How to find the evenness and oddness of a function. Even and odd functions

Subscribe
Join the “koon.ru” community!
In contact with:

even, if for all \(x\) from its domain of definition the following is true: \(f(-x)=f(x)\) .

The graph of an even function is symmetrical about the \(y\) axis:

Example: the function \(f(x)=x^2+\cos x\) is even, because \(f(-x)=(-x)^2+\cos((-x))=x^2+\cos x=f(x)\).

\(\blacktriangleright\) The function \(f(x)\) is called odd, if for all \(x\) from its domain of definition the following is true: \(f(-x)=-f(x)\) .

The graph of an odd function is symmetrical about the origin:

Example: the function \(f(x)=x^3+x\) is odd because \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\).

\(\blacktriangleright\) Functions that are neither even nor odd are called functions general view. Such a function can always be uniquely represented as the sum of an even and an odd function.

For example, the function \(f(x)=x^2-x\) is the sum of the even function \(f_1=x^2\) and the odd \(f_2=-x\) .

\(\blacktriangleright\) Some properties:

1) The product and quotient of two functions of the same parity is an even function.

2) The product and quotient of two functions of different parities - odd function.

3) Sum and difference of even functions - even function.

4) Sum and difference of odd functions - odd function.

5) If \(f(x)\) is an even function, then the equation \(f(x)=c \ (c\in \mathbb(R)\) ) has a unique root if and only when \(x =0\) .

6) If \(f(x)\) is an even or odd function, and the equation \(f(x)=0\) has a root \(x=b\), then this equation will necessarily have a second root \(x =-b\) .

\(\blacktriangleright\) The function \(f(x)\) is called periodic on \(X\) if for some number \(T\ne 0\) the following holds: \(f(x)=f(x+T) \) , where \(x, x+T\in X\) . The smallest \(T\) for which this equality is satisfied is called the main (main) period of the function.

U periodic function any number of the form \(nT\) , where \(n\in \mathbb(Z)\) will also be a period.

Example: any trigonometric function is periodic;
for the functions \(f(x)=\sin x\) and \(f(x)=\cos x\) the main period is equal to \(2\pi\), for the functions \(f(x)=\mathrm( tg)\,x\) and \(f(x)=\mathrm(ctg)\,x\) the main period is equal to \(\pi\) .

In order to construct a graph of a periodic function, you can plot its graph on any segment of length \(T\) (main period); then the graph of the entire function is completed by shifting the constructed part by an integer number of periods to the right and left:

\(\blacktriangleright\) The domain \(D(f)\) of the function \(f(x)\) is a set consisting of all values ​​of the argument \(x\) for which the function makes sense (is defined).

Example: the function \(f(x)=\sqrt x+1\) has a domain of definition: \(x\in

Task 1 #6364

Task level: Equal to the Unified State Exam

At what values ​​of the parameter \(a\) does the equation

has a single solution?

Note that since \(x^2\) and \(\cos x\) are even functions, if the equation has a root \(x_0\) , it will also have a root \(-x_0\) .
Indeed, let \(x_0\) be a root, that is, the equality \(2x_0^2+a\mathrm(tg)\,(\cos x_0)+a^2=0\) right. Let's substitute \(-x_0\) : \(2 (-x_0)^2+a\mathrm(tg)\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm(tg)\,(\cos x_0)+a ^2=0\).

Thus, if \(x_0\ne 0\) , then the equation will already have at least two roots. Therefore, \(x_0=0\) . Then:

We received two values ​​for the parameter \(a\) . Note that we used the fact that \(x=0\) is exactly the root of the original equation. But we never used the fact that he is the only one. Therefore, you need to substitute the resulting values ​​of the parameter \(a\) into the original equation and check for which specific \(a\) the root \(x=0\) will really be unique.

1) If \(a=0\) , then the equation will take the form \(2x^2=0\) . Obviously, this equation has only one root \(x=0\) . Therefore, the value \(a=0\) suits us.

2) If \(a=-\mathrm(tg)\,1\) , then the equation will take the form \ Let's rewrite the equation in the form \ Because \(-1\leqslant \cos x\leqslant 1\), That \(-\mathrm(tg)\,1\leqslant \mathrm(tg)\,(\cos x)\leqslant \mathrm(tg)\,1\). Consequently, the values ​​of the right side of the equation (*) belong to the segment \([-\mathrm(tg)^2\,1; \mathrm(tg)^2\,1]\).

Since \(x^2\geqslant 0\) , then the left side of the equation (*) is greater than or equal to \(0+ \mathrm(tg)^2\,1\) .

Thus, equality (*) can only be true when both sides of the equation are equal to \(\mathrm(tg)^2\,1\) . And this means that \[\begin(cases) 2x^2+\mathrm(tg)^2\,1=\mathrm(tg)^2\,1 \\ \mathrm(tg)\,1\cdot \mathrm(tg)\ ,(\cos x)=\mathrm(tg)^2\,1 \end(cases) \quad\Leftrightarrow\quad \begin(cases) x=0\\ \mathrm(tg)\,(\cos x) =\mathrm(tg)\,1 \end(cases)\quad\Leftrightarrow\quad x=0\] Therefore, the value \(a=-\mathrm(tg)\,1\) suits us.

Answer:

\(a\in \(-\mathrm(tg)\,1;0\)\)

Task 2 #3923

Task level: Equal to the Unified State Exam

Find all values ​​of the parameter \(a\) , for each of which the graph of the function \

symmetrical about the origin.

If the graph of a function is symmetrical with respect to the origin, then such a function is odd, that is, \(f(-x)=-f(x)\) holds for any \(x\) from the domain of definition of the function. Thus, it is required to find those parameter values ​​for which \(f(-x)=-f(x).\)

\[\begin(aligned) &3\mathrm(tg)\,\left(-\dfrac(ax)5\right)+2\sin \dfrac(8\pi a+3x)4= -\left(3\ mathrm(tg)\,\left(\dfrac(ax)5\right)+2\sin \dfrac(8\pi a-3x)4\right)\quad \Rightarrow\quad -3\mathrm(tg)\ ,\dfrac(ax)5+2\sin \dfrac(8\pi a+3x)4= -\left(3\mathrm(tg)\,\left(\dfrac(ax)5\right)+2\ sin \dfrac(8\pi a-3x)4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac(8\pi a+3x)4+\sin \dfrac(8\pi a- 3x)4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac(8\pi a+3x)4+\dfrac(8\pi a-3x)4\right)\cdot \cos \dfrac12 \left(\dfrac(8\pi a+3x)4-\dfrac(8\pi a-3x)4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \ frac34 x=0 \end(aligned)\]

The last equation must be satisfied for all \(x\) from the domain of \(f(x)\), therefore, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb(Z)\).

Answer:

\(\dfrac n2, n\in\mathbb(Z)\)

Task 3 #3069

Task level: Equal to the Unified State Exam

Find all values ​​of the parameter \(a\) , for each of which the equation \ has 4 solutions, where \(f\) is an even periodic function with period \(T=\dfrac(16)3\) defined on the entire number line , and \(f(x)=ax^2\) for \(0\leqslant x\leqslant \dfrac83.\)

(Task from subscribers)

Since \(f(x)\) is an even function, its graph is symmetrical about the ordinate axis, therefore, when \(-\dfrac83\leqslant x\leqslant 0\)\(f(x)=ax^2\) . Thus, when \(-\dfrac83\leqslant x\leqslant \dfrac83\), and this is a segment of length \(\dfrac(16)3\) , function \(f(x)=ax^2\) .

1) Let \(a>0\) . Then the graph of the function \(f(x)\) will look like this:


Then, in order for the equation to have 4 solutions, it is necessary that the graph \(g(x)=|a+2|\cdot \sqrtx\) pass through the point \(A\) :


Hence, \[\dfrac(64)9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &9(a+2)=32a\\ &9(a +2)=-32a\end(aligned)\end(gathered)\right. \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &a=\dfrac(18)(23)\\ &a=-\dfrac(18)(41) \end(aligned) \end( gathered)\right.\] Since \(a>0\) , then \(a=\dfrac(18)(23)\) is suitable.

2) Let \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


It is necessary that the graph \(g(x)\) passes through the point \(B\) : \[\dfrac(64)9a=|a+2|\cdot \sqrt(-8) \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &a=\dfrac(18)(23 )\\ &a=-\dfrac(18)(41) \end(aligned) \end(gathered)\right.\] Since \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) The case when \(a=0\) is not suitable, since then \(f(x)=0\) for all \(x\) , \(g(x)=2\sqrtx\) and the equation will have only 1 root.

Answer:

\(a\in \left\(-\dfrac(18)(41);\dfrac(18)(23)\right\)\)

Task 4 #3072

Task level: Equal to the Unified State Exam

Find all values ​​of \(a\) , for each of which the equation \

has at least one root.

(Task from subscribers)

Let's rewrite the equation in the form \ and consider two functions: \(g(x)=7\sqrt(2x^2+49)\) and \(f(x)=3|x-7a|-6|x|-a^2+7a\ ) .
The function \(g(x)\) is even and has a minimum point \(x=0\) (and \(g(0)=49\) ).
The function \(f(x)\) for \(x>0\) is decreasing, and for \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Indeed, when \(x>0\) the second module will open positively (\(|x|=x\) ), therefore, regardless of how the first module will open, \(f(x)\) will be equal to \( kx+A\) , where \(A\) is the expression of \(a\) and \(k\) is equal to either \(-9\) or \(-3\) . When \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Let's find the value of \(f\) at the maximum point: \

In order for the equation to have at least one solution, it is necessary that the graphs of the functions \(f\) and \(g\) have at least one intersection point. Therefore, you need: \ \\]

Answer:

\(a\in \(-7\)\cup\)

Task 5 #3912

Task level: Equal to the Unified State Exam

Find all values ​​of the parameter \(a\) , for each of which the equation \

has six different solutions.

Let's make the replacement \((\sqrt2)^(x^3-3x^2+4)=t\) , \(t>0\) . Then the equation will take the form \ We will gradually write out the conditions under which the original equation will have six solutions.
Note that the quadratic equation \((*)\) can have a maximum of two solutions. Any cubic equation \(Ax^3+Bx^2+Cx+D=0\) can have no more than three solutions. Therefore, if the equation \((*)\) has two different solutions (positive!, since \(t\) must be greater than zero) \(t_1\) and \(t_2\) , then, by making the reverse substitution, we we get: \[\left[\begin(gathered)\begin(aligned) &(\sqrt2)^(x^3-3x^2+4)=t_1\\ &(\sqrt2)^(x^3-3x^2 +4)=t_2\end(aligned)\end(gathered)\right.\] Since any positive number can be represented as \(\sqrt2\) to some extent, for example, \(t_1=(\sqrt2)^(\log_(\sqrt2) t_1)\), then the first equation of the set will be rewritten in the form \ As we have already said, any cubic equation has no more than three solutions, therefore, each equation in the set will have no more than three solutions. This means that the entire set will have no more than six solutions.
This means that for the original equation to have six solutions, the quadratic equation \((*)\) must have two different solutions, and each resulting cubic equation (from the set) must have three different solutions (and not a single solution of one equation should coincide with any -by the decision of the second!)
Obviously, if the quadratic equation \((*)\) has one solution, then we will not get six solutions to the original equation.

Thus, the solution plan becomes clear. Let's write down the conditions that must be met point by point.

1) For the equation \((*)\) to have two different solutions, its discriminant must be positive: \

2) It is also necessary that both roots be positive (since \(t>0\) ). If the product of two roots is positive and their sum is positive, then the roots themselves will be positive. Therefore, you need: \[\begin(cases) 12-a>0\\-(a-10)>0\end(cases)\quad\Leftrightarrow\quad a<10\]

Thus, we have already provided ourselves with two different positive roots \(t_1\) and \(t_2\) .

3) Let's look at this equation \ For what \(t\) will it have three different solutions?
Consider the function \(f(x)=x^3-3x^2+4\) .
Can be factorized: \ Therefore, its zeros are: \(x=-1;2\) .
If we find the derivative \(f"(x)=3x^2-6x\) , then we get two extremum points \(x_(max)=0, x_(min)=2\) .
Therefore, the graph looks like this:


We see that any horizontal line \(y=k\) , where \(0 \(x^3-3x^2+4=\log_(\sqrt2) t\) had three different solutions, it is necessary that \(0<\log_ {\sqrt2}t<4\) .
Thus, you need: \[\begin(cases) 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Let's also immediately note that if the numbers \(t_1\) and \(t_2\) are different, then the numbers \(\log_(\sqrt2)t_1\) and \(\log_(\sqrt2)t_2\) will be different, which means the equations \(x^3-3x^2+4=\log_(\sqrt2) t_1\) And \(x^3-3x^2+4=\log_(\sqrt2) t_2\) will have different roots.
The system \((**)\) can be rewritten as follows: \[\begin(cases) 1

Thus, we have determined that both roots of the equation \((*)\) must lie in the interval \((1;4)\) . How to write this condition?
We will not write down the roots explicitly.
Consider the function \(g(t)=t^2+(a-10)t+12-a\) . Its graph is a parabola with upward branches, which has two points of intersection with the x-axis (we wrote down this condition in paragraph 1)). What should its graph look like so that the points of intersection with the x-axis are in the interval \((1;4)\)? So:


Firstly, the values ​​\(g(1)\) and \(g(4)\) of the function at points \(1\) and \(4\) must be positive, and secondly, the vertex of the parabola \(t_0\ ) must also be in the interval \((1;4)\) . Therefore, we can write the system: \[\begin(cases) 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) always has at least one root \(x=0\) . This means that to fulfill the conditions of the problem it is necessary that the equation \

had four different roots, different from zero, representing, together with \(x=0\), an arithmetic progression.

Note that the function \(y=25x^4+25(a-1)x^2-4(a-7)\) is even, which means that if \(x_0\) is the root of the equation \((*)\ ) , then \(-x_0\) will also be its root. Then it is necessary that the roots of this equation be numbers ordered in ascending order: \(-2d, -d, d, 2d\) (then \(d>0\)). It is then that these five numbers will form an arithmetic progression (with the difference \(d\)).

For these roots to be the numbers \(-2d, -d, d, 2d\) , it is necessary that the numbers \(d^(\,2), 4d^(\,2)\) be the roots of the equation \(25t^2 +25(a-1)t-4(a-7)=0\) . Then, according to Vieta’s theorem:

Let's rewrite the equation in the form \ and consider two functions: \(g(x)=20a-a^2-2^(x^2+2)\) and \(f(x)=13|x|-2|5x+12a|\) .
The function \(g(x)\) has a maximum point \(x=0\) (and \(g_(\text(top))=g(0)=-a^2+20a-4\)):
\(g"(x)=-2^(x^2+2)\cdot \ln 2\cdot 2x\). Zero derivative: \(x=0\) . When \(x<0\) имеем: \(g">0\) , for \(x>0\) : \(g"<0\) .
The function \(f(x)\) for \(x>0\) is increasing, and for \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Indeed, when \(x>0\) the first module will open positively (\(|x|=x\)), therefore, regardless of how the second module will open, \(f(x)\) will be equal to \( kx+A\) , where \(A\) is the expression of \(a\) , and \(k\) is equal to either \(13-10=3\) or \(13+10=23\) . When \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Let's find the value of \(f\) at the minimum point: \

In order for the equation to have at least one solution, it is necessary that the graphs of the functions \(f\) and \(g\) have at least one intersection point. Therefore, you need: \ Solving this set of systems, we get the answer: \\]

Answer:

\(a\in \(-2\)\cup\)

Converting graphs.

Verbal description of the function.

Graphic method.

The graphical method of specifying a function is the most visual and is often used in technology. In mathematical analysis, the graphical method of specifying functions is used as an illustration.

Function graph f is the set of all points (x;y) of the coordinate plane, where y=f(x), and x “runs through” the entire domain of definition of this function.

A subset of the coordinate plane is a graph of a function if it has no more than one common point with any straight line parallel to the Oy axis.

Example. Are the figures shown below graphs of functions?

The advantage of a graphic task is its clarity. You can immediately see how the function behaves, where it increases and where it decreases. From the graph you can immediately find out some important characteristics of the function.

In general, analytical and graphical methods of defining a function go hand in hand. Working with the formula helps to build a graph. And the graph often suggests solutions that you wouldn’t even notice in the formula.

Almost any student knows the three ways to define a function that we just looked at.

Let's try to answer the question: "Are there other ways to define a function?"

There is such a way.

The function can be quite unambiguously specified in words.

For example, the function y=2x can be specified by the following verbal description: each real value of the argument x is associated with its double value. The rule is established, the function is specified.

Moreover, you can verbally specify a function that is extremely difficult, if not impossible, to define using a formula.

For example: each value of the natural argument x is associated with the sum of the digits that make up the value of x. For example, if x=3, then y=3. If x=257, then y=2+5+7=14. And so on. It is problematic to write this down in a formula. But the sign is easy to make.

The method of verbal description is a rather rarely used method. But sometimes it does.

If there is a law of one-to-one correspondence between x and y, then there is a function. What law, in what form it is expressed - a formula, a tablet, a graph, words - does not change the essence of the matter.

Let us consider functions whose domains of definition are symmetrical with respect to the origin, i.e. for anyone X from the domain of definition number (- X) also belongs to the domain of definition. Among these functions are even and odd.

Definition. The function f is called even, if for any X from its domain of definition

Example. Consider the function

It is even. Let's check it out.



For anyone X equalities are satisfied

Thus, both conditions are met, which means the function is even. Below is a graph of this function.

Definition. The function f is called odd, if for any X from its domain of definition

Example. Consider the function

It is odd. Let's check it out.

The domain of definition is the entire numerical axis, which means it is symmetrical about the point (0;0).

For anyone X equalities are satisfied

Thus, both conditions are met, which means the function is odd. Below is a graph of this function.

The graphs shown in the first and third figures are symmetrical about the ordinate axis, and the graphs shown in the second and fourth figures are symmetrical about the origin.

Which of the functions whose graphs are shown in the figures are even and which are odd?

Which were familiar to you to one degree or another. It was also noted there that the stock of function properties will be gradually replenished. Two new properties will be discussed in this section.

Definition 1.

The function y = f(x), x є X, is called even if for any value x from the set X the equality f (-x) = f (x) holds.

Definition 2.

The function y = f(x), x є X, is called odd if for any value x from the set X the equality f (-x) = -f (x) holds.

Prove that y = x 4 is an even function.

Solution. We have: f(x) = x 4, f(-x) = (-x) 4. But(-x) 4 = x 4. This means that for any x the equality f(-x) = f(x) holds, i.e. the function is even.

Similarly, it can be proven that the functions y - x 2, y = x 6, y - x 8 are even.

Prove that y = x 3 ~ an odd function.

Solution. We have: f(x) = x 3, f(-x) = (-x) 3. But (-x) 3 = -x 3. This means that for any x the equality f (-x) = -f (x) holds, i.e. the function is odd.

Similarly, it can be proven that the functions y = x, y = x 5, y = x 7 are odd.

You and I have already been convinced more than once that new terms in mathematics most often have an “earthly” origin, i.e. they can be explained somehow. This is the case with both even and odd functions. See: y - x 3, y = x 5, y = x 7 are odd functions, while y = x 2, y = x 4, y = x 6 are even functions. And in general, for any function of the form y = x" (below we will specifically study these functions), where n is a natural number, we can conclude: if n is an odd number, then the function y = x" is odd; if n is an even number, then the function y = xn is even.

There are also functions that are neither even nor odd. Such, for example, is the function y = 2x + 3. Indeed, f(1) = 5, and f (-1) = 1. As you can see, here, therefore, neither the identity f(-x) = f ( x), nor the identity f(-x) = -f(x).

So, a function can be even, odd, or neither.

The study of whether a given function is even or odd is usually called the study of parity.

Definitions 1 and 2 refer to the values ​​of the function at points x and -x. This assumes that the function is defined at both point x and point -x. This means that point -x belongs to the domain of definition of the function simultaneously with point x. If a numerical set X, together with each of its elements x, also contains the opposite element -x, then X is called a symmetric set. Let's say (-2, 2), [-5, 5], (-oo, +oo) are symmetric sets, while: let x 1a;b, A x 2a;b .

Return

×
Join the “koon.ru” community!
In contact with:
I am already subscribed to the community “koon.ru”