Multiplying a mixed number by a fraction. Rule for multiplying fractions by whole numbers

Subscribe
Join the “koon.ru” community!
In contact with:

§ 87. Addition of fractions.

Adding fractions has many similarities to adding whole numbers. Addition of fractions is an action consisting in the fact that several given numbers (terms) are combined into one number (sum), containing all the units and fractions of the units of the terms.

We will consider three cases sequentially:

1. Adding fractions with same denominators.
2. Addition of fractions with different denominators.
3. Addition of mixed numbers.

1. Addition of fractions with like denominators.

Consider an example: 1/5 + 2/5.

Let's take segment AB (Fig. 17), take it as one and divide it into 5 equal parts, then part AC of this segment will be equal to 1/5 of segment AB, and part of the same segment CD will be equal to 2/5 AB.

From the drawing it is clear that if we take the segment AD, it will be equal to 3/5 AB; but the segment AD is precisely the sum of the segments AC and CD. So we can write:

1 / 5 + 2 / 5 = 3 / 5

Considering these terms and the resulting sum, we see that the numerator of the sum was obtained by adding the numerators of the terms, and the denominator remained unchanged.

From here we get next rule: To add fractions with the same denominators, you need to add their numerators and leave the same denominator.

Let's look at an example:

2. Addition of fractions with different denominators.

Let's add the fractions: 3 / 4 + 3 / 8 First they need to be reduced to the lowest common denominator:

The intermediate link 6/8 + 3/8 could not be written; we've written it here for clarity.

Thus, to add fractions with different denominators, you must first reduce them to the lowest common denominator, add their numerators and label the common denominator.

Let's consider an example (we will write additional factors above the corresponding fractions):

3. Addition of mixed numbers.

Let's add the numbers: 2 3/8 + 3 5/6.

Let’s first bring the fractional parts of our numbers to a common denominator and rewrite them again:

Now we add the integer and fractional parts sequentially:

§ 88. Subtraction of fractions.

Subtracting fractions is defined in the same way as subtracting whole numbers. This is an action with the help of which, given the sum of two terms and one of them, another term is found. Let us consider three cases in succession:

1. Subtracting fractions with like denominators.
2. Subtracting fractions with different denominators.
3. Subtraction of mixed numbers.

1. Subtracting fractions with like denominators.

Let's look at an example:

13 / 15 - 4 / 15

Let's take the segment AB (Fig. 18), take it as a unit and divide it into 15 equal parts; then part AC of this segment will represent 1/15 of AB, and part AD of the same segment will correspond to 13/15 AB. Let us set aside another segment ED equal to 4/15 AB.

We need to subtract the fraction 4/15 from 13/15. In the drawing, this means that segment ED must be subtracted from segment AD. As a result, segment AE will remain, which is 9/15 of segment AB. So we can write:

The example we made shows that the numerator of the difference was obtained by subtracting the numerators, but the denominator remained the same.

Therefore, to subtract fractions with like denominators, you need to subtract the numerator of the subtrahend from the numerator of the minuend and leave the same denominator.

2. Subtracting fractions with different denominators.

Example. 3/4 - 5/8

First, let's reduce these fractions to the lowest common denominator:

The intermediate 6 / 8 - 5 / 8 is written here for clarity, but can be skipped later.

Thus, in order to subtract a fraction from a fraction, you must first reduce them to the lowest common denominator, then subtract the numerator of the minuend from the numerator of the minuend and sign the common denominator under their difference.

Let's look at an example:

3. Subtraction of mixed numbers.

Example. 10 3/4 - 7 2/3.

Let us reduce the fractional parts of the minuend and subtrahend to the lowest common denominator:

We subtracted a whole from a whole and a fraction from a fraction. But there are cases when the fractional part of the subtrahend is greater than the fractional part of the minuend. In such cases, you need to take one unit from the whole part of the minuend, split it into those parts in which the fractional part is expressed, and add it to the fractional part of the minuend. And then the subtraction will be performed in the same way as in the previous example:

§ 89. Multiplication of fractions.

When studying fraction multiplication we will consider next questions:

1. Multiplying a fraction by a whole number.
2. Finding the fraction of a given number.
3. Multiplying a whole number by a fraction.
4. Multiplying a fraction by a fraction.
5. Multiplication of mixed numbers.
6. The concept of interest.
7. Finding the percentage of a given number. Let's consider them sequentially.

1. Multiplying a fraction by a whole number.

Multiplying a fraction by a whole number has the same meaning as multiplying a whole number by an integer. To multiply a fraction (multiplicand) by an integer (factor) means to create a sum of identical terms, in which each term is equal to the multiplicand, and the number of terms is equal to the multiplier.

This means that if you need to multiply 1/9 by 7, then it can be done like this:

We easily obtained the result, since the action was reduced to adding fractions with the same denominators. Hence,

Consideration of this action shows that multiplying a fraction by a whole number is equivalent to increasing this fraction as many times as there are units in the whole number. And since increasing a fraction is achieved either by increasing its numerator

or by reducing its denominator , then we can either multiply the numerator by an integer or divide the denominator by it, if such division is possible.

From here we get the rule:

To multiply a fraction by a whole number, you multiply the numerator by that whole number and leave the denominator the same, or, if possible, divide the denominator by that number, leaving the numerator unchanged.

When multiplying, abbreviations are possible, for example:

2. Finding the fraction of a given number. There are many problems in which you have to find, or calculate, part of a given number. The difference between these problems and others is that they give the number of some objects or units of measurement and you need to find a part of this number, which is also indicated here by a certain fraction. To facilitate understanding, we will first give examples of such problems, and then introduce a method for solving them.

Task 1. I had 60 rubles; I spent 1/3 of this money on buying books. How much did the books cost?

Task 2. The train must travel a distance between cities A and B equal to 300 km. He has already covered 2/3 of this distance. How many kilometers is this?

Task 3. There are 400 houses in the village, 3/4 of them are brick, the rest are wooden. How much in total brick houses?

Here are some of those numerous tasks to find parts of a given number that we encounter. They are usually called problems to find the fraction of a given number.

Solution to problem 1. From 60 rub. I spent 1/3 on books; This means that to find the cost of books you need to divide the number 60 by 3:

Solving problem 2. The point of the problem is that you need to find 2/3 of 300 km. Let's first calculate 1/3 of 300; this is achieved by dividing 300 km by 3:

300: 3 = 100 (that's 1/3 of 300).

To find two-thirds of 300, you need to double the resulting quotient, i.e., multiply by 2:

100 x 2 = 200 (that's 2/3 of 300).

Solving problem 3. Here you need to determine the number of brick houses that make up 3/4 of 400. Let’s first find 1/4 of 400,

400: 4 = 100 (that's 1/4 of 400).

To calculate three quarters of 400, the resulting quotient must be tripled, i.e. multiplied by 3:

100 x 3 = 300 (that's 3/4 of 400).

Based on the solution to these problems, we can derive the following rule:

To find the value of a fraction from a given number, you need to divide this number by the denominator of the fraction and multiply the resulting quotient by its numerator.

3. Multiplying a whole number by a fraction.

Earlier (§ 26) it was established that the multiplication of integers should be understood as the addition of identical terms (5 x 4 = 5+5 +5+5 = 20). In this paragraph (point 1) it was established that multiplying a fraction by an integer means finding the sum of identical terms equal to this fraction.

In both cases, multiplication consisted of finding the sum of identical terms.

Now we move on to multiplying a whole number by a fraction. Here we will encounter, for example, multiplication: 9 2 / 3. It is clear that the previous definition of multiplication does not apply to this case. This is evident from the fact that we cannot replace such multiplication by adding equal numbers.

Because of this, we will have to give a new definition of multiplication, i.e., in other words, answer the question of what should be understood by multiplication by a fraction, how this action should be understood.

The meaning of multiplying a whole number by a fraction is clear from the following definition: multiplying an integer (multiplicand) by a fraction (multiplicand) means finding this fraction of the multiplicand.

Namely, multiplying 9 by 2/3 means finding 2/3 of nine units. In the previous paragraph, such problems were solved; so it’s easy to figure out that we’ll end up with 6.

But now an interesting and important question arises: why are such various actions How is finding the sum of equal numbers and finding the fraction of a number called by the same word “multiplication” in arithmetic?

This happens because the previous action (repeating a number with terms several times) and the new action (finding the fraction of a number) give answers to homogeneous questions. This means that we proceed here from the considerations that homogeneous questions or tasks are solved by the same action.

To understand this, consider the following problem: “1 m of cloth costs 50 rubles. How much will 4 m of such cloth cost?

This problem is solved by multiplying the number of rubles (50) by the number of meters (4), i.e. 50 x 4 = 200 (rubles).

Let’s take the same problem, but in it the amount of cloth will be expressed as a fraction: “1 m of cloth costs 50 rubles. How much will 3/4 m of such cloth cost?”

This problem also needs to be solved by multiplying the number of rubles (50) by the number of meters (3/4).

You can change the numbers in it several more times, without changing the meaning of the problem, for example, take 9/10 m or 2 3/10 m, etc.

Since these problems have the same content and differ only in numbers, we call the actions used in solving them the same word - multiplication.

How do you multiply a whole number by a fraction?

Let's take the numbers encountered in the last problem:

According to the definition, we must find 3/4 of 50. Let's first find 1/4 of 50, and then 3/4.

1/4 of 50 is 50/4;

3/4 of the number 50 is .

Hence.

Let's consider another example: 12 5 / 8 =?

1/8 of the number 12 is 12/8,

5/8 of the number 12 is .

Hence,

From here we get the rule:

To multiply a whole number by a fraction, you need to multiply the whole number by the numerator of the fraction and make this product the numerator, and sign the denominator of this fraction as the denominator.

Let's write this rule using letters:

To make this rule completely clear, it should be remembered that a fraction can be considered as a quotient. Therefore, it is useful to compare the found rule with the rule for multiplying a number by a quotient, which was set out in § 38

It is important to remember that before performing multiplication, you should do (if possible) reductions, For example:

4. Multiplying a fraction by a fraction. Multiplying a fraction by a fraction has the same meaning as multiplying a whole number by a fraction, i.e., when multiplying a fraction by a fraction, you need to find the fraction that is in the factor from the first fraction (the multiplicand).

Namely, multiplying 3/4 by 1/2 (half) means finding half of 3/4.

How do you multiply a fraction by a fraction?

Let's take an example: 3/4 multiplied by 5/7. This means you need to find 5/7 of 3/4. Let's first find 1/7 of 3/4, and then 5/7

1/7 of the number 3/4 will be expressed as follows:

5/7 numbers 3/4 will be expressed as follows:

Thus,

Another example: 5/8 multiplied by 4/9.

1/9 of 5/8 is ,

4/9 of the number 5/8 is .

Thus,

From these examples the following rule can be deduced:

To multiply a fraction by a fraction, you need to multiply the numerator by the numerator, and the denominator by the denominator, and make the first product the numerator, and the second product the denominator of the product.

This is the rule in general view can be written like this:

When multiplying, it is necessary to make (if possible) reductions. Let's look at examples:

5. Multiplication of mixed numbers. Since mixed numbers can easily be replaced by improper fractions, this circumstance is usually used when multiplying mixed numbers. This means that in cases where the multiplicand, or the multiplier, or both factors are expressed as mixed numbers, they are replaced by improper fractions. Let's multiply, for example, mixed numbers: 2 1/2 and 3 1/5. Let's turn each of them into an improper fraction and then multiply the resulting fractions according to the rule for multiplying a fraction by a fraction:

Rule. To multiply mixed numbers, you must first convert them into improper fractions and then multiply them according to the rule for multiplying fractions by fractions.

Note. If one of the factors is an integer, then the multiplication can be performed based on the distribution law as follows:

6. The concept of interest. When solving problems and performing various practical calculations We use all kinds of fractions. But it must be borne in mind that many quantities allow not just any, but natural divisions for them. For example, you can take one hundredth (1/100) of a ruble, it will be a kopeck, two hundredths is 2 kopecks, three hundredths is 3 kopecks. You can take 1/10 of a ruble, it will be "10 kopecks, or a ten-kopeck piece. You can take a quarter of a ruble, i.e. 25 kopecks, half a ruble, i.e. 50 kopecks (fifty kopecks). But they practically don’t take it, for example , 2/7 of a ruble because the ruble is not divided into sevenths.

The unit of weight, i.e. the kilogram, primarily allows for decimal divisions, for example 1/10 kg, or 100 g. And such fractions of a kilogram as 1/6, 1/11, 1/13 are not common.

In general, our (metric) measures are decimal and allow decimal divisions.

However, it should be noted that it is extremely useful and convenient in a wide variety of cases to use the same (uniform) method of subdividing quantities. Many years of experience have shown that such a well-justified division is the “hundredth” division. Let us consider several examples relating to the most diverse areas of human practice.

1. The price of books has decreased by 12/100 of the previous price.

Example. The previous price of the book was 10 rubles. It decreased by 1 ruble. 20 kopecks

2. Savings banks pay depositors 2/100 of the amount deposited for savings during the year.

Example. 500 rubles are deposited in the cash register, the income from this amount for the year is 10 rubles.

3. The number of graduates from one school was 5/100 of the total number of students.

EXAMPLE There were only 1,200 students at the school, of which 60 graduated.

The hundredth part of a number is called a percentage.

The word "percent" is borrowed from Latin and its root "cent" means one hundred. Together with the preposition (pro centum), this word means “for a hundred.” The meaning of such an expression follows from the fact that initially in ancient Rome interest was the money that the debtor paid to the lender “for every hundred.” The word “cent” is heard in such familiar words: centner (one hundred kilograms), centimeter (say centimeter).

For example, instead of saying that over the past month the plant produced 1/100 of all products produced by it was defective, we will say this: over the past month the plant produced one percent of defects. Instead of saying: the plant produced 4/100 more products than the established plan, we will say: the plant exceeded the plan by 4 percent.

The above examples can be expressed differently:

1. The price of books has decreased by 12 percent of the previous price.

2. Savings banks pay depositors 2 percent per year on the amount deposited in savings.

3. The number of graduates from one school was 5 percent of all school students.

To shorten the letter, it is customary to write the % symbol instead of the word “percentage”.

However, you need to remember that in calculations the % sign is usually not written; it can be written in the problem statement and in the final result. When performing calculations, you need to write a fraction with a denominator of 100 instead of a whole number with this symbol.

You need to be able to replace an integer with the indicated icon with a fraction with a denominator of 100:

Conversely, you need to get used to writing an integer with the indicated symbol instead of a fraction with a denominator of 100:

7. Finding the percentage of a given number.

Task 1. The school received 200 cubic meters. m of firewood, with birch firewood accounting for 30%. How much birch firewood was there?

The meaning of this problem is that birch firewood made up only part of the firewood that was delivered to the school, and this part is expressed in the fraction 30/100. This means that we have a task to find a fraction of a number. To solve it, we must multiply 200 by 30/100 (problems of finding the fraction of a number are solved by multiplying the number by the fraction.).

This means that 30% of 200 equals 60.

The fraction 30/100 encountered in this problem can be reduced by 10. It would be possible to do this reduction from the very beginning; the solution to the problem would not have changed.

Task 2. There were 300 children of various ages in the camp. Children 11 years old made up 21%, children 12 years old made up 61% and finally 13 year old children made up 18%. How many children of each age were there in the camp?

In this problem you need to perform three calculations, i.e. sequentially find the number of children 11 years old, then 12 years old and finally 13 years old.

This means that here you will need to find the fraction of the number three times. Let's do it:

1) How many 11-year-old children were there?

2) How many 12-year-old children were there?

3) How many 13-year-old children were there?

After solving the problem, it is useful to add the numbers found; their sum should be 300:

63 + 183 + 54 = 300

It should also be noted that the sum of the percentages given in the problem statement is 100:

21% + 61% + 18% = 100%

This suggests that total number children in the camp were taken as 100%.

3 a d a h a 3. The worker received 1,200 rubles per month. Of this, he spent 65% on food, 6% on apartments and heating, 4% on gas, electricity and radio, 10% on cultural needs and 15% saved. How much money was spent on the needs indicated in the problem?

To solve this problem you need to find the fraction of 1,200 5 times. Let's do this.

1) How much money was spent on food? The problem says that this expense is 65% of total earnings, i.e. 65/100 of the number 1,200. Let’s do the calculation:

2) How much money did you pay for an apartment with heating? Reasoning similarly to the previous one, we arrive at the following calculation:

3) How much money did you pay for gas, electricity and radio?

4) How much money was spent on cultural needs?

5) How much money did the worker save?

To check, it is useful to add up the numbers found in these 5 questions. The amount should be 1,200 rubles. All earnings are taken as 100%, which is easy to check by adding up the percentage numbers given in the problem statement.

We solved three problems. Despite the fact that these problems dealt with different things (delivery of firewood for the school, the number of children of different ages, the worker's expenses), they were solved in the same way. This happened because in all problems it was necessary to find several percent of given numbers.

§ 90. Division of fractions.

As we study division of fractions, we will consider the following questions:

1. Divide an integer by an integer.
2. Dividing a fraction by a whole number
3. Dividing a whole number by a fraction.
4. Dividing a fraction by a fraction.
5. Division of mixed numbers.
6. Finding a number from its given fraction.
7. Finding a number by its percentage.

Let's consider them sequentially.

1. Divide an integer by an integer.

As was indicated in the department of integers, division is the action that consists in the fact that, given the product of two factors (dividend) and one of these factors (divisor), another factor is found.

We looked at dividing an integer by an integer in the section on integers. We encountered two cases of division there: division without a remainder, or “entirely” (150: 10 = 15), and division with a remainder (100: 9 = 11 and 1 remainder). We can therefore say that in the field of integers, exact division is not always possible, because the dividend is not always the product of the divisor by the integer. After introducing multiplication by a fraction, we can consider any case of dividing integers possible (only division by zero is excluded).

For example, dividing 7 by 12 means finding a number whose product by 12 would be equal to 7. Such a number is the fraction 7 / 12 because 7 / 12 12 = 7. Another example: 14: 25 = 14 / 25, because 14 / 25 25 = 14.

Thus, to divide a whole number by a whole number, you need to create a fraction whose numerator is equal to the dividend and the denominator is equal to the divisor.

2. Dividing a fraction by a whole number.

Divide the fraction 6 / 7 by 3. According to the definition of division given above, we have here the product (6 / 7) and one of the factors (3); it is required to find a second factor that, when multiplied by 3, would give the given product 6/7. Obviously, it should be three times smaller than this product. This means that the task set before us was to reduce the fraction 6/7 by 3 times.

We already know that reducing a fraction can be done either by decreasing its numerator or by increasing its denominator. Therefore you can write:

IN in this case The numerator of 6 is divisible by 3, so the numerator should be halved.

Let's take another example: 5 / 8 divided by 2. Here the numerator 5 is not divisible by 2, which means that the denominator will have to be multiplied by this number:

Based on this, a rule can be made: To divide a fraction by a whole number, you need to divide the numerator of the fraction by that whole number.(if possible), leaving the same denominator, or multiply the denominator of the fraction by this number, leaving the same numerator.

3. Dividing a whole number by a fraction.

Let it be necessary to divide 5 by 1/2, i.e., find a number that, after multiplying by 1/2, will give the product 5. Obviously, this number must be greater than 5, since 1/2 is a proper fraction, and when multiplying a number the product of a proper fraction must be less than the product being multiplied. To make this clearer, let's write our actions as follows: 5: 1 / 2 = X , which means x 1 / 2 = 5.

We must find such a number X , which, if multiplied by 1/2, would give 5. Since multiplying a certain number by 1/2 means finding 1/2 of this number, then, therefore, 1/2 unknown date X is equal to 5, and the whole number X twice as much, i.e. 5 2 = 10.

So 5: 1 / 2 = 5 2 = 10

Let's check:

Let's look at another example. Let's say you want to divide 6 by 2/3. Let's first try to find the desired result using the drawing (Fig. 19).

Fig.19

Let us draw a segment AB equal to 6 units, and divide each unit into 3 equal parts. In each unit, three thirds (3/3) of the entire segment AB is 6 times larger, i.e. e. 18/3. Using small brackets, we connect the 18 resulting segments of 2; There will be only 9 segments. This means that the fraction 2/3 is contained in 6 units 9 times, or, in other words, the fraction 2/3 is 9 times less than 6 whole units. Hence,

How to get this result without a drawing using calculations alone? Let's reason like this: we need to divide 6 by 2/3, i.e. we need to answer the question how many times 2/3 is contained in 6. Let's find out first: how many times 1/3 is contained in 6? In a whole unit there are 3 thirds, and in 6 units there are 6 times more, i.e. 18 thirds; to find this number we must multiply 6 by 3. This means that 1/3 is contained in b units 18 times, and 2/3 is contained in b units not 18 times, but half as many times, i.e. 18: 2 = 9. Therefore , when dividing 6 by 2/3 we did the following:

From here we get the rule for dividing a whole number by a fraction. To divide a whole number by a fraction, you need to multiply this whole number by the denominator of the given fraction and, making this product the numerator, divide it by the numerator of the given fraction.

Let's write the rule using letters:

To make this rule completely clear, it should be remembered that a fraction can be considered as a quotient. Therefore, it is useful to compare the found rule with the rule for dividing a number by a quotient, which was set out in § 38. Please note that the same formula was obtained there.

When dividing, abbreviations are possible, for example:

4. Dividing a fraction by a fraction.

Let's say we need to divide 3/4 by 3/8. What will the number that results from division mean? It will answer the question how many times the fraction 3/8 is contained in the fraction 3/4. To understand this issue, let's make a drawing (Fig. 20).

Let's take a segment AB, take it as one, divide it into 4 equal parts and mark 3 such parts. Segment AC will be equal to 3/4 of segment AB. Let us now divide each of the four original segments in half, then the segment AB will be divided into 8 equal parts and each such part will be equal to 1/8 of the segment AB. Let us connect 3 such segments with arcs, then each of the segments AD and DC will be equal to 3/8 of the segment AB. The drawing shows that a segment equal to 3/8 is contained in a segment equal to 3/4 exactly 2 times; This means that the result of division can be written as follows:

3 / 4: 3 / 8 = 2

Let's look at another example. Let's say we need to divide 15/16 by 3/32:

We can reason like this: we need to find a number that, after multiplying by 3/32, will give a product equal to 15/16. Let's write the calculations like this:

15 / 16: 3 / 32 = X

3 / 32 X = 15 / 16

3/32 unknown number X are 15/16

1/32 of an unknown number X is ,

32 / 32 numbers X make up .

Hence,

Thus, to divide a fraction by a fraction, you need to multiply the numerator of the first fraction by the denominator of the second, and multiply the denominator of the first fraction by the numerator of the second, and make the first product the numerator, and the second the denominator.

Let's write the rule using letters:

When dividing, abbreviations are possible, for example:

5. Division of mixed numbers.

When dividing mixed numbers, they must first be converted into improper fractions, and then the resulting fractions must be divided according to the rules for dividing fractions. Let's look at an example:

Let's convert mixed numbers to improper fractions:

Now let's divide:

Thus, to divide mixed numbers, you need to convert them into improper fractions and then divide using the rule for dividing fractions.

6. Finding a number from its given fraction.

Among the various fraction problems, sometimes there are those in which the value of some fraction of an unknown number is given and you need to find this number. This type of problem will be the inverse of the problem of finding the fraction of a given number; there a number was given and it was required to find some fraction of this number, here a fraction of a number was given and it was required to find this number itself. This idea will become even clearer if we turn to solving this type of problem.

Task 1. On the first day, the glaziers glazed 50 windows, which is 1/3 of all the windows of the built house. How many windows are there in this house?

Solution. The problem says that 50 glazed windows make up 1/3 of all the windows of the house, which means there are 3 times more windows in total, i.e.

The house had 150 windows.

Task 2. The store sold 1,500 kg of flour, which is 3/8 of the total flour stock the store had. What was the store's initial supply of flour?

Solution. From the conditions of the problem it is clear that 1,500 kg of flour sold constitute 3/8 of the total stock; This means that 1/8 of this reserve will be 3 times less, i.e. to calculate it you need to reduce 1500 by 3 times:

1,500: 3 = 500 (this is 1/8 of the reserve).

Obviously, the entire supply will be 8 times larger. Hence,

500 8 = 4,000 (kg).

The initial stock of flour in the store was 4,000 kg.

From consideration of this problem, the following rule can be derived.

To find a number from a given value of its fraction, it is enough to divide this value by the numerator of the fraction and multiply the result by the denominator of the fraction.

We solved two problems on finding a number given its fraction. Such problems, as is especially clearly seen from the last one, are solved by two actions: division (when one part is found) and multiplication (when the whole number is found).

However, after we have learned the division of fractions, the above problems can be solved with one action, namely: division by a fraction.

For example, the last task can be solved in one action like this:

In the future, we will solve problems of finding a number from its fraction with one action - division.

7. Finding a number by its percentage.

In these problems you will need to find a number knowing a few percent of that number.

Task 1. At first current year I received 60 rubles from the savings bank. income from the amount I put into savings a year ago. How much money have I put in the savings bank? (The cash desks give depositors a 2% return per year.)

The point of the problem is that I put a certain amount of money in a savings bank and stayed there for a year. After a year, I received 60 rubles from her. income, which is 2/100 of the money I deposited. How much money did I put in?

Consequently, knowing part of this money, expressed in two ways (in rubles and fractions), we must find the entire, as yet unknown, amount. This is an ordinary problem of finding a number given its fraction. The following problems are solved by division:

This means that 3,000 rubles were deposited in the savings bank.

Task 2. Fishermen fulfilled the monthly plan by 64% in two weeks, harvesting 512 tons of fish. What was their plan?

From the conditions of the problem it is known that the fishermen completed part of the plan. This part is equal to 512 tons, which is 64% of the plan. We don’t know how many tons of fish need to be prepared according to the plan. Finding this number will be the solution to the problem.

Such problems are solved by division:

This means that according to the plan, 800 tons of fish need to be prepared.

Task 3. The train went from Riga to Moscow. When he passed the 276th kilometer, one of the passengers asked a passing conductor how much of the journey they had already covered. To this the conductor replied: “We have already covered 30% of the entire journey.” What is the distance from Riga to Moscow?

From the problem conditions it is clear that 30% of the route from Riga to Moscow is 276 km. We need to find the entire distance between these cities, i.e., for this part, find the whole:

§ 91. Reciprocal numbers. Replacing division with multiplication.

Let's take the fraction 2/3 and replace the numerator in place of the denominator, we get 3/2. We got the inverse of this fraction.

In order to obtain a fraction that is the inverse of a given fraction, you need to put its numerator in place of the denominator, and the denominator in place of the numerator. In this way we can get the reciprocal of any fraction. For example:

3/4, reverse 4/3; 5/6, reverse 6/5

Two fractions that have the property that the numerator of the first is the denominator of the second, and the denominator of the first is the numerator of the second, are called mutually inverse.

Now let's think about what fraction will be the reciprocal of 1/2. Obviously, it will be 2 / 1, or just 2. By looking for the inverse fraction of the given one, we got an integer. And this case is not isolated; on the contrary, for all fractions with a numerator of 1 (one), the reciprocals will be integers, for example:

1/3, reverse 3; 1/5, reverse 5

Since in finding reciprocal fractions we also encountered integers, in what follows we will not talk about reciprocal fractions, but about reciprocal numbers X.

Let's figure out how to write the inverse of an integer. For fractions, this can be solved simply: you need to put the denominator in place of the numerator. In the same way, you can get the inverse of an integer, since any integer can have a denominator of 1. This means that the inverse of 7 will be 1/7, because 7 = 7/1; for the number 10 the inverse will be 1/10, since 10 = 10/1

This idea can be expressed differently: the reciprocal of a given number is obtained by dividing one by a given number. This statement is true not only for whole numbers, but also for fractions. In fact, if we need to write the inverse of the fraction 5/9, then we can take 1 and divide it by 5/9, i.e.

Now let's point out one thing property reciprocal numbers, which will be useful to us: the product of reciprocal numbers is equal to one. Indeed:

Using this property, we can find reciprocal numbers in the following way. Let's say we need to find the inverse of 8.

Let's denote it by the letter X , then 8 X = 1, hence X = 1/8. Let's find another number that is the inverse of 7/12 and denote it by the letter X , then 7/12 X = 1, hence X = 1: 7 / 12 or X = 12 / 7 .

We introduced here the concept of reciprocal numbers in order to slightly supplement the information about dividing fractions.

When we divide the number 6 by 3/5, we do the following:

Please pay Special attention to the expression and compare it with the given one: .

If we take the expression separately, without connection with the previous one, then it is impossible to solve the question of where it came from: from dividing 6 by 3/5 or from multiplying 6 by 5/3. In both cases the same thing happens. Therefore we can say that dividing one number by another can be replaced by multiplying the dividend by the inverse of the divisor.

The examples we give below fully confirm this conclusion.

Multiplying and dividing fractions.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

This operation is much nicer than addition-subtraction! Because it's easier. As a reminder, to multiply a fraction by a fraction, you need to multiply the numerators (this will be the numerator of the result) and the denominators (this will be the denominator). That is:

For example:

Everything is extremely simple. And please don't look for a common denominator! There is no need for him here...

To divide a fraction by a fraction, you need to reverse second(this is important!) fraction and multiply them, i.e.:

For example:

If you come across multiplication or division with integers and fractions, it’s okay. As with addition, we make a fraction from a whole number with one in the denominator - and go ahead! For example:

In high school, you often have to deal with three-story (or even four-story!) fractions. For example:

How can I make this fraction look decent? Yes, very simple! Use two-point division:

But don't forget about the order of division! Unlike multiplication, this is very important here! Of course, we will not confuse 4:2 or 2:4. But it’s easy to make a mistake in a three-story fraction. Please note for example:

In the first case (expression on the left):

In the second (expression on the right):

Do you feel the difference? 4 and 1/9!

What determines the order of division? Either with brackets, or (as here) with the length of horizontal lines. Develop your eye. And if there are no brackets or dashes, like:

then divide and multiply in order, from left to right!

And also very simple and important technique. In actions with degrees, it will be so useful to you! Let's divide one by any fraction, for example, by 13/15:

The shot has turned over! And this always happens. When dividing 1 by any fraction, the result is the same fraction, only upside down.

That's it for operations with fractions. The thing is quite simple, but it gives more than enough errors. Note practical advice, and there will be fewer of them (errors)!

Practical tips:

1. The most important thing when working with fractional expressions is accuracy and attentiveness! These are not general words, not good wishes! This dire necessity! Do all calculations on the Unified State Exam as a full-fledged task, focused and clear. It’s better to write two extra lines in your draft than to mess up when doing mental calculations.

2. In examples with different types fractions - go to ordinary fractions.

3. We reduce all fractions until they stop.

4. Multi-storey fractional expressions reduce to ordinary ones using division through two points (watch the order of division!).

5. Divide a unit by a fraction in your head, simply turning the fraction over.

Here are the tasks that you must definitely complete. Answers are given after all tasks. Use the materials on this topic and practical tips. Estimate how many examples you were able to solve correctly. The first time! Without a calculator! And draw the right conclusions...

Remember - the correct answer is received from the second (especially the third) time does not count! Such is the harsh life.

So, solve in exam mode ! This is already preparation for the Unified State Exam, by the way. We solve the example, check it, solve the next one. We decided everything - checked again from first to last. But only Then look at the answers.

Calculate:

Have you decided?

We are looking for answers that match yours. I deliberately wrote them down in disarray, away from temptation, so to speak... Here they are, the answers, written with semicolons.

0; 17/22; 3/4; 2/5; 1; 25.

Now we draw conclusions. If everything worked out, I’m happy for you! Basic calculations with fractions are not your problem! You can do more serious things. If not...

So you have one of two problems. Or both at once.) Lack of knowledge and (or) inattention. But this solvable Problems.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Multiplying a whole number by a fraction is not a difficult task. But there are subtleties that you probably understood at school, but have since forgotten.

How to multiply a whole number by a fraction - a few terms

If you remember what a numerator and denominator are and how a proper fraction differs from an improper fraction, skip this paragraph. It is for those who have completely forgotten the theory.

The numerator is the top part of the fraction - what we are dividing. The denominator is lower. This is what we divide by.
A proper fraction is one whose numerator is less than its denominator. An improper fraction is one whose numerator is greater than or equal to its denominator.

How to multiply a whole number by a fraction

The rule for multiplying an integer by a fraction is very simple - we multiply the numerator by the integer, but do not touch the denominator. For example: two multiplied by one fifth - we get two fifths. Four multiplied by three sixteenths equals twelve sixteenths.


Reduction

In the second example, the resulting fraction can be reduced.
What does it mean? Please note that both the numerator and denominator of this fraction are divisible by four. Divide both numbers by common divisor and it’s called reducing a fraction. We get three quarters.


Improper fractions

But suppose we multiply four by two fifths. It turned out to be eight-fifths. This is an improper fraction.
She definitely needs to be brought to the right kind. To do this, you need to select an entire part from it.
Here you need to use division with a remainder. We get one and three as a remainder.
One whole and three fifths is our proper fraction.

Bringing thirty-five eighths to the correct form is a little more difficult. The closest number to thirty-seven that is divisible by eight is thirty-two. When divided we get four. Subtract thirty-two from thirty-five and we get three. Result: four whole and three eighths.


Equality of numerator and denominator. And here everything is very simple and beautiful. If the numerator and denominator are equal, the result is simply one.

Another operation that can be performed with ordinary fractions is multiplication. We will try to explain its basic rules when solving problems, show how an ordinary fraction is multiplied by a natural number and how to correctly multiply three ordinary fractions and more.

Let's first write down the basic rule:

Definition 1

If we multiply one ordinary fraction, then the numerator of the resulting fraction will be equal to the product of the numerators of the original fractions, and the denominator will be equal to the product of their denominators. In literal form, for two fractions a / b and c / d, this can be expressed as a b · c d = a · c b · d.

Let's look at an example of how to correctly apply this rule. Let's say we have a square whose side is equal to one numerical unit. Then the area of ​​the figure will be 1 square. unit. If we divide the square into equal rectangles with sides equal to 1 4 and 1 8 numerical units, we get that it now consists of 32 rectangles (because 8 4 = 32). Accordingly, the area of ​​each of them will be equal to 1 32 of the area of ​​the entire figure, i.e. 1 32 sq. units.

We have a shaded fragment with sides equal to 5 8 numerical units and 3 4 numerical units. Accordingly, to calculate its area, you need to multiply the first fraction by the second. It will be equal to 5 8 · 3 4 sq. units. But we can simply count how many rectangles are included in the fragment: there are 15 of them, which means total area is 15 32 square units.

Since 5 3 = 15 and 8 4 = 32, we can write the following equality:

5 8 3 4 = 5 3 8 4 = 15 32

It confirms the rule we formulated for multiplying ordinary fractions, which is expressed as a b · c d = a · c b · d. It works the same for both proper and improper fractions; It can be used to multiply fractions with both different and identical denominators.

Let's look at solutions to several problems involving multiplication of ordinary fractions.

Example 1

Multiply 7 11 by 9 8.

Solution

First, let's calculate the product of the numerators of the indicated fractions by multiplying 7 by 9. We got 63. Then we calculate the product of the denominators and get: 11 · 8 = 88. Let's compose two numbers and the answer is: 63 88.

The whole solution can be written like this:

7 11 9 8 = 7 9 11 8 = 63 88

Answer: 7 11 · 9 8 = 63 88.

If we get a reducible fraction in our answer, we need to complete the calculation and perform its reduction. If we get an improper fraction, we need to separate out the whole part from it.

Example 2

Calculate product of fractions 4 15 and 55 6 .

Solution

According to the rule studied above, we need to multiply the numerator by the numerator, and the denominator by the denominator. The solution record will look like this:

4 15 55 6 = 4 55 15 6 = 220 90

We got a reducible fraction, i.e. one that is divisible by 10.

Let's reduce the fraction: 220 90 gcd (220, 90) = 10, 220 90 = 220: 10 90: 10 = 22 9. As a result, we got an improper fraction, from which we select the whole part and get a mixed number: 22 9 = 2 4 9.

Answer: 4 15 55 6 = 2 4 9.

For ease of calculation, we can also reduce the original fractions before performing the multiplication operation, for which we need to reduce the fraction to the form a · c b · d. Let's decompose the values ​​of the variables into simple factors and reduce the same ones.

Let's explain what this looks like using data from a specific task.

Example 3

Calculate the product 4 15 55 6.

Solution

Let's write down the calculations based on the multiplication rule. We will get:

4 15 55 6 = 4 55 15 6

Since 4 = 2 2, 55 = 5 11, 15 = 3 5 and 6 = 2 3, then 4 55 15 6 = 2 2 5 11 3 5 2 3.

2 11 3 3 = 22 9 = 2 4 9

Answer: 4 15 · 55 6 = 2 4 9 .

A numerical expression in which ordinary fractions are multiplied has a commutative property, that is, if necessary, we can change the order of the factors:

a b · c d = c d · a b = a · c b · d

How to multiply a fraction with a natural number

Let's write down the basic rule right away, and then try to explain it in practice.

Definition 2

To multiply a common fraction by a natural number, you need to multiply the numerator of that fraction by that number. In this case, the denominator of the final fraction will be equal to the denominator of the original ordinary fraction. Multiplication of a certain fraction a b by a natural number n can be written as the formula a b · n = a · n b.

It is easy to understand this formula if you remember that any natural number can be represented as an ordinary fraction with a denominator equal to one, that is:

a b · n = a b · n 1 = a · n b · 1 = a · n b

Let us explain our idea with specific examples.

Example 4

Calculate the product 2 27 times 5.

Solution

As a result of multiplying the numerator of the original fraction by the second factor, we get 10. By virtue of the rule stated above, we will get 10 27 as a result. The entire solution is given in this post:

2 27 5 = 2 5 27 = 10 27

Answer: 2 27 5 = 10 27

When we multiply a natural number with a fraction, we often have to abbreviate the result or represent it as a mixed number.

Example 5

Condition: calculate the product 8 by 5 12.

Solution

According to the rule above, we multiply the natural number by the numerator. As a result, we get that 5 12 8 = 5 8 12 = 40 12. The final fraction has signs of divisibility by 2, so we need to reduce it:

LCM (40, 12) = 4, so 40 12 = 40: 4 12: 4 = 10 3

Now all we have to do is select the whole part and write down the ready answer: 10 3 = 3 1 3.

In this entry you can see the entire solution: 5 12 8 = 5 8 12 = 40 12 = 10 3 = 3 1 3.

We could also reduce the fraction by factoring the numerator and denominator into prime factors, and the result would be exactly the same.

Answer: 5 12 8 = 3 1 3.

A numerical expression in which a natural number is multiplied by a fraction also has the property of displacement, that is, the order of the factors does not affect the result:

a b · n = n · a b = a · n b

How to multiply three or more common fractions

We can extend to the action of multiplying ordinary fractions the same properties that are characteristic of multiplying natural numbers. This follows from the very definition of these concepts.

Thanks to knowledge of the combining and commutative properties, you can multiply three or more ordinary fractions. It is acceptable to rearrange the factors for greater convenience or arrange the brackets in a way that makes it easier to count.

Let's show with an example how this is done.

Example 6

Multiply the four common fractions 1 20, 12 5, 3 7 and 5 8.

Solution: First, let's record the work. We get 1 20 · 12 5 · 3 7 · 5 8 . We need to multiply all the numerators and all the denominators together: 1 20 · 12 5 · 3 7 · 5 8 = 1 · 12 · 3 · 5 20 · 5 · 7 · 8 .

Before we start multiplying, we can make things a little easier on ourselves and factor some numbers into prime factors for further reduction. This will be easier than reducing the resulting fraction that is already ready.

1 12 3 5 20 5 7 8 = 1 (2 2 3) 3 5 2 2 5 5 7 (2 2 2) = 3 3 5 7 2 2 2 = 9,280

Answer: 1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 9,280.

Example 7

Multiply 5 numbers 7 8 · 12 · 8 · 5 36 · 10 .

Solution

For convenience, we can group the fraction 7 8 with the number 8, and the number 12 with the fraction 5 36, since future abbreviations will be obvious to us. As a result, we will get:
7 8 12 8 5 36 10 = 7 8 8 12 5 36 10 = 7 8 8 12 5 36 10 = 7 1 2 2 3 5 2 2 3 3 10 = 7 5 3 10 = 7 5 10 3 = 350 3 = 116 2 3

Answer: 7 8 12 8 5 36 10 = 116 2 3.

If you notice an error in the text, please highlight it and press Ctrl+Enter

To correctly multiply a fraction by a fraction or a fraction by a number, you need to know simple rules. We will now analyze these rules in detail.

Multiplying a common fraction by a fraction.

To multiply a fraction by a fraction, you need to calculate the product of the numerators and the product of the denominators of these fractions.

\(\bf \frac(a)(b) \times \frac(c)(d) = \frac(a \times c)(b \times d)\\\)

Let's look at an example:
We multiply the numerator of the first fraction with the numerator of the second fraction, and we also multiply the denominator of the first fraction with the denominator of the second fraction.

\(\frac(6)(7) \times \frac(2)(3) = \frac(6 \times 2)(7 \times 3) = \frac(12)(21) = \frac(4 \ times 3)(7 \times 3) = \frac(4)(7)\\\)

The fraction \(\frac(12)(21) = \frac(4 \times 3)(7 \times 3) = \frac(4)(7)\\\) was reduced by 3.

Multiplying a fraction by a number.

First, let's remember the rule, any number can be represented as a fraction \(\bf n = \frac(n)(1)\) .

Let's use this rule when multiplying.

\(5 \times \frac(4)(7) = \frac(5)(1) \times \frac(4)(7) = \frac(5 \times 4)(1 \times 7) = \frac (20)(7) = 2\frac(6)(7)\\\)

Improper fraction \(\frac(20)(7) = \frac(14 + 6)(7) = \frac(14)(7) + \frac(6)(7) = 2 + \frac(6)( 7)= 2\frac(6)(7)\\\) converted to mixed fraction.

In other words, When multiplying a number by a fraction, we multiply the number by the numerator and leave the denominator unchanged. Example:

\(\frac(2)(5) \times 3 = \frac(2 \times 3)(5) = \frac(6)(5) = 1\frac(1)(5)\\\\\) \(\bf \frac(a)(b) \times c = \frac(a \times c)(b)\\\)

Multiplying mixed fractions.

To multiply mixed fractions, you must first represent each mixed fraction as an improper fraction, and then use the multiplication rule. We multiply the numerator with the numerator, and multiply the denominator with the denominator.

Example:
\(2\frac(1)(4) \times 3\frac(5)(6) = \frac(9)(4) \times \frac(23)(6) = \frac(9 \times 23) (4 \times 6) = \frac(3 \times \color(red) (3) \times 23)(4 \times 2 \times \color(red) (3)) = \frac(69)(8) = 8\frac(5)(8)\\\)

Multiplication of reciprocal fractions and numbers.

The fraction \(\bf \frac(a)(b)\) is the inverse of the fraction \(\bf \frac(b)(a)\), provided a≠0,b≠0.
The fractions \(\bf \frac(a)(b)\) and \(\bf \frac(b)(a)\) are called reciprocal fractions. The product of reciprocal fractions is equal to 1.
\(\bf \frac(a)(b) \times \frac(b)(a) = 1 \\\)

Example:
\(\frac(5)(9) \times \frac(9)(5) = \frac(45)(45) = 1\\\)

Related questions:
How to multiply a fraction by a fraction?
Answer: The product of ordinary fractions is the multiplication of a numerator with a numerator, a denominator with a denominator. To get the product of mixed fractions, you need to convert them into an improper fraction and multiply according to the rules.

How to multiply fractions with different denominators?
Answer: it doesn’t matter whether they are the same or different denominators For fractions, multiplication occurs according to the rule of finding the product of the numerator with the numerator, the denominator with the denominator.

How to multiply mixed fractions?
Answer: first of all, you need to convert the mixed fraction into an improper fraction and then find the product using the rules of multiplication.

How to multiply a number by a fraction?
Answer: we multiply the number with the numerator, but leave the denominator the same.

Example #1:
Calculate the product: a) \(\frac(8)(9) \times \frac(7)(11)\) b) \(\frac(2)(15) \times \frac(10)(13)\ )

Solution:
a) \(\frac(8)(9) \times \frac(7)(11) = \frac(8 \times 7)(9 \times 11) = \frac(56)(99)\\\\ \)
b) \(\frac(2)(15) \times \frac(10)(13) = \frac(2 \times 10)(15 \times 13) = \frac(2 \times 2 \times \color( red) (5))(3 \times \color(red) (5) \times 13) = \frac(4)(39)\)

Example #2:
Calculate the products of a number and a fraction: a) \(3 \times \frac(17)(23)\) b) \(\frac(2)(3) \times 11\)

Solution:
a) \(3 \times \frac(17)(23) = \frac(3)(1) \times \frac(17)(23) = \frac(3 \times 17)(1 \times 23) = \frac(51)(23) = 2\frac(5)(23)\\\\\)
b) \(\frac(2)(3) \times 11 = \frac(2)(3) \times \frac(11)(1) = \frac(2 \times 11)(3 \times 1) = \frac(22)(3) = 7\frac(1)(3)\)

Example #3:
Write the reciprocal of the fraction \(\frac(1)(3)\)?
Answer: \(\frac(3)(1) = 3\)

Example #4:
Calculate the product of two reciprocal fractions: a) \(\frac(104)(215) \times \frac(215)(104)\)

Solution:
a) \(\frac(104)(215) \times \frac(215)(104) = 1\)

Example #5:
Can reciprocal fractions be:
a) simultaneously with proper fractions;
b) simultaneously improper fractions;
c) at the same time natural numbers?

Solution:
a) to answer the first question, let's give an example. The fraction \(\frac(2)(3)\) is proper, its inverse fraction will be equal to \(\frac(3)(2)\) - an improper fraction. Answer: no.

b) in almost all enumerations of fractions this condition is not met, but there are some numbers that fulfill the condition of being simultaneously an improper fraction. For example, the improper fraction is \(\frac(3)(3)\), its inverse fraction is equal to \(\frac(3)(3)\). We get two improper fractions. Answer: not always certain conditions when the numerator and denominator are equal.

c) natural numbers are numbers that we use when counting, for example, 1, 2, 3, …. If we take the number \(3 = \frac(3)(1)\), then its inverse fraction will be \(\frac(1)(3)\). The fraction \(\frac(1)(3)\) is not a natural number. If we go through all the numbers, the reciprocal of the number is always a fraction, except for 1. If we take the number 1, then its reciprocal fraction will be \(\frac(1)(1) = \frac(1)(1) = 1\). Number 1 is a natural number. Answer: they can simultaneously be natural numbers only in one case, if this is the number 1.

Example #6:
Do the product of mixed fractions: a) \(4 \times 2\frac(4)(5)\) b) \(1\frac(1)(4) \times 3\frac(2)(7)\)

Solution:
a) \(4 \times 2\frac(4)(5) = \frac(4)(1) \times \frac(14)(5) = \frac(56)(5) = 11\frac(1 )(5)\\\\ \)
b) \(1\frac(1)(4) \times 3\frac(2)(7) = \frac(5)(4) \times \frac(23)(7) = \frac(115)( 28) = 4\frac(3)(7)\)

Example #7:
Can two reciprocals be mixed numbers at the same time?

Let's look at an example. Let's take a mixed fraction \(1\frac(1)(2)\), find its inverse fraction, to do this we convert it into an improper fraction \(1\frac(1)(2) = \frac(3)(2) \) . Its inverse fraction will be equal to \(\frac(2)(3)\) . The fraction \(\frac(2)(3)\) is a proper fraction. Answer: Two fractions that are mutually inverse cannot be mixed numbers at the same time.

Return

×
Join the “koon.ru” community!
In contact with:
I am already subscribed to the community “koon.ru”