Графики скорости пути перемещения и координаты. Как найти среднюю скорость по графику

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

V cp = v

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

V x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

S = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Х = x 0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Х = x 0 - vt

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

V = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Tg α = v

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

Tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

Tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Х = х 0

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда a x = a, v x = v. Следовательно,

На рисунке 6.3 изображен график зависимости v(t).

1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at 2 /2. (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения s x от времени. В данном случае проекция ускорения на ось x положительна, поэтому s x = l, a x = a. Таким образом, из формулы (2) следует:

s x = a x t 2 /2. (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда s x < 0. А путь отрицательным быть не может!

4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?


Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

v x = v 0x + a x t, (4)

где v 0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v 0x > 0, a x > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости v x (t) при v 0x > 0, a x > 0.

5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

s x = v 0x + a x t 2 /2. (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения s x соотношением

s x = x – x 0 ,

где x 0 - начальная координата тела. Следовательно,

x = x 0 + s x , (6)

Из формул (5), (6) получаем:

x = x 0 + v 0x t + a x t 2 /2. (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t 2 .
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v 0 , конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

Подставим это выражение в формулу (2) для пути:

l = at 2 /2 = a/2(v/a) 2 = v 2 /2a. (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь l т = v 0 2 /2a, где v 0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v 0 и путь, пройденный при разгоне с места до скорости v 0 с тем же по модулю ускорением a, одинаковы.

9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с 2 . Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с 2 . Сравните найденные вами значения тормозного пути с длиной классной комнаты.

10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v 2 – v 0 2)/2a, если скорость тела увеличивается;
б) l = (v 0 2 – v 2)/2a, если скорость тела уменьшается.


11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

s x = (v x 2 – v 0x 2)/2ax (10)

12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?


Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости v x (t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t 1 и t 2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t 1 и t 2 составьте систему двух уравнений с двумя неизвестными v 0 и a.
в) Решив эту систему уравнений, выразите v 0 и a через b, t 1 и t 2 .
г) Выразите весь пройденный шариком путь l через b, t 1 и t 2 .
д) Найдите числовые значения v 0 , a и l при b = 30 см, t 1 = 1с, t 2 = 2 с.
е) Постройте графики зависимости v x (t), s x (t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой - движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () - физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где - начальная скорость тела, - скорость тела в момент времени t .

В проекции на ось Ox :

где - проекция начальной скорости на ось Ox , - проекция скорости тела на ось Ox в момент времени t .

Знаки проекций зависят от направления векторов и оси Ox .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox :

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени - прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox .

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где - изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox - время - это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции: (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение Равнозамедленное движение
(3.10) (3.12)
(3.11) (3.13)
(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше - время от начала движения до пересечения с осью времени (время до остановки), - путь, который прошло тело от начала движения до пересечения с осью времени, - время, прошедшее с момента пересечения оси времени до данного момента t , - путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t , - модуль вектора перемещения за все время движения, L - путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Тогда за 1-ую секунду тело проходит путь:

За 2-ую секунду:

За 3-ю секунду:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox .

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют - «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy .

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy .

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

где A , B и то есть постоянные величины.

Интеграл:

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «"», в физике производная по времени обозначается «∙» над функцией.

Скорость:

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

Ускорение:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

то есть, скорость можно найти как интеграл по времени от ускорения.

Радиус-вектор:

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий - значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.


§ 14. ГРАФИКИ ПУТИ И СКОРОСТИ

Определение пути по графику скорости

В физике и математике используют три способа подачи информации о связи между различными величинами: а) в виде формулы, например, s =v ∙ t; б) в виде таблицы; в) в виде графика (рисунка).

Зависимость скорости от времени v(t) - график скорости изображается с помощью двух взаимно перпендикулярных осей. Вдоль горизонтальной оси будем откладывать время, а по вертикальной - скорость (рис. 14.1). Надо заблаговременно продумать масштаб, чтобы рисунок не был слишком большим или слишком малым. У конца оси указывают букву, которая является обозначением численно равна площади заштрихованного прямоугольника abcd величины, что на ней откладывается. Возле буквы указывают единицу измерения этой величины. Например, возле оси времени указывают t, с, а возле оси скорости v(t), мес. Выбирают масштаб и наносят деления на каждую ось.

Рис. 14.1. График скорости тела, равномерно движущегося со скоростью 3 м/сек. Путь, пройденный телом со 2-й по 6-ю секунды,

Изображение равномерного движения таблицей и графиками

Рассмотрим равномерное движение тела со скоростью 3 м/с, то есть числовое значение скорости будет постоянным в течение всего времени движения. Сокращенно это записывают так: v = const (константа, то есть постоянная величина). В нашем примере она равна трем: v = 3 . Вы уже знаете, что информацию о зависимости одной величины от другой можно подавать в виде таблицы (массива, как говорят в информатике):

Из таблицы видно, что во все указанные моменты времени скорость равна 3 м/сек. Пусть масштаб оси времени 2 кл. = 1 с, а оси скорости 2 кл. = 1 м/сек. График зависимости скорости от времени (сокращенно говорят: график скорости) приведены на рисунке 14.1.

С помощью графика скорости можно найти путь, который тело проходит за определенный интервал времени. Для этого нужно сопоставить два факта: с одной стороны, путь можно найти, умножив скорость на время, а с другой - произведение скорости на время, как видно из рисунка - это площадь прямоугольника со сторонами t и v.

Например, со второй до шестой секунды тело двигалось в течение четырех секунд и прошло 3 м/с ∙ 4 с = 12 м. Это площадь прямоугольника аbсd, длина которого равна 4 с (отрезок ad вдоль оси времени) и высота 3 м/с (отрезок аb вдоль вертикали). Площадь, правда, несколько необычная, поскольку измеряется не в м 2 , а в г. Следовательно, площадь под графиком скорости численно равна пройденному пути.

График пути

График пути s(t) можно изобразить, используя формулу s = v ∙ t, то есть в нашем случае, когда скорость составляет 3 м/с: s = 3 ∙ t. Построим таблицу:

Вдоль горизонтальной оси снова откладывают время (t, с), а вдоль вертикальной - путь. Возле оси пути пишем: s, м (рис. 14.2).

Определение скорости по графику пути

Изобразим теперь на одном рисунке два графика, которые будут соответствовать движениям со скоростями 3 м/с (прямая 2) и 6 м/с (прямая 1) (рис. 14.3). Видно, что чем больше скорость тела, тем круче линия точек графика.

Существует и обратная задача: имея график движения, нужно определить скорость и записать уравнение пути (рис. 14.3). Рассмотрим прямую 2. От начала движения и до момента времени t = 2 с тело прошло путь s = 6 м. Следовательно, его скорость: v = = 3 . Выбор другого интервала времени ничего не изменит, например, на момент t = 4 с путь, пройденный телом от начала движения, составляет s = 12 м. Отношение опять равна 3 м/сек. Но так и должно быть, поскольку тело движется с постоянной скоростью. Поэтому проще всего было бы выбрать интервал времени 1 с, ведь путь, пройденный телом за одну секунду, численно равна скорости. Путь, пройденный первым телом (график 1) за 1 с, равна 6 м, то есть скорость первого тела равна 6 м/сек. Соответствующие зависимости пути от времени в этих двух тел будут:

s 1 = 6 ∙ t и s 2 =3 ∙ t.

Рис. 14.2. График пути. Остальные точек, кроме шести, указанных в таблице, поставленные в задании, что движение упровдож всего времени был равномерным

Рис. 14.3. График пути в случае разных скоростей

Подведем итоги

В физике используют три способа подачи информации: графический, аналитический (по формулам) и таблицей (массивом). Третий способ более приспособлен для решения на компьютере.

Путь численно равен площади под графиком скорости.

Чем круче график s(t), тем больше скорость.

Творческие задания

14.1. Начертите графики скорости и пути, когда скорость тела равномерно увеличивается, или уменьшается.

Упражнение 14

1. Как определяют путь на графике скорости?

2. Можно ли записать формулу для зависимости пути от времени, имея график s(t)?

3. Или изменится угол наклона графика пути, если масштаб на осях уменьшить вдвое?

4. Почему график пути равномерного движения изображается прямой?

5. Какое из тел (рис. 14.4) имеет наибольшую скорость?

6. Назовите три способа представления информации о движении тела, а также (по вашему мнению) их преимущества и недостатки.

7. Как можно определить путь по графику скорости?

8. а) Чем отличаются графики пути для тел, движущихся с разными скоростями? б) Что в них общего?

9. По графику (рис. 14.1) найдите путь, пройденный телом от начала первой до конца третьей секунды.

10. Какой путь прошло тело (рис. 14.2) за: а) две секунды; б) четыре секунды? в) Укажите, где начинается третья секунда движения, и где она заканчивается.

11. Изобразите на графиках скорости и пути движение со скоростью а) 4 м/с; б) 2 м/сек.

12. Запишите формулу зависимости пути от времени для движений, изображенных на рис. 14.3.

13. а) Найдите скорости тел по графикам (рис. 14.4); б) запишите соответствующие уравнения пути и скорости. в) Постройте графики скорости этих тел.

14. Постройте графики пути и скорости для тел, движения которых заданы уравнениями: s 1 = 5 ∙ t и s 2 = 6 ∙ t. Чему равны скорости тел?

15. По графикам (рис. 14.5) определите: а) скорости тела; б) пути, пройденные ими за первые 5 сек. в) Запишите уравнение пути и постройте соответствующие графики для всех трех движений.

16. Начертите график пути для движения первого тела относительно второго (рис. 14.3).

Тема урока : «Графическое представление движения»

Цель урока:

Научить учащихся решать задачи графическим методом. Добиться понимания функциональной зависимости между величинами и научить выражать эту зависимость графическим методом.

Тип урока:

Комбинированный урок.

Проверка

знаний:

Самостоятельная работа № 2 «Прямолинейное равномерное движение» - 12 минут.

План изложения нового материала:

1. Графики зависимости проекции перемещения от времени.

2. Графики зависимости проекции скорости от времени.

3. Графики зависимости координаты от времени.

4. Графики пути.

5. Выполнение графических упражнений.

В каждый данный момент времени движущаяся точка может находиться только в одном определенном положении на траектории. Поэтому ее удаление от начала координат есть некоторая функция времени t . Зависимость между переменными s и t выражается уравнением s(t ). Траекторию движения точки можно задать аналитически, т. е. в виде уравнений: s = 2 t + 3, s = At или графически.

Графики - «международный язык». Овладение ими имеет большое образовательное значение. Поэтому необходимо научить учащихся не только строить графики, но и анализировать их, читать, понимать какую информацию о движении тела можно получить из графика.

Рассмотрим, как строятся графики на конкретном примере.

Пример: По одной и той же прямой дороге едут велосипедист и автомобиль. Направим ось х вдоль дороги. Пусть велосипедист едет в положительном направлении оси х со скоростью 25 км/ч, а автомобиль - в отрицательном направлении со скоростью 50 км/ч, причем в начальный момент времени велосипедист находился в точке с координатой 25км, а автомобиль - в точке с координатой 100 км.

Графиком sx (t ) = vxt является прямая, проходящая через начало координат. Если vx > 0, то sx возрастает со временем а если vx < 0, то то sx убывает со временем

Наклон графика тем больше, - чем больше модуль скорости.

1. Графики зависимости проекции перемещения от времени. График функции sx ( t ) называется графиком движения .

2. Графики зависимости проекции скорости от времени.

Наряду с графиками движения часто используются графики скорости vx (t ). При изучении равномерного прямолинейного движения необходимо научить учащихся строить графики скорости и пользоваться ими при решении задач.

График функции vx (t ) - прямая, параллельная оси t . Если vx > О, эта прямая проходит выше оси t , а если vx < О, то ниже.

Площадь фигуры, ограниченной графиком vx (t ) и осью t , численно равна модулю перемещения.

3. Графики зависимости координаты от времени. Наряду с графиком скорости очень важны графики координаты движущегося тела, так как они дают возможность определить положение движущегося тела в любой момент времени. График x (t ) = х0 + sx (t ) отличается от графика sx (t ) только сдвигом на х0 по оси ординат. Точка пересечения двух графиков соответствует моменту, когда координаты тел равны, т. е. эта точка определяет момент времени и координату встречи двух тел.

По графикам x (t ) видно, что велосипедист и автомобиль в течение первого часа двигались навстречу друг другу, а затем - удалялись друг от друга.

4. Графики пути. Полезно обратить внимание учащихся на отличие графика координаты (перемещения) от графика пути. Только при прямолинейном движении в одном направлении графики пути и координаты совпадают. Если направление движения изменяется, то эти графики уже не будут одинаковыми.

Обратите внимание: хотя велосипедист и автомобиль движутся в противоположных направлениях, в обоих случаях путь возрастает со временем.

ВОПРОСЫ НА ЗАКРЕПЛЕНИЕ МАТЕРИАЛА:

1. Что представляет собой график зависимости проекции скорости от времени? В чём его особенности? Приведите примеры.

2. Что представляет собой график зависимости модуля скорости от времени? В чём его особенности? Приведите примеры.

3. Что представляет собой график зависимости координаты от времени от времени? В чём его особенности? Приведите примеры.

4. Что представляет собой график зависимости проекции перемещения от времени? В чём его особенности? Приведите примеры.

5. Что представляет собой график зависимости пути от времени? В чём его особенности? Приведите примеры.

6. Графики x (t ) для двух тел параллельны. Что можно сказать о скорости этих тел?

7. Графики l (t ) для двух тел пересекаются. Обозначает ли точка пересечения графиков момент встречи этих тел?

ЗАДАЧИ, РЕШАЕМЫЕ НА УРОКЕ:

1. Опишите движения, графики которых приведены на рисунке. Запишите для каждого движения формулу зависимости x (t ). Постройте график зависимости vx (t ).

2. По графикам скорости (см. рисунок) запишите формулы и постройте графики зависимости sx (t ) и l (t ).

3. По приведенным на рисунке графикам скорости запишите формулы и постройте графики зависимости sx (t ) и x (t ), если начальная координата тела х0=5м.

САМОСТОЯТЕЛЬНАЯ РАБОТА

Начальный уровень

1. На рисунке даны графики зависимости координаты движущегося тела от времени. Какое из трех тел движется с большей скоростью?

A. Первое. Б. Второе. B. Третье.

2. На рисунке даны графики зависимости проекции скорости от времени. Какое из двух тел за 4 с прошло больший путь?

A. Первое. Б. Второе. B. Оба тела прошли одинаковый путь.

Средний уровень

1. Зависимость проекции скорости от времени движущегося тела задана формулой vx = 5. Опишите это движение, постройте график vx (t). По графику определите модуль перемещения через 2 с после начала движения.

2. Зависимость проекции скорости от времени движущегося тела задана формулой vx =10. Опишите это движение, постройте график vx (t ). По графику определите модуль перемещения через 3 с после начала движения.

Достаточный уровень

1. Опишите движения, графики которых приведены на рисунке. Запишите для каждого движения уравнение зависимости х (t ).

2. По графикам проекции скорости запишите уравнения движения и постройте графики зависимости sx (t) .

Высокий уровень

1. Вдоль оси ОХ движутся два тела, координаты которых изменяются согласно формулам: x 1 = 3 + 2 t и х2 = 6 + t . Как движутся эти тела? В какой момент времени тела встретятся? Найдите координату точки встречи. Задачу решить аналитически и графически.

2. Два мотоциклиста движутся прямолинейно и равномерно. Скорость движения первого мотоциклиста больше скорости движения второго. Чем отличаются графики их: а) путей? б) скоростей? Задачу решить графически.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»