не дают потомства, происходит самоуничтожения вредителя. Генетический метод осуществляется лучевой и химической стерилизацией. Лучевая стерилизация предусматривает массовое разведение вредителей, облучения их (гамма-лучами, рентгеновскими лучами) и следующий выпуск в плодовые насаждения, посевы сельскохозяйственных культур. В облученных особях возникают повреждения хромосомного аппарата. При химической стерилизации стерилизаторами используются химические вещества, с алкилючих сообщений, антиметаболитов и антибиотиков. Первые вызывают половую стерильность самок и самцов, антиметаболиты обусловливают стерильность самок. Генетический метод борьбы был применен в 1954 году по сравнению с серой мясной мухи на острове Кюрасао, которая наносит значительный ущерб животноводству. Выпуск стерилизованных особей был успешным. Генетическом метода борьбы присуща избирательность, его применение не связано с негативным воздействием на окружающую среду и не способствует явке устойчивости к факторам стерилизации.

История биотехнологии

С древнейших времен человек использовал биотехнологические процессы при хлебопечении, приготовлении кисломолочных продуктов, в виноделии и т.д., но только благодаря работам Луи Пастера в середине 19 века, доказали связь процессов брожения с деятельностью микроорганизмов, традиционная биотехнология получила научную основу.

В 40-50-е годы 20 века, когда был осуществлен биосинтез пенициллинов методами ферментации, началась эра антибиотиков, давшая толчок развитию микробиологического синтеза и созданию микробиологической промышленности.

В 60-70-е годы 20 века начала бурно развиваться клеточная инженерия.

С созданием 1972 группой П. Берга в США первой гибридной молекулы ДНК in vitro формально связано рождение генетической инженерии, открыла путь к сознательной изменения генетической структуры организмов таким образом, чтобы эти организмы могли производить необходимые человеку продукты и осуществлять необходимые процессы. Эти два направления определили облик новой биотехнологии, имеет мало общего с той примитивной биотехнологией, что человек использовал в течение тысячелетий. Показательно, что в 1970-е годы получил распространение и самый срок биотехнология. С этого времени биотехнология неразрывно связана с молекулярной и клеточной биологией, молекулярной генетикой, биохимией и биоорганической химией. За короткий период своего развития (25-30 лет) современная биотехнология не только достигла существенных успехов, но и продемонстрировала неограниченные возможности использования организмов и биологических процессов в различных отраслях производства и народного хозяйства.

Биотехнология как наука

Биотехнология — это комплекс фундаментальных и прикладных наук, технических средств, направленных на получение и использование клеток микроорганизмов, животных и растений, а также продуктов их жизнедеятельности: ферментов, аминокислот, витаминов, антибиотиков и др.

Биотехнология, которая включает промышленную микробиологию, базируется на использовании знаний и методов биохимии, микробиологии, генетики и химической технологии, что позволяет получать пользу в технологических процессах из свойств микроорганизмов и клеточных культур. Современные биотехнологические процессы основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток и клеточных органелл.

Основные направления исследований:

  • Разработка научных основ создания новых биотехнологий с помощью методов молекулярной биологии, генетической и клеточной инженерии.
  • Получение и использование биомассы микроорганизмов и продуктов микробиологического синтеза.
  • Изучение физико-химических и биохимических основ биотехнологических процессов.
  • Использование вирусов для создания новых биотехнологий.

Применение

Биотехнология применяется вокруг нас во многих предметах ежедневного потребления — от одежды, которую мы носим, ​​к сыру, который мы потребляем. На протяжении веков фермеры, пекари и пивовары использовали традиционные технологии для изменения и модификации растений и продуктов питания — пшеница может служить древнейшим примером, а нектарин — одним из последних. Сегодня биотехнология использует современные научные методы, которые позволяют улучшить или модифицировать растения, животные, микроорганизмы с большей точностью и предсказуемостью.

Потребители должны иметь выбор из более широкого перечня безопасных продуктов. Биотехнология может предоставить потребителям возможность такого выбора — не только в сельском хозяйстве, но и в медицине и топливных ресурсах.

Преимущества биотехнологий

Биотехнология предлагает огромные потенциальные преимущества. Развитые страны и развивающиеся страны, должны быть прямо заинтересованы в поддержке дальнейших исследований, направленных на то, чтобы биотехнология могла полностью реализовать свой потенциал.

Биотехнология помогает окружающей среде. Позволяя фермерам уменьшить количество пестицидов и гербицидов, биотехнологические продукты первого поколения привели к уменьшению их использования в сельскохозяйственной практике, а будущие продукты биотехнологий должны принести еще больше преимуществ. Уменьшение пестицидной и гербицидного нагрузки означает меньший риск токсического загрязнения почв и грунтовых вод. Кроме того, гербициды, применяемые в сочетании с генетически модифицированными растениями, часто более безопасны для окружающей среды, чем гербициды предыдущего поколения, на смену которым они приходят. Культуры, выведенные методами биоинженерии, также способствуют широкому применению безотвальной обработки почвы, что приводит к уменьшению потерь плодородия почвы.

Огромный потенциал биотехнология имеет в борьбе с голодом. Развитие биотехнологий предлагает значительные потенциальные преимущества для развивающихся стран, где более миллиарда жителей планеты живут в бедности и страдают от хронического голода. Из-за роста урожайности и вывода культур, устойчивых к болезням и засухе, биотехнология может уменьшить недостаток пищи для населения планеты, которое по состоянию к 2025 году составит более 8000000000 человек, что на 30% больше чем сегодня. Ученые создают сельскохозяйственные культуры с новыми свойствами, которые помогают им выживать в неблагоприятных условиях засухи и наводнений.

Биотехнология помогает бороться с болезнями. Развивая и улучшая медицину, она дает новые инструменты в борьбе с ними. Биотехнология дала медицинские методы лечения кардиологических болезней, склероза, гемофилии, гепатита, и СПИДа. Сейчас создаются биотехнологические продукты питания, которые сделают дешевле и доступнее для беднейшей части населения планеты жизненно необходимые витамины и вакцины.

Предостережения относительно применения

Объемы изъятия биопродукции из биосферы достигли 70%, а живая материя функционирует на оптимальном уровне, когда по продукции биосферы изымается не более 15%. Экосистемы и биосфера в целом все больше теряют способность к саморегуляции и самоподдержки. В конце концов это придает круговорота веществ на земном шаре качественно нового и непредсказуемого характера. Стабильность функционирования биосферы оказалась под угрозой. Загрязнением и деградацией охвачены все геосферы Земли. Воздух, вода и почва стали терять свои основные природные свойства.

Биотехнология в области здравоохранения

Биотехнология может принести значительные преимущества в сферу здравоохранения. Увеличивая питательную ценность пищи, биотехнология может использоваться для улучшения качества питания. Например, сейчас создаются сорта риса и кукурузы с повышенным содержанием белков. В будущем потребители смогут воспользоваться маслом с уменьшенным содержанием жиров, которая будет получено из генетически модифицированных кукурузы, сои, рапса. Кроме того, генетическая инженерия может использоваться для производства продуктов питания с повышенным уровнем витамина А, который поможет решить проблему слепоты в развивающихся странах. Генетическая инженерия также предлагает другие преимущества для здоровья, ведь сегодня созданы методы, которые позволяют удалять определенные аллергенные белки из продуктов питания или избегать их преждевременной порчи.

Биотехнология в медицине

В медицине биотехнологические приемы и методы играют главную роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый класс фармацевтических соединений, получаемых микробиологическим синтезом. Создан генно-инженерные штаммы кишечной палочки, дрожжей, культивируемых клеток млекопитающих и насекомых, используемые для получения гормона роста, инсулина и интерферона человека, различных ферментов и противовирусных вакцин. Изменяя нуклеотидную последовательность в генах, кодирующих соответствующие белки, оптимизируют структуру ферментов, гормонов и антигенов (так называемая белковая инженерия). Важнейшим открытием стала разработанная 1975 Г. Келером и С. Мильштейном техника использования гибридом для получения моноклональных антител желаемой специфичности. Моноклональные антитела используют как уникальные реагенты, для диагностики и лечения различных заболеваний.

Биотехнологии в сельском хозяйстве

Биотехнологии в сельском хозяйстве облегчает традиционные методы селекции растений и животных и разрабатывает новые технологии, позволяющие повысить эффективность сельского хозяйства. Во многих странах методами генетической и клеточной инженерии созданы высокопроизводительные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений. Разработанная техника оздоровления растений от накопленных инфекций, что особенно важно для культур, которые размножаются вегетативно (картофель и др.). В качестве одной из важнейших проблем биотехнологии во всем мире, исследования возможности управления процессом азотфиксации, возможность введения генов азотфиксации в геном полезных растений, а также процессом фотосинтеза. Исследуется улучшения аминокислотного состава растительных белков. Разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от болезней и вредителей, бактериальные удобрения. Генно-инженерные вакцины, сыворотки, моноклональные антитела используют для профилактики, диагностики и терапии основных болезней в животноводстве. В создании эффективных технологий племенного дела применяют генно-инженерный гормон роста, а также технику трансплантации и микроманипуляций на эмбрионах животных. Для повышения продуктивности животных используют кормовой белок, полученный микробиологическим синтезом.

Биотехнология в производстве

Биотехнологические процессы с использованием микроорганизмов и ферментов на современном техническом уровне широко применяются в пищевой промышленности. Промышленное выращивание микроорганизмов, растительных и животных клеток используют для получения многих ценных соединений — ферментов, гормонов, аминокислот, витаминов, антибиотиков, метанола, органических кислот (уксусной, лимонной, молочной) и др. С помощью микроорганизмов осуществляют биотрансформацию одних органических соединений в другие (например, сорбита во фруктозу). Широкое применение в различных производствах получили иммобилизованные ферменты. Для выделения биологически активных веществ из сложных смесей используют моноклональные антитела. А. С. Спириным в 1985-1988 был разработан принципы бесклеточного синтеза белка, когда вместо клеток применяются специальные биореакторы, содержащие необходимый набор очищенных клеточных компонентов. Этот метод позволяет получать разные типы белков и может быть эффективным в производстве. Многие промышленных технологий заменяются технологиями, используют ферменты и микроорганизмы. Такие биотехнологические методы переработки сельскохозяйственных, промышленных и бытовых отходов, очистки и использования сточных вод для получения биогаза и удобрений. В ряде стран с помощью микроорганизмов получают этиловый спирт, используют в качестве топлива для автомобилей (в Бразилии, где топливный спирт широко применяется, его получают из сахарного тростника и других растений). На способности различных бактерий переносить металлы в растворимые соединения или накапливать их в себе основанный извлечение многих металлов из бедных руд или сточных вод.

Бионанотехнологии

Разработка биологических материалов и специальных процессов, где используются наноматериалы или нанотехнологии. Включая молекулярные моторы, биоматериалы, технологию манипуляции с отдельными молекулами, технологию биочипов.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»