Вероятность выпадения монеты в серии бросков. Бросание монеты

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Продолжаю тему, начатую здесь -
Вообще, спорить о том, работает теория вероятности или не работает, может ли выпасть 20 раз подряд одна и та же сторона монетки или не может - дело неблагодарное.
Сразу приходит на ум история:

...Спорили два схоласта, как обычно напористо, во всеоружии ученых средств: есть ли у крота глаза? Их диспут долго слушал садовник, наконкц не выдержал, подошел и предложил: "Зачем же спорить, господа? Вы лишь прикажите, и я мигом доставлю вам крота. Вы и увидите, есть ли у него глаза". На эту инициативу схоласты ответили единодушным отказом. "Пошел вон отсюда! Нам не нужен настоящий крот! Мы спорим в принципе!" ...

И все же, сегодня хочется именно ПОСПОРИТЬ о том - "есть у крота глаза или же их нет? "... :-)

Но прежде чем спорить, ответьте СНАЧАЛА на простой вопрос:

И только ПОСЛЕ ЭТОГО - заглядывайте под кат! ;-)


Так вот, обычно, вместо спора, я предлагаю оппоненту проверить "теорию вероятности" НА ПРАКТИКЕ , используя обчную монетку...
Просто возьмите обычную монету и начните ее поддбрасывать, тщательно записывая в тетрадь результаты своего эксперимента.

Только подкидывайте монетку серьезно и честно (вы же это для себя будете делать!) - досчтаточно высоко и что б по-настоящему хаотично вертелась. Поподкидывайте монетку и посмотрите: случится ли такое чудо, чтобы монетка Ваша 20 раз ПОДРЯД(!!!) упала одной и той же сторной ... ;-)

Боюсь, кидать монетку вам придется до старости (причем совсем не в том смысле, как в фильме Тома Стоппарда "Розенкранц и Гильденстерн мертвы"). :-)

А математика - да, математика на нашей стороне!
Ведь если случайное событие повторилось несколько раз, то с каждым разом вероятность его повторения обязана падать, просто потому, что решка один раз — вероятность 0.5, решка дважды подряд — 0.5*0.5=0.25, трижды — 0.5^3=0.125, десять раз подряд — 0.510=0.00098, а одиннадцать повторений подряд могут выпасть только с вероятностью 0.00049, и т.д.

Кто не согласен - представьте, что вы пришли в казино и у вас есть две разных игры:

1. Один раз подкинуть монетку и угадать орел или решка. Если 1 раз выпало то, что Вы загадали, получаете выигрыш...
2. Нужно загадать "орел" или "решка" и 20 раз подкинуть монетку. Если 20 раз ПОДРЯД выпадет то, что Вы загадали, то выигрыш Ваш...

Так в какую игру Вы будете играть?
- Конечно же, в первую!
- А почему?
- Да потому, что в первой игре Ваш шанс выиграть = 50%, тогда как во второй он равен лишь 0.5^20...

И пожалуйста, не надо заводить аццкую песнь о том, что рулетка/монетка не имеет памяти и что, де - вероятность выпадения любого значения при броске одинакова, при любом количестве бросков! Тех, кто не понимает разницы между одиночным событием и цепью событий - сразу же отправляю проверять "теорию вероятности" НА ПРАКТИКЕ , используя обчную монетку... ;-)

В теории вероятностей существует группа задач, для решения которых достаточно знать классическое определение вероятности и наглядно представлять предлагаемую ситуацию. Такими задачами является большинство задач с подбрасыванием монеты и задачи с бросанием игрального кубика. Напомним классическое определение вероятности.

Вероятность события А (объективная возможность наступления события в числовом выражении) равна отношению числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов: Р(А)=m/n , где:

  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Число возможных элементарных исходов испытания и число благоприятных исходов в рассматриваемых задачах удобно определять перебором всех возможных вариантов (комбинаций) и непосредственным подсчетом.

Из таблицы видим, что число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел выпадает 1 раз} соответствуют варианту №2 и №3 эксперимента, таких вариантов два m=2.
Находим вероятность события Р(А)=m/n=2/4=0,5

Задача 2 . В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу.

Решение . Поскольку монету бросают дважды, то, как и в задаче 1, число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел не выпадет ни разу} соответствуют варианту №4 эксперимента (см. таблицу в задаче 1). Такой вариант один, значит m=1.
Находим вероятность события Р(А)=m/n=1/4=0,25

Задача 3 . В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 2 раза.

Решение . Возможные варианты трех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

Из таблицы видим, что число возможных элементарных исходов n=8. Благоприятные исходы события А = {орел выпадает 2 раза} соответствуют вариантам №5, 6 и 7 эксперимента. Таких вариантов три, значит m=3.
Находим вероятность события Р(А)=m/n=3/8=0,375

Задача 4 . В случайном эксперименте симметричную монету бросают четыре раза. Найдите вероятность того, что орёл выпадет ровно 3 раза.

Решение . Возможные варианты четырех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

№ варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок № варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок
1 Орел Орел Орел Орел 9 Решка Орел Решка Орел
2 Орел Решка Решка Решка 10 Орел Решка Орел Решка
3 Решка Орел Решка Решка 11 Орел Решка Решка Орел
4 Решка Решка Орел Решка 12 Орел Орел Орел Решка
5 Решка Решка Решка Орел 13 Решка Орел Орел Орел
6 Орел Орел Решка Решка 14 Орел Решка Орел Орел
7 Решка Орел Орел Решка 15 Орел Орел Решка Орел
8 Решка Решка Орел Орел 16 Решка Решка Решка Решка

Из таблицы видим, что число возможных элементарных исходов n=16. Благоприятные исходы события А = {орел выпадет 3 раза} соответствуют вариантам №12, 13, 14 и 15 эксперимента, значит m=4.
Находим вероятность события Р(А)=m/n=4/16=0,25

Определение вероятности в задачах про игральную кость

Задача 5 . Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет более 3 очков.

Решение . При бросании игрального кубика (правильной кости) может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало более 3 очков} означает, что выпало 4, 5 или 6 точек (очков). Значит число благоприятных исходов m=3.
Вероятность события Р(А)=m/n=3/6=0,5

Задача 6 . Определите вероятность того, что при бросании игрального кубика выпало число очков, не большее 4. Результат округлите до тысячных.

Решение . При бросании игрального кубика может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало не более 4 очков} означает, что выпало 4, 3, 2 или 1 точка (очко). Значит число благоприятных исходов m=4.
Вероятность события Р(А)=m/n=4/6=0,6666…≈0,667

Задача 7 . Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, меньшее 4.

Решение . Так как игральную кость (игральный кубик) бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары (1;1), (1;2), (1;3), (1;4), (1;5), (1;6) и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6


Благоприятные исходы события А = {оба раза выпало число, меньшее 4} (они выделены жирным) подсчитаем и получим m=9.
Находим вероятность события Р(А)=m/n=9/36=0,25

Задача 8 . Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Ответ округлите до тысячных.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Благоприятные исходы события А = {наибольшее из двух выпавших чисел равно 5} (они выделены жирным) подсчитаем и получим m=8.
Находим вероятность события Р(А)=m/n=8/36=0,2222…≈0,222

Задача 9 . Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Фраза «хотя бы раз выпало число, меньшее 4» означает «число меньшее 4 выпало один раз или два раза», тогда число благоприятных исходов события А = {хотя бы раз выпало число, меньшее 4} (они выделены жирным) m=27.
Находим вероятность события Р(А)=m/n=27/36=0,75

Теория вероятностей на ЕГЭ по математике

Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.

Вы выиграли в лотерею - случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте - тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут - и это тоже можно считать счастливой случайностью…

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.

Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?

Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.

Орел и решка - два возможных исхода испытания.

Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна 1/2.

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.

Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.

Вероятность выпадения тройки равна 1/6 (один благоприятный исход из шести возможных).

Вероятность четверки - тоже 1/6

А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Очевидно, что вероятность не может быть больше единицы.

Вот другой пример. В пакете 25 яблок, из них 8 - красные, остальные - зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна 8/25, а зеленое - 17/25.

Вероятность достать красное или зеленое яблоко равна 8/25 + 17/25 = 1.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.

1. В фирме такси в данный момент свободно 15 машин: 2 красных, 9 желтых и 4 зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.

Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых - девять, и значит, вероятность приезда именно желтой машины равна 9/15, то есть 0,6.

2. (Демо-вариант 2012) В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Очевидно, вероятность вытащить билет без вопроса о грибах равна 23/25, то есть 0,92.

3. Родительский комитет закупил 30 пазлов для подарков детям на окончание учебного года, из них 12 с картинами известных художников и 18 с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.

Задача решается аналогично.

Ответ: 0,6.

4. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные - из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая .

Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен 5/20 (поскольку из Китая - 5 спортсменок). Ответ: 0,25.

5. Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовет число кратное пяти?

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Каждое пятое число из данного множества делится на 5. Значит, вероятность равна 1/5.

6. Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.

1, 3, 5 - нечетные числа; 2, 4, 6 - четные. Вероятность нечетного числа очков равна 1/2.

Ответ: 0,5.

7. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.

Как вы думаете, сколько здесь возможных исходов?

Бросаем монету. У этого действия два возможных исхода: орел и решка

Две монеты - уже четыре исхода: орел орел

орел решка

решка орел

решка решка

Три монеты? Правильно, 8 исходов, так как 2 2 2 = 2³ = 8.

Вот они: орел орел орел

орел орел решка

орел решка орел

решка орел орел

орел решка решка

решка орел решка

решка решка орел

решка решка решка

Два орла и одна решка выпадают в трех случаях из восьми.

Ответ: 3/8.

8. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Бросаем первую кость - шесть исходов. И для каждого из них возможны еще шесть - когда мы бросаем вторую кость.

Получаем, что у данного действия - бросания двух игральных костей - всего 36 возможных исходов, так как 6² = 36.

А теперь - благоприятные исходы:

Вероятность выпадения восьми очков равна 5/36 ≈ 0,14.

9. Стрелок попадает в цель с вероятностью 0,9. Найдите вероятность того, что он попадёт в цель четыре раза выстрела подряд.

Если вероятность попадания равна 0,9 - следовательно, вероятность промаха 0,1. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна 0,9 0,9 = 0,81. А вероятность четырех попаданий подряд равна

0,9 0,9 0,9 0,9 = 0,6561.

Вероятность: логика перебора.

Задача В10 про монеты из диагностической работы 7 декабря многим показалась сложной. Вот ее условие:

В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах .

Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?

Можно, конечно, обозначить пятирублевые монеты цифрами 1, а десятирублевые цифрами 2 - а затем посчитать, сколькими способами можно выбрать три элемента из набора

Однако есть более простое решение:

Кодируем монеты числами: 1, 2 (это пятирублёвые), 3, 4, 5, 6 (это десятирублёвые). Условие задачи можно теперь сформулировать так:

Есть шесть фишек с номерами от 1 до 6. Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами 1 и 2 не оказались вместе?

Давайте запишем, что у нас в первом кармане.

Для этого составим все возможные комбинации из набора Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях 1 2 3 и 2 3 1 - это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:

135, 136, 145, 146, 156.

Все! Мы перебрали все возможные комбинации, начинающиеся на 1. Продолжаем:

234, 235, 236, 245, 246, 256,

Всего 20 возможных исходов.

У нас есть условие - фишки с номерами 1 и 2 не должны оказаться вместе. Это значит, например, что комбинация 356 нам не подходит - она означает, что фишки 1 и 2 обе оказались в не в первом, а во втором кармане. Благоприятные для нас исходы - такие, где есть либо только 1, либо только 2. Вот они:

134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 - всего 12 благоприятных исходов.

Тогда искомая вероятность равна 12/20.

Начнем с обсуждения такого простейшего опыта, как бросание монеты, имея при этом в виду ввести естественным образом некоторые важные понятия теории вероятностей, опираясь на очевидные интуитивные соображения.

Любая теория имеет дело с идеализированными ситуациями. Например, подброшенная монета в реальном опыте может закатиться в щель, упасть на ребро или стать добычей пролетающей мимо вороны. Однако шансы таких событий крайне невелики, если пол не содержит щелей, монета тонкая, а двери и форточки закрыты для ворон. Но обо всем этом и подобном нужно договориться на берегу – прежде чем отправляться в плавание. Другими словами, нам следуем сформулировать математическую модель опыта.

Предположим также, что монета “правильная”, подразумевая под этим ее симметричность, однородность сплава, из которого она изготовлена и т.д. Тем самым мы исключаем из рассмотрения, например, такие монеты, у которых центр тяжести смещен к одной из сторон.

Если монета “правильная”, то никто не может знать, какой стороной она упадет. Однако из эксперимента известно, что если монету подбрасывать n раз и “орел” выпадает m раз, то отношение m / n приблизительно равно ½. Чем больше n , тем ближе это отношение к ½. В этом случае го­ворят, что апостериорная вероятность (или просто вероятность) выпадения “орла” равна ½.

Интуитивно понятно, что при большом количестве бросаний числа выпадений “орла” и “решки” должны быть приблизительно одинаковыми. Это означает, что априорная вероятность (т.е. предсказанная вероятность) выпадения “орла” равна ½, подразумевая под вероятнос­тью события наиболее правдоподобную долю исходов с данным результатом при повторении наблюдений в эквивалентных условиях.

В более общем случае, когда в эксперименте возможны n равноправных исходов, m из которых благоприятствуют наступлению некоторого события, априорная вероятность Р(А) события А определяется как отношение m / n :

Говоря об эксперименте, мы обычно имеем в виду воображаемый, а не реальный опыт. В этом смысле число m представляет собой наилучшую оценку на­иболее вероятного числа “успехов” в результате таких воображаемых наблюдений. В любой реальной серии испытаний, состоящих из подбрасываний монеты, число выпадений “орла” скорее всего не будет в точности равняться половине подбрасываний. Однако оценка 50 из 100 (или 200 из 400) представляется наиболее правдоподобной, поскольку у нас нет оснований полагать, что число выпадений “орла” при подбрасывании “правильной” монеты дол­жно быть больше или меньше числа выпадений “решки”.

Апостериорная и априорная вероятности должны совпадать друг с другом. В противном случае следует заключить, что какие-то из событий ошибочно рассматривались как равно­вероятные.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»