Interesting experience for children. Interesting chemical experiments that can be easily repeated at home

Subscribe
Join the “koon.ru” community!
In contact with:

If you want to awaken an interest in science in your children, but the teacher at school cannot cope with this (and in reality he simply does not care), then you do not have to hit your child over the head with a book or hire tutors. You, as a responsible parent, can spend interesting and colorful scientific experiments right at home using improvised means.

A little imagination, and entertainment for the children who came to your child’s birthday party is ready.

1. Walking on chicken eggs

Even though the eggs look very fragile, their shells are stronger than they look. If the pressure on the shell is distributed evenly, it can withstand very heavy loads. This can be used to show children a fun trick involving walking on eggs, and also explain to them how it works.

Although we assume that the experiment will be successful, it doesn’t hurt to be on the safe side, so it’s better to cover the floor with oilcloth or lay out garbage bags. Place a couple of trays of eggs on top, making sure that there are no defective or cracked ones. Also make sure that the eggs are positioned equally, otherwise the load will not be distributed evenly.

Now you can carefully stand on the eggs barefoot, trying to distribute your weight evenly. The same principle is used in walking on nails or glass, but this should not be repeated with children. Don't repeat it at all.

2. Non-Newtonian fluid

Most liquids on the planet practically do not change their viscosity when the force that is applied to them changes. However, there are liquids that become almost solid when the force increases, and they are called non-Newtonian. You can make them right at home from available materials. Show this experience to your child and he will be happy.

To make a non-Newtonian liquid, pour a glass of starch into a deep bowl and fill it with water in a 1:1 ratio. You can add food coloring for beauty. Start stirring it all slowly until the mixture turns into a homogeneous mass.

If you slowly scoop up such liquid with your hand, it will simply flow through your fingers. But as soon as you apply force to it at speed or hit it sharply, it immediately becomes hard. This will be a great toy for your child to use for the next few hours.

3. Bouncing coin

A very interesting experience, as well as a trick if you want to convince others of your paranormal abilities. For this experiment at home we will need regular bottle, as well as a coin, which is slightly larger in diameter than the neck.

Cool the bottle in the refrigerator, or better yet, in freezer. After this, moisten its neck with water and place a coin on top. You can put your hands on the bottle for effect, warming it. The air inside the bottle will begin to expand and escape through the neck, throwing the coin into the air.

4. Volcano at home

The combination of baking soda and vinegar is a win-win if you're trying to impress kids. Just make a small volcano out of plasticine or clay on a plate, and pour a few teaspoons of soda into its hole, pour in some warm water and add red food coloring for decoration. After this, pour into the mouth not a large number of vinegar and watch the reaction.

5. Lava Falls

A very effective and simple scientific experiment that allows you to demonstrate to children the principle of interaction of liquids with different weights and density.
Take a tall, narrow container (a flower vase or just plastic bottle). Pour several glasses of water and a glass into the vessel vegetable oil. Add bright food coloring to make the experiment more visual and prepare a tablespoon of salt.

At first, the oil will float on the surface of the vessel because it has a lower density. Begin to slowly pour the salt into the vessel. The oil will begin to sink to the bottom, but when it reaches it, the salt will be freed from the viscous liquid, and the oil particles will begin to rise to the top again, like grains of hot lava.

6. Money doesn't burn

This experience is suitable for wealthy people who have nothing left to burn but money. A great trick to surprise children and adults. Of course, there is a risk of failing the performance, so please respect the time limits.

Take any bill (depending on your capabilities) and soak it in a salted solution of alcohol and water in a 1:1 ratio. Make sure that the bill is completely saturated, after which you can remove it from the liquid. Secure the bill in some holder and set it on fire.

Alcohol boils at a fairly low temperature and begins to evaporate much faster than water. Therefore, all the fuel will evaporate before the bill itself catches fire.

7. Experiment with colored milk

For this fun experiment we will need full fat milk, some food coloring different colors and detergent.

Pour the milk into a plate and add a few drops of coloring in different places in the container. Take a drop of detergent on your fingertip or soak a cotton swab and touch the surface of the milk directly in the center of the plate. Watch how the dyes begin to mix effectively.

As you might have guessed, detergent and grease don't mix, and when you touch the surface, a reaction begins that causes the molecules to move.

All children, without exception, love mysterious, enigmatic and unusual phenomena. Most children really like to carry out interesting experiments, some of which without turning to parents or other adults for help.

Experiments you can do with children

Not all experiences are suitable for children. Some of them may pose a danger to the life and health of children, especially preschool age. However, under the control and supervision of parents or other adults, a child can conduct any entertaining experiment - the main thing is to carefully monitor compliance necessary requirements security.

All scientific experiments for children are extremely useful. They allow young inventors to visually familiarize themselves with the properties various substances and objects, chemical compounds and much more, understand the causes of certain phenomena and acquire valuable practical experience, which can be applied in later life. In addition, some such experiments can be shown as magic tricks, thanks to which the child will be able to gain authority among his friends and acquaintances.

Experiments with water for children

All people use water very often in everyday life and do not think at all about the fact that it has truly magical and amazing properties. Meanwhile, this liquid can be used incredibly with children. For example, boys and girls can conduct the following experiments at home:


Experiments with fire for children

Special care should be taken with fire, but it can be used to create incredibly interesting experiments for children. Try one of the following experiments with your offspring:



Experiments with salt for children

Entertaining experiments for children, it can also be carried out with bulk substances, for example, salt. The kids will definitely enjoy experiments such as:



Experiments with soda for children

No less spectacular experiments for children can be carried out with baking soda, for example, "Volcano". Place a small plastic bottle on the table and make a volcano out of clay or sand around it. Pour 2 tablespoons of soda into a container, add approximately 50-70 ml of warm water, a few drops of red food coloring, and at the very end - a quarter glass of vinegar. A real volcanic eruption will happen before your eyes, and your child will be delighted.


Other experiments for children with baking soda can be based on the property of this substance to crystallize. To obtain crystals, You can use the same method as in the case of salt. To do this you need to prepare a thick soda solution, in which the bulk substance no longer dissolves, and then place a metal wire or other object there and leave it for several days in a warm place. The result will not take long to arrive.


Experiments with balloons for children

Often experiences and experiments for children are related to various properties balloons, such as:



Experiments with eggs for children

Some interesting experiments with children can be done using chicken eggs, for example:



Experiments with lemon for children

Anything can be used to conduct experiments. Interesting experiments with lemon also deserve special attention, for example:



Experiments with paints for children

All kids love to draw, but it will be even more interesting for them to conduct entertaining experiments with paints. Try one of the following experiments:



Entertaining chemical experiments will prepare children to study chemistry at school. Most of the experiments carried out at home are not dangerous, educational, and effective. Some experiments are provided with a written description, which will help explain to the child the essence of the processes taking place and awaken interest in chemical science.

When conducting chemical experiments at home, the following safety rules must be observed:

Simple experiments for little ones

Chemical experiments for young children, carried out at home, do not require any special substances.

Colored bubbles

For one such experiment you will need:

  • fruit juice;
  • sunflower oil;
  • 2 effervescent tablets;
  • decorative transparent container.

Stages of experience:


You can create bubbles with a stronger shell yourself by mixing water and dishwashing detergent in a 2:1 combination + a little granulated sugar. If you add glycerin instead of sugar, the bubbles will reach very large sizes. Adding food coloring to the soap solution will create colored glowing bubbles.

Night light

At home using simple substances you can make a night light. To do this you will need:

  • tomato;
  • syringe;
  • sulfur heads from matches;
  • hydrogen peroxide;
  • bleach.

Sequencing:

  1. Place sulfur in a bowl, add bleach, and leave for a while.
  2. Draw the mixture into a syringe and prick the tomato from all sides.
  3. To start the chemical reaction, hydrogen peroxide must be introduced. This is also done with a syringe in the place where the petiole was located.
  4. Being in dark room, the tomato will emit soft light.

Carefully! You can no longer eat this tomato.

Sizzling balls

You can make your own sizzling balls for children's bathing.

During work, hands must be protected with gloves.

Sequencing:


Floating worms

For the next experiment you will need:

  • 3 jelly worm candies without sugar sprinkles;
  • soda;
  • acetic acid;
  • water;
  • glass glasses.

Stages of work:

  1. The first glass is half filled with acetic acid.
  2. Pour warm water into the second glass and dilute 60 g of soda.
  3. Place the candies in the solution and leave for 15 minutes.
  4. Remove the candies from the soda solution and place them in a glass with the essence.
  5. The surface of the candy will immediately become covered with bubbles; they will continuously rise to the surface and fall to the bottom of the glass. This happens because soda first fills the pores of the candy, then, reacting with vinegar, it releases carbon dioxide, which lifts the candy up.
  6. When they come into contact with air, the bubbles burst, the candy sinks to the bottom and again becomes covered with bubbles and rises.

Experiments for older children

Chemical experiments for children at home can be more complex and interesting.

Volcano

So, any schoolchild can simulate a volcanic eruption at home:


Colored foam

To experience creating colored foam you will need:


Sequencing:

  1. The glasses are placed on a tray, half filled with soda, and dyes are added.
  2. Mix vinegar with detergent, pour into glasses.
  3. Colored foam will come out of each glass. You can pour the vinegar mixture into glasses several times until all the soda is released.

Malachite egg

Coloring experiment chicken egg in malachite color long lasting but interesting:

  1. To do this, remove the contents from the egg: make 2 holes and blow it out.
  2. For weight, a little plasticine is placed into an empty egg.
  3. Dissolve a spoon in 0.5 liters of water copper sulfate(This can be purchased at a hardware store).
  4. Dip the egg into the solution; the shell should be completely immersed in the solution.
  5. After a few days, gas bubbles will appear.
  6. After a week, the shell will acquire a light blue-green color.
  7. After a month, the color of the shell will become rich malachite.

Fireworks

Making fireworks with your own hands:

  1. Magnesium shavings are very finely ground.
  2. Sulfur match heads are separated from the wood. You will need 2-3 boxes of matches. Crushed magnesium is mixed with sulfur powder.
  3. Take a metal tube and seal one of the holes tightly with plaster.
  4. Pour a mixture of magnesium and sulfur into the tube. The mixture should not occupy more than half of the tube.
  5. The tube is wrapped several times with foil. A wick is inserted into the free hole.
  6. Such fireworks can only be exploded in deserted places.

Coloring water blue

For coloring colorless liquids Blue colour needed:

  • alcohol solution of iodine;
  • hydrogen peroxide;
  • vitamin C tablet;
  • starch;
  • glass glasses.

Performing the experiment step by step:

  1. A vitamin C tablet is ground into powder and dissolved in 55 ml of warm water.
  2. Pour 5 ml of the resulting solution into a glass, add 5 ml of iodine and 55 ml of heated water. The iodine should be discolored.
  3. Separately mix 18 ml of hydrogen peroxide, 5 g of starch, 55 ml of water.
  4. The iodine solution is poured back and forth into the starch solution several times.
  5. The colorless liquid will turn dark blue. Iodine loses color when it reacts with vitamin C. Starch turns blue when mixed with iodine.

Simple experiments on the properties of metals

Chemical experiments for children at home can be carried out with metals.

For simple experiments will need:

  • fire;
  • pieces of various metals;
  • foil;
  • copper sulfate;
  • ammonia;
  • acid.

To experiment with copper wire, a small piece of metal is twisted into a spiral and heated strongly over a fire. Then immediately lower it into a container with ammonia. The reaction will occur instantly: the metal will begin to hiss, and the black coating formed when exposed to fire will disappear. The copper wire will shine again. It is better to do the experiment several times, then the color of the ammonia will turn blue.



For the next experiment you will need solid iodine, crushed aluminum, warm water. Iodine is mixed with aluminum in equal parts. Water is added to the mixture. The powder begins to burn, releasing purple smoke.

Another experiment will involve:

  • chrome-plated paper clip;
  • galvanized steel nail;
  • pure steel screw;
  • acetic acid;
  • 3 test tubes.

Stages of experience:

  1. Metal objects are placed in test tubes, filled with acid, and left for observation. In the first days, hydrogen evolution is observed.
  2. On the 4th day, the acid in test tubes with metal objects with the coating it begins to turn red. In a test tube with a steel screw, the acid becomes Orange color, a precipitate appears.
  3. After 2 weeks in a test tube with a paper clip, the acid turns red, but only in upper layers. Where the paperclip is located, the acid is colorless. After removing the paperclip, you can see that it appearance not changed.
  4. Acid in a test tube with a nail is colored with smooth transition red to pale yellow. The nail hasn't changed.
  5. In the 3rd test tube, layered coloration of the liquid and sediment are also observed. The screw turned black, the upper microlayers of the metal collapsed.

Conclusion: unprotected iron is susceptible to corrosion.

For the next experiment, you need to prepare a blue solution of copper sulfate (dissolve several crystals in water, stir). Place non-rusty nails in a test tube and fill with solution. After some time, the solution will turn green and the nails will turn copper-colored. This happened because iron displaced copper from the liquid, and the displaced copper settled on metal objects.

To conduct the “Hydrogen Glove” experiment you will need:


Sequencing:

  1. The saline solution and copper sulfate solution are simultaneously poured into the flask. When mixed, a sea-green liquid is obtained.
  2. Make a lump of foil and place it in the hole of the flask. Immediately, hydrogen begins to rapidly evolve.
  3. Put it on the neck rubber glove, it instantly fills with gas.
  4. When the glove comes into contact with fire, it ruptures and the gas ignites. The liquid in the vessel gradually acquires a dirty gray tint.

The most spectacular chemical experiments for children

Chemical experiments for children at home are very diverse, and some are very impressive.

Colored foam

To make a large amount of colored foam you need:


Bleached green

For the experiment on bleaching greenery you will need:

  • brilliant green solution;
  • glasses;
  • bleach;
  • ammonia;
  • vinegar;
  • hydrogen peroxide;
  • pills activated carbon.

Sequencing:

  1. Water is poured into 6 glasses, a drop of greenery is added to each.
  2. The 1st glass is set aside for comparison, bleach is added to 2, ammonia to 3, peroxide to 4.
  3. Ammonia instantly discolors the liquid.
  4. Small bubbles appeared in the glass with bleach, and the solution became colorless.
  5. Hydrogen peroxide will discolor the liquid gradually, over about 15 minutes.
  6. Adding vinegar to the solution will make the liquid brighter.
  7. After 30 min. the liquid becomes lighter.
  8. Activated carbon brightens the solution.

Pharaoh snake

Conducting an experiment called “Pharaoh’s Snake” will require:


Stages of experience:

  1. The sand is soaked in alcohol and formed into a cone.
  2. A recess is made at the top.
  3. Mix soda with sugar and pour into the well.
  4. The soaked sand is set on fire.
  5. The mixture will turn into black balls, soda and sugar will begin to decompose.
  6. After burning the alcohol, a snake will appear, consisting of the products of burning sugar.

Pharaoh's snake made from sugar and soda:

Fire without a spark

To create a fire without a spark, you need potassium permanganate, glycerin and paper.

Sequencing:

  1. Place approximately 1.5 g of potassium permanganate powder in the center of a sheet of paper, cover with the free edge of the sheet.
  2. Apply 3 drops of glycerin to the paper in the place where the powder is located.
  3. After 30 seconds, potassium permanganate will begin to hiss, smoke and produce black foam. The exothermic reaction will heat the paper and it will catch fire.

Fireworks

To make small fireworks at home, you need to choose a small fireproof dish with a long handle.


Sequencing:

  1. On paper sheet you need to pour in a crushed tablet of activated carbon, the same amount of potassium permanganate and the same amount of iron filings.
  2. Fold a piece of paper in half to combine the powders (powders should not be mixed with spoons or spatulas; they may ignite).
  3. Carefully pour into a fireproof container and heat over the burner. After a few seconds. the heated mixture will begin to emit sparks.

Chemistry sets for children

Chemical experiments for children at home will help you carry out special sets of substances and tools.

Experiment kit “Vulcan”

Designed for children over 14 years old, it allows you to independently reproduce the eruption of a small volcano.

Equipment:


To conduct the experiment, you first need to make the volcano itself; sand or gypsum is suitable as a material. When the mountain has frozen, a special powder is poured into the depression and set on fire. The substance begins to burn spectacularly, throwing out sparks, and ash appears.

The advantages of such an experiment include a visual representation of flammable substances. Disadvantages: presence of harmful substances, can only be used once.

Price: 440 rub.

Chemistry set

The kit provides for growing crystals at home.


The set includes:

  • ammonium crystal;
  • dye;
  • polypropylene container;
  • gloves;
  • colored glass base;
  • stirring tool;
  • instructions.

Stages of work:

  • Pour crystalline powder into a container and mix with 150 ml of boiling water.
  • Stir until completely dissolved.
  • The base of the crystal is immersed in the liquid.
  • Cover with a lid for 60 minutes.
  • Add a substance to form a crystal into the cooled water and close the lid.
  • After a day, remove the lid.
  • Wait until the top of the crystal appears above the water.
  • The water is drained, the crystal is removed and dried.

The experiment is very interesting for children and is practically safe, but it will take at least 4 days to complete.

Cost of the set: 350 rub.

Set for chemical experiments “Traffic light”

Set includes:

  • sodium hydroxide;
  • glucose;
  • indigo carmine;
  • 2 measuring cups;
  • gloves.

Sequence of experience:

  1. Glucose (4 tablets) is dissolved in 1 glass using a small amount of boiling water. Add 10 mg sodium hydroxide solution.
  2. A little indigo carmine is dissolved in the 2nd glass.
  3. A solution of glucose and alkali is poured into the resulting blue liquid.
  4. When mixing the solutions, the liquid will turn green (oxygen in the air oxidizes indigo carmine).
  5. Gradually the solution will turn red, then yellow. If the vessel with the yellow solution is shaken, the liquid will turn green again, then red and yellow.

The experiment is spectacular, interesting and safe. The disadvantages include insufficiently detailed instructions.

Set price: 350 rub.

Advantages and disadvantages of home experiments

Experience name Advantages Flaws
Pharaoh snakeAvailability of materials, entertainmentNot safe
Growing CrystalsComplete security, visibilityThe experiment is quite long
VolcanoClearly demonstrates the interaction of substancesLong preparations for the experiment
Experiment on the interaction of metals with various liquidsEffectiveness, safetyRequires a lot of time to carry out
Home fireworksEntertainment and availability of substances usedNot safe

Most chemical home experiments, when carried out correctly, do not harm the child’s health, but it is better to carry them out under adult supervision. All the necessary substances can be found in any kitchen.

Experiments will reveal to children the secrets of the interaction of substances and arouse interest in understanding the world.

Article format: Svetlana Ovsyanikova

Video on the topic: chemical experiments for children

Home miracle laboratory: chemical experiments for children:

My personal experience teaching chemistry showed that a science such as chemistry is very difficult to study without any initial information and practice. Schoolchildren very often neglect this subject. I personally observed how an 8th grade student, when he heard the word “chemistry,” began to wince, as if he had eaten a lemon.

Later it turned out that due to dislike and misunderstanding of the subject, he skipped school secretly from his parents. Certainly, school program is designed in such a way that the teacher must give a lot of theory in the first chemistry lessons. Practice seems to fade into the background precisely at the moment when the student cannot yet independently realize whether he needs this subject in the future. This is primarily due to the laboratory equipment of schools. In big cities, things are currently better with reagents and instruments. As for the province, just like 10 years ago and now, many schools do not have the opportunity to conduct laboratory classes. But the process of studying and becoming interested in chemistry, as well as other natural sciences, usually begins with experiments. And this is no coincidence. Many famous chemists, such as Lomonosov, Mendeleev, Paracelsus, Robert Boyle, Pierre Curie and Marie Sklodowska-Curie (schoolchildren also study all of these researchers in physics lessons) began experimenting from childhood. The great discoveries of these great people were made precisely in home chemical laboratories, since studying chemistry in institutes was available only to people of means.

And, of course, the most important thing is to interest the child and convey to him that chemistry surrounds us everywhere, so the process of studying it can be very exciting. This is where home chemical experiments come to the rescue. By observing such experiments, one can further look for an explanation of why things happen this way and not otherwise. And when a young researcher encounters similar concepts in school lessons, the teacher’s explanations will be more understandable to him, since he will already have his own experience in conducting chemical experiments at home and the knowledge gained.

It is very important to start learning science with common observations and real-life examples that you think will be most successful for your child. Here are some of them. Water is Chemical substance, consisting of two elements, as well as gases dissolved in it. Man also contains water. It is known that where there is no water, there is no life. A person can live without food for about a month, but without water - only a few days.

River sand is nothing more than silicon oxide, and is also the main raw material for glass production.

A person himself does not suspect it and carries out chemical reactions every second. The air we breathe is a mixture of gases - chemicals. During exhalation, another complex substance is released - carbon dioxide. We can say that we ourselves are a chemical laboratory. You can explain to your child that washing hands with soap is also a chemical process of water and soap.

An older child who, for example, has already started studying chemistry at school, can be explained that almost all elements can be found in the human body periodic table D. I. Mendeleev. Not only are all chemical elements present in a living organism, but each of them performs some biological function.

Chemistry also includes medicines, without which many people nowadays cannot live a day.

Plants also contain the chemical chlorophyll, which gives leaves their green color.

Cooking is a complex chemical process. Here is an example of how dough rises when yeast is added.

One of the options for getting a child interested in chemistry is to take an individual outstanding researcher and read the story of his life or watch an educational film about him (films about D.I. Mendeleev, Paracelsus, M.V. Lomonosov, Butlerov are now available).

Many people believe that real chemistry is harmful substances, and experimenting with them is dangerous, especially at home. There are many very exciting experiences that you can do with your child without harming your health. And these home chemical experiments will be no less exciting and instructive than those that come with explosions, acrid odors and clouds of smoke.

Some parents are also afraid to conduct chemical experiments at home because of their complexity or lack of necessary equipment and reagents. It turns out that you can get by with improvised means and those substances that every housewife has in her kitchen. You can buy them at your local hardware store or pharmacy. Test tubes for conducting home chemical experiments can be replaced with bottles of tablets. You can use it to store reagents glass jars, for example, from baby food or mayonnaise.

It is worth remembering that the container with reagents must have a label with the inscription and be tightly closed. Sometimes the test tubes need to be heated. In order not to hold it in your hands when it heats up and not get burned, you can build such a device using a clothespin or a piece of wire.

It is also necessary to allocate several steel and wooden spoons for mixing.

You can make a stand for holding test tubes yourself by drilling through holes in the block.

To filter the resulting substances you will need a paper filter. It is very easy to make according to the diagram given here.

For children who do not yet go to school or are in elementary school, performing chemical experiments at home with their parents will be a kind of game. Most likely, explain some separate laws and such a young researcher will not yet be able to react. However, perhaps it is precisely this empirical method of discovering the surrounding world, nature, man, and plants through experiments that will lay the foundation for the study of natural sciences in the future. You can even organize some kind of competitions in the family to see who has the most successful experience and then demonstrate them at family holidays.

Regardless of your child's age or ability to read and write, I recommend keeping a laboratory journal in which you can record experiments or sketch. A real chemist always writes down a work plan, a list of reagents, sketches the instruments and describes the progress of the work.

When you and your child first begin to study this science of substances and conduct home chemical experiments, the first thing you need to remember is safety.

To do this you need to follow following rules security:

2. It is better to allocate a separate table for conducting chemical experiments at home. If you do not have a separate table at home, then it is better to conduct experiments on a steel or iron tray or pallet.

3. You need to get thin and thick gloves (they are sold at a pharmacy or hardware store).

4. For chemical experiments, it is best to buy a lab coat, but you can also use a thick apron instead of a coat.

5. Laboratory glassware should not be further used for food.

6. In home chemical experiments there should be no cruelty to animals or disruption of the ecological system. Acidic chemical wastes must be neutralized with soda, and alkaline ones with acetic acid.

7. If you want to check the smell of a gas, liquid or reagent, never bring the container directly to your face, but, holding it at some distance, direct the air above the container towards you by waving your hand and at the same time smell the air.

8. Always use small quantities of reagents in home experiments. Avoid leaving reagents in a container without an appropriate inscription (label) on the bottle, from which it should be clear what is in the bottle.

You should start learning chemistry with simple chemical experiments at home, allowing your child to master the basic concepts. A series of experiments 1-3 allow you to get acquainted with the main states of aggregation substances and properties of water. To begin with, you can show your preschooler how sugar and salt dissolve in water, accompanying this with an explanation that water is a universal solvent and is a liquid. Sugar or salt - solids, dissolving in liquid.

Experience No. 1 “Because - without water and neither here nor there”

Water is a liquid chemical substance consisting of two elements as well as gases dissolved in it. Man also contains water. It is known that where there is no water, there is no life. A person can live without food for about a month, and without water - only a few days.

Reagents and equipment: 2 test tubes, soda, citric acid, water

Experiment: Take two test tubes. Pour into them equal amounts of baking soda and citric acid. Then pour water into one of the test tubes and not into the other. In a test tube in which water was poured, carbon dioxide began to be released. In a test tube without water - nothing has changed

Discussion: This experiment explains the fact that without water many reactions and processes in living organisms are impossible, and water also accelerates many chemical reactions. It can be explained to schoolchildren that an exchange reaction occurred, as a result of which carbon dioxide was released.

Experiment No. 2 “What is dissolved in tap water”

Reagents and equipment: transparent glass, tap water

Experiment: Pour into a transparent glass tap water and put it in a warm place for an hour. After an hour, you will see settled bubbles on the walls of the glass.

Discussion: Bubbles are nothing more than gases dissolved in water. IN cold water gases dissolve better. As soon as the water becomes warm, the gases stop dissolving and settle on the walls. Such a home chemical experiment also allows you to introduce your child to the gaseous state of matter.

Experiment No. 3 “What is dissolved in mineral water or water is a universal solvent”

Reagents and equipment: test tube, mineral water, candle, magnifying glass

Experiment: Pour mineral water into a test tube and slowly evaporate it over a candle flame (the experiment can be done on the stove in a saucepan, but the crystals will be less visible). As the water evaporates, small crystals will remain on the walls of the test tube, all of them of different shapes.

Discussion: Crystals are salts dissolved in mineral water. They have different shape and size, since each crystal has its own chemical formula. With a child who has already started studying chemistry at school, you can read the label on mineral water, where its composition is indicated, and write the formulas of the compounds contained in the mineral water.

Experiment No. 4 “Filtering water mixed with sand”

Reagents and equipment: 2 test tubes, funnel, paper filter, water, river sand

Experiment: Pour water into a test tube and add a little river sand there, mix. Then, according to the scheme described above, make a filter out of paper. Insert a dry, clean test tube into the rack. Slowly pour the sand and water mixture through a funnel with a paper filter. The river sand will remain on the filter, and you will get clean water in the test tube.

Discussion: Chemical experiment allows us to show that there are substances that do not dissolve in water, for example, river sand. The experience also introduces one of the methods for purifying mixtures of substances from impurities. Here you can introduce the concepts of pure substances and mixtures, which are given in the 8th grade chemistry textbook. IN in this case the mixture is sand and water, the pure substance is filtrate, river sand is sediment.

The filtration process (described in grade 8) is used here to separate a mixture of water and sand. To diversify the study of this process, you can delve a little deeper into the history of cleaning drinking water.

Filtration processes were used as early as the 8th and 7th centuries BC. in the state of Urartu (now the territory of Armenia) to purify drinking water. Its residents carried out the construction plumbing system using filters. Thick fabric and charcoal. Similar systems of intertwined drainpipes, clay channels equipped with filters were also on the territory of the ancient Nile among the ancient Egyptians, Greeks and Romans. Water was passed through such a filter several times, ultimately many times, ultimately achieving best quality water.

One of the most interesting experiments is growing crystals. The experiment is very visual and gives an idea of ​​many chemical and physical concepts.

Experiment No. 5 “Growing sugar crystals”

Reagents and equipment: two glasses of water; sugar - five glasses; wooden skewers; thin paper; pot; transparent cups; food coloring (the proportions of sugar and water can be reduced).

Experiment: The experiment should begin with preparation sugar syrup. Take a saucepan, pour 2 cups of water and 2.5 cups of sugar into it. Place over medium heat and, stirring, dissolve all the sugar. Pour the remaining 2.5 cups of sugar into the resulting syrup and cook until completely dissolved.

Now let's prepare the crystal seeds - rods. Sprinkle a small amount of sugar on a piece of paper, then dip the stick in the resulting syrup and roll it in sugar.

We take the pieces of paper and poke a hole in the middle with a skewer so that the paper fits tightly to the skewer.

Then pour the hot syrup into transparent glasses (it is important that the glasses are transparent - this way the process of crystal ripening will be more exciting and visual). The syrup must be hot, otherwise the crystals will not grow.

You can make colored sugar crystals. To do this, add a little food coloring to the resulting hot syrup and stir it.

The crystals will grow in different ways, some quickly and some may take longer. At the end of the experiment, the child can eat the resulting candies if he is not allergic to sweets.

If you do not have wooden skewers, then the experiment can be carried out with ordinary threads.

Discussion: A crystal is a solid state of matter. He has a certain form and a certain number of faces due to the arrangement of its atoms. Substances whose atoms are arranged regularly so that they form a regular three-dimensional lattice, called crystalline, are considered crystalline. Row crystals chemical elements and their compounds have remarkable mechanical, electrical, magnetic and optical properties. For example, diamond is a natural crystal and the hardest and rarest mineral. Due to its exceptional hardness, diamond plays a huge role in technology. Diamond saws are used to cut stones. There are three ways to form crystals: crystallization from a melt, from a solution and from the gas phase. An example of crystallization from a melt is the formation of ice from water (after all, water is molten ice). An example of crystallization from a solution in nature is the precipitation of hundreds of millions of tons of salt from sea ​​water. In this case, when growing crystals at home, we are dealing with the most common method of artificial growth - crystallization from solution. Sugar crystals grow from a saturated solution with the slow evaporation of the solvent - water or with a slow decrease in temperature.

The following experiment allows you to obtain at home one of the most useful crystalline products for humans - crystalline iodine. Before conducting the experiment, I advise you to watch the short film “The Life of Wonderful Ideas” with your child. Smart iodine." The film gives an idea of ​​the benefits of iodine and the unusual story of its discovery, which the young researcher will remember for a long time. And it is interesting because the discoverer of iodine was an ordinary cat.

During the Napoleonic Wars, the French scientist Bernard Courtois noticed that the products obtained from the ash of seaweed that washed up on the shores of France contained some substance that corroded iron and copper vessels. But neither Courtois himself nor his assistants knew how to isolate this substance from algae ash. An accident helped speed up the discovery.

At his small saltpeter production plant in Dijon, Courtois planned to conduct several experiments. There were vessels on the table, one of which contained a tincture of seaweed in alcohol, and the other a mixture of sulfuric acid and iron. His favorite cat was sitting on the scientist’s shoulders.

There was a knock on the door, and the frightened cat jumped and ran away, brushing away the flasks on the table with her tail. The vessels broke, the contents were mixed, and a violent chemical reaction suddenly began. When a small cloud of vapors and gases settled, the surprised scientist saw some kind of crystalline coating on objects and debris. Courtois began to investigate it. The crystals of this previously unknown substance were called “iodine”.

So it was opened new element, A domestic cat Bernard Courtois made history.

Experiment No. 6 “Obtaining iodine crystals”

Reagents and equipment: tincture of pharmaceutical iodine, water, glass or cylinder, napkin.

Experiment: Mix water with iodine tincture in the proportion: 10 ml iodine and 10 ml water. And put everything in the refrigerator for 3 hours. During the cooling process, iodine will precipitate at the bottom of the glass. Drain the liquid, remove the iodine precipitate and place it on a napkin. Squeeze with napkins until the iodine begins to crumble.

Discussion: This chemical experiment is called extraction or extraction of one component from another. In this case, water extracts iodine from the alcohol solution. Thus, the young researcher will repeat the experiment of Courtois the cat without smoke and breaking of dishes.

Your child will already learn about the benefits of iodine for disinfecting wounds from the film. Thus, you will show that there is an inextricable connection between chemistry and medicine. However, it turns out that iodine can be used as an indicator or analyzer of the content of other useful substance– starch. The following experiment will introduce the young experimenter to a very special useful chemistry– analytical.

Experiment No. 7 “Iodine-indicator of starch content”

Reagents and equipment: fresh potatoes, pieces of banana, apple, bread, a glass of diluted starch, a glass of diluted iodine, a pipette.

Experiment: We cut the potatoes into two parts and drip diluted iodine on it - the potatoes turn blue. Then drop a few drops of iodine into a glass with diluted starch. The liquid also turns blue.

Using a pipette, drop iodine dissolved in water onto an apple, banana, bread, one at a time.

We observe:

The apple did not turn blue at all. Banana - slightly blue. The bread turned very blue. This part of the experiment shows the presence of starch in various products.

Discussion: Starch reacts with iodine to give a blue color. This property allows us to detect the presence of starch in various products. Thus, iodine is like an indicator or analyzer of starch content.

As you know, starch can be converted into sugar; if you take an unripe apple and drop iodine, it will turn blue, since the apple is not yet ripe. As soon as the apple is ripe, all the starch contained will turn into sugar and the apple, when treated with iodine, will not turn blue at all.

The following experience will be useful for children who have already started studying chemistry at school. It introduces concepts such as chemical reaction, compound reaction, and qualitative reaction.

Experiment No. 8 “Flame coloring or compound reaction”

Reagents and equipment: tweezers, kitchen table salt, alcohol lamp

Experiment: Take with tweezers several large crystals table salt table salt. Let's hold them over the flame of the burner. The flame will turn yellow.

Discussion: This experiment allows us to conduct chemical reaction combustion, which is an example of a compound reaction. Due to the presence of sodium in table salt, during combustion it reacts with oxygen. As a result, a new substance is formed - sodium oxide. The appearance of a yellow flame indicates that the reaction has completed. Such reactions are qualitative reactions to compounds containing sodium, that is, they can be used to determine whether a substance contains sodium or not.

In school physics lessons, teachers always say that physical phenomena everywhere in our lives. Only we often forget about this. Meanwhile, amazing things are nearby! Don't think that you need anything extravagant to organize physical experiments at home. And here's some proof for you ;)

Magnetic pencil

What needs to be prepared?

  • Battery.
  • Thick pencil.
  • Insulated copper wire with a diameter of 0.2–0.3 mm and a length of several meters (the longer, the better).
  • Scotch.

Conducting the experiment

Wind the wire tightly, turn to turn, onto the pencil, not reaching its edges by 1 cm. If one row ends, wind another on top in reverse side. And so on until all the wire runs out. Don’t forget to leave two ends of the wire, 8–10 cm each, free. To prevent the turns from unwinding after winding, secure them with tape. Strip the free ends of the wire and connect them to the battery contacts.

What happened?

It turned out to be a magnet! Try bringing small iron objects to it - a paper clip, a hairpin. They are attracted!

Lord of Water

What needs to be prepared?

  • A plexiglass stick (for example, a student’s ruler or a regular plastic comb).
  • A dry cloth made of silk or wool (for example, a wool sweater).

Conducting the experiment

Open the tap so that a thin stream of water flows. Rub the stick or comb vigorously on the prepared cloth. Quickly bring the stick closer to the stream of water without touching it.

What will happen?

The stream of water will bend in an arc, being attracted to the stick. Try the same thing with two sticks and see what happens.

Top

What needs to be prepared?

  • Paper, needle and eraser.
  • A stick and a dry woolen cloth from previous experience.

Conducting the experiment

You can control more than just water! Cut a strip of paper 1–2 cm wide and 10–15 cm long, bend it along the edges and in the middle, as shown in the picture. Insert the sharp end of the needle into the eraser. Balance the top workpiece on the needle. Prepare a “magic wand”, rub it on a dry cloth and bring it to one of the ends of the paper strip from the side or top without touching it.

What will happen?

The strip will swing up and down like a swing, or spin like a carousel. And if you can cut a butterfly out of thin paper, the experience will be even more interesting.

Ice and fire

(the experiment is carried out on a sunny day)

What needs to be prepared?

  • A small cup with a round bottom.
  • A piece of dry paper.

Conducting the experiment

Pour water into a cup and place it in the freezer. When the water turns to ice, remove the cup and place it in a container of hot water. After some time, the ice will separate from the cup. Now go out onto the balcony, place a piece of paper on the stone floor of the balcony. Use a piece of ice to focus the sun on a piece of paper.

What will happen?

The paper should be charred, because it’s not just ice in your hands anymore... Did you guess that you made a magnifying glass?

Wrong mirror

What needs to be prepared?

  • A transparent jar with a tight-fitting lid.
  • Mirror.

Conducting the experiment

Fill the jar with excess water and close the lid to prevent air bubbles from getting inside. Place the jar with the lid facing up against the mirror. Now you can look in the “mirror”.

Bring your face closer and look inside. There will be a thumbnail image. Now start tilting the jar to the side without lifting it from the mirror.

What will happen?

The reflection of your head in the jar, of course, will also tilt until it turns upside down, and your legs will still not be visible. Lift the can and the reflection will turn over again.

Cocktail with bubbles

What needs to be prepared?

  • A glass with a strong solution of table salt.
  • A battery from a flashlight.
  • Two pieces copper wire approximately 10 cm long.
  • Fine sandpaper.

Conducting the experiment

Clean the ends of the wire with fine sandpaper. Connect one end of the wire to each pole of the battery. Dip the free ends of the wires into a glass with the solution.

What happened?

Bubbles will rise near the lowered ends of the wire.

Lemon battery

What needs to be prepared?

  • Lemon, thoroughly washed and wiped dry.
  • Two pieces of insulated copper wire approximately 0.2–0.5 mm thick and 10 cm long.
  • Steel paper clip.
  • A light bulb from a flashlight.

Conducting the experiment

Strip the opposite ends of both wires at a distance of 2–3 cm. Insert a paper clip into the lemon and screw the end of one of the wires to it. Insert the end of the second wire into the lemon, 1–1.5 cm from the paperclip. To do this, first pierce the lemon in this place with a needle. Take the two free ends of the wires and apply them to the contacts of the light bulb.

What will happen?

The light will light up!

Return

×
Join the “koon.ru” community!
In contact with:
I am already subscribed to the community “koon.ru”