Подземное пространство — город растет вглубь. Использование подземного пространства при реконструкции

Подписаться
Вступай в сообщество «koon.ru»!
ВКонтакте:

Лекция №1. Состояние и перспективы освоения подземного пространства.

Подземное строительство имеет почти столь же долгую историю, как история человечества. Первобытные люди использовали в качестве жилищ естественные пещеры. Позднее, в бронзовом веке, появились выработки для добычи руд, драгоценных металлов и камней. Древние цивилизации Египта, Индостана оставили после себя впечатляющие памятники подземного зодчества – храмы, подземные лабиринты усыпальниц фараонов. В городе Петра (Иордания) до сих пор сохранились вырубленные в красном песчанике культовые сооружения и жилища. В римской империи подземное строительство достигло высокого уровня. До сих пор в Европе функционируют несколько дорожных и гидротехнических тоннелей, построенных руками рабов по проектам римских инженеров. Дренажный тоннель у озера Фучино (Италия) имеет длину 5,6 км и сечение 1,8´З м.

Проходку тоннелей в скальных породах вели следующим образом. В забое тоннеля разжигался сильный костер, затем раскаленную грудь забоя поливали холодной водой. От сильных термических напряжений породы трескались на небольшую глубину и поддавались разборке ручным инструментом.

Подземное строительство продолжало развиваться и в Средние века. Системы оборонных сооружений крепостей и замков непременно содержали подземные ходы. При штурме Казани войска Ивана Грозного применили минный заряд, заложенный в штольне, которая была пройдена под городской стеной. Средневековые горные выработки, например соляные шахты Величка в Польше, удивляют современных инженеров своей устойчивостью, обязанной мастерству, «чувству камня» их строителей. Средневековые системы водоснабжения и канализации функционируют до сегодняшнего дня во многих городах Европы и Азии. Подземные пещеры Киево-Печерской Лавры свидетельствуют, что средневековая церковь считала подземное пространство вполне пригодным для жизни монахов, а не только обиталищем «нечистых сил».



Эпоха промышленной революции дала новые возможности для ведения подземного строительства – мощные взрывчатые вещества, механические способы бурения, погрузки, транспортирования пород. Одновременно возросли потребности в различного вида подземных сооружениях. Начиная с середины XIX века ведется строительство железнодорожных тоннелей: тоннель Мон-Сенис длиной 12850 м между Францией и Италией построен в 1875–71 гг., Сен-Готард длиной 14984 м – в 1872–82 гг. и Симгаюнский длиной 19780 м – в 1898–1906 гг. между Италией и Швейцарией. В России первый железнодорожный тоннель длиной 1280 м построен в 1868 г.; Сурамский тоннель длиной 3998 м, построенный в 1886–90 гг., до строительства Байкало-Амурской магистрали оставался самым длинным тоннелем СССР.

Широкое распространение получила подземная добыча угля, руд. Был построен даже ряд подземных тоннелей - каналов для пропуска судов через водораздельные участки, в том числе Ронский тоннель на водной магистрали Марсель – Рона (Франция) длиной 7118 м с размерами поперечного сечения 24,5´17,1 м.

С начала XX столетия возросла роль подземного строительства в урбанистике. Почти одновременно в ряде европейских столиц и крупнейших городах Америки прокладываются городские подземные транспортные артерии - метрополитен. С развитием военной авиации перед второй мировой войной в европейских городах приступили к строительству бомбоубежищ, а в Германии были построены подземные военные заводы.

В настоящее время, к рубежу XX и XXI столетий, подземные и заглубленные сооружения стали полноправным элементом городской застройки, присутствуют во многих технологических комплексах.

Подземные сооружения играют важную роль в охране окружающей среды, помогая сберегать поверхность земли. К достоинствам подземных помещений относятся защищенность от атмосферных воздействий, возможность поддержания желаемого температурного режима при низких энергетических затратах. Подземное помещение уменьшает или сводит к нулю связь размещенных в нем объектов с окружающей средой, поэтому там целесообразно размещать вредные и опасные производства.

Объем подземного строительства (без учета выработок горнодобывающей промышленности) в ряде развитых капиталистических стран характеризовался за последние десятилетия следующими цифрами, млн. м 3:

Учитывая малую численность населения Швеции, ее следует признать страной с самым интенсивным подземным строительством: за десятилетие (1970–80 гг.) там построено 4,5 м 3 подземного пространства на каждого жителя. Общий объем подземного строительства в Швеции распределяется приблизительно следующим образом: электростанции – 50 %, транспорт (тоннели, гаражи) – 5 %, коммуникации – 5 %, нефтехранилища – 40 %.

Раздел «Подземные сооружения» курса «Основания, фундаменты и подземные сооружения» является новым для студентов специальности «Промышленное и гражданское строительство». В отличие от курсов «Подземные сооружения", читаемых в горных и гидротехнических вузах, в данном курсе наибольшее внимание уделено подземным сооружениям малого заглубления, являющимся элементами промышленных комплексов или городской урбанистики.

Лекция № 2-3. Классификация и конструкции подземных сооружений.

Классификация.

По назначению выделяют подземные сооружения: коммунально-бытового назначения (подвальные этажи зданий, подземные гаражи, подземные склады магазинов, подземные холодильники, хранилища продуктовых товаров, подземные кинотеатры, и т. д.);

– промышленно-технологические сооружения (емкости очистных водопроводных и канализационных сооружений, заглубленные части дробильно-сортировочных цехов обогатительных фабрик, металлургических производств, подземные атомные котельные и т. д.);

– сооружения гражданской обороны и оборонные (убежища различных классов, командные пункты, шахты для хранения и запуска баллистических ракет и т. д.); транспортные и пешеходные тоннели (горные автомобильные и железнодорожные тоннели для преодоления высоких перевалов, подводные тоннели под реками и морскими проливами, тоннели метрополитена, городские автомобильные и железнодорожные тоннели, пешеходные подземные переходы);

– тоннели городских коммунальных сетей (канализационные, тоннели-коллекторы для прокладки силовых, телефонных кабелей, водопровода и др.);

– гидротехнические подземные сооружения (напорные тоннели, камеры машинных залов ГЭС, подземные бассейны гидроаккумулирующих электростанций);

– выработки для добычи полезных ископаемых (для добычи угля – шахты, руды – рудники);

– хранилища нефтепродуктов и газов, ядовитых и радиоактивных отходов.

Подземные сооружения могут размещаться: в комплексе с надземными зданиями; в сочетании с подземными инженерно-транспортными сооружениями: в специально проводимых выработках под улицами, площадями, скверами; в специальных выработках за чертой города: в отработанных горных выработках.

По глубине заложения подземные сооружения разделяют на заглубленные, малой глубины заложение, глубокие. Над заглубленными сооружениями нет слоя грунта, они перекрыты сверху искусственными конструкционными материалами или вообще представляют собой подземную часть здания.

Над подземными сооружениями малой глубины заложения имеется слой грунта до 10 м. Вес объектов, расположенных па поверхности, вносит свой вклад в давление грунта на обделку подземных сооружений малой глубины заложения.

Подземные сооружения большей глубины заложения относят к разряду глубоких. Давление на обделку этих сооружении уже не зависит от обстановки на поверхности, а определяется только свойствами окружающих пород и глубиной заложения.

Выделяют следующие способы строительства подземных сооружений малой глубины заложения и заглубленных (рис. 2.1):

Котлованный. Этот способ используется при строительстве заглубленных сооружений малой глубины заложения. В грунте отрывается котлован, на дне которого, как на поверхности, возводится сооружение. После завершения строительства котлован засыпается грунтом.

Опускного колодца. Этим способом строятся заглубленные сооружения. При этом боковые ограждающие стены сооружения возводятся на поверхности. Грунт из средней части послойно удаляется, и стены сооружения опускаются в грунт.

«Стена в грунте» Этим способом также возводятся заглубленные сооружения. С поверхности по контуру сооружения отрывается узкая траншея па глубину сооружения. Для обеспечения устойчивости стен траншея заполняется глинистым раствором. Траншея откапывается частями и заполняется бетоном Выемка грунта производится уже под защитой возведенных стен сооружения.

«Горный (закрытый) способ строительства. Строительство тоннелей и других глубоких сооружений ведется подземными способами и включает (рис. 2.2.): отделение породы от массива (отбойку, резание); погрузку ее на транспортные средства; транспортировку; устройство временной крепи, обеспечивающей безопасность работы в забое; возведение постоянной обделки, обеспечивающей устойчивость и водонепроницаемость выработки.

Способы проходки тоннелей делятся на горные и щитовые. В горных способах все операции (отбойка, погрузка, транспорт, возведение временной крепи и постоянной обделки) расчленены и выполняются в циклическом режиме с применением различных средств механизации. В щитовых способах проходки резание пород, погрузку и возведение постоянной обделки выполняют механизмы, объединенные в одном агрегате–проходческом щите, роль временной крепи выполняет специальный подвижный элемент – собственно щит. Тоннели мелкого заложения могут строиться и котлованным способом.

Заглубленные жилые дома

Многие сотни тысяч лет первобытный человек использовал в качестве жилищ природные или специально открытые пещеры, всегда обращался к земле, чтобы укрыться от неблагоприятных климатических условий. Лишь исторически непродолжительная эра доступного и дешевого топлива позволила строить возвышающиеся над уровнем земной поверхности тонкостенные дома и снабжать эти энергетически неэкономичные дома теплом. Теперь, когда количество природного топлива сокращается, настало время пересмотреть взгляды на строительство.

В США, Канаде, ряде других стран начинает развиваться строительство заглубленных домов с земляной теплозащитой. В конце 70-х годов около 5 % новых индивидуальных домов в США строилось в заглубленном исполнении; наблюдается тенденция роста этой величины, особенно в районах с суровыми зимами. К преимуществам заглубленных жилищ, как и других подземных сооружений, относятся сокращение энергетических затрат на отопление зимой и охлаждение летом, сокращение затрат на наружный ремонт, лучшая звукоизоляция, устойчивость против штормовых воздействий. Проектирование заглубленных жилищ предусматривает множество различных способов сохранения энергии, например, пассивное использование солнечной энергии, рекуперацию тепла из вентиляционных выбросов и канализационных стоков и др. Нет сомнения, что грандиозная программа обновления жилья в сельских местностях СССР представляет исключительные возможности для развития этого вида жилищного строительства.

Основные типы заглубленных жилищ в условиях плоского падающего рельефа приведены на рис. 1.21. Дом атриумного типа (рис. 1.21, а) находится полностью ниже уровня земли, имеет внутренний дворик, в наибольшей степени защищен от ветров. Недостатком его является отсутствие вида на местность из окон, выходящих во внутренний двор. Обычно атриумная планировка применяется в условиях теплого климата. В условиях равнинной местности с суровым климатом чаще всего возводятся полузаглубленные дома (рис. 1.21, б). «Падающий рельеф» холмистой местности наиболее благоприятен для строительства заглубленных домов (рис. 1.21, в и г). В таких условиях возможно строительство одно- и двухэтажных домов; при этом отсутствует основной недостаток заглубленных жилищ в условиях равнинной местности: ограничение вида на местность, что является довольно существенным эстетическим и психологическим фактором.

Правильная ориентация здания по отношению к солнцу и ветру может обеспечить значительную дополнительную экономию энергии. Энергия солнечной радиации может быть использована для получения тепла в активной и пассивной форме. Большинство активных систем использования солнечной энергии имеют плоские коллекторы, устанавливаемые непосредственно на здание или по соседству с ним. Так системы не предъявляют жестких требований к ориентации здания. Прогрев помещения солнцем через окна называется пассивным использованием солнечной энергии; наибольший эффект при этом достигается при ориентировке окон на юг. В северном полушарии наибольшие теплопотери зимой связаны с ветрами северных румбов, так что ориентация оконных и дверных проемов заглубленного жилища на юг обеспечивает и наилучшую защиту от ветра.

Геомеханические процессы.

Строительство горных выработок и подземных сооружении вызывает нарушение начального напряженно-деформированного состояния породных массивов. Возникающие в результате этого механические процессы деформирования приводят к формированию нового равновесного напряженно-деформированного состояния породных массивов в окрестности выработок. Новое поле напряжений и деформаций условно будем называть полным, имея в виду, что оно сформировалось в результате наложения на начальное поле дополнительного поля напряжений и деформаций, образовавшегося при сооружении выработки.

Знание основных закономерностей деформирования породного массива позволяет прогнозировать возможные реализации механических процессов. Сложность этой задачи определяется прежде всего большим числом влияющих факторов. В общем случае породный массив представляет собой дискретную, неоднородную, анизотропную среду, механические процессы деформирования в которой носят нелинейный временной характер. Кроме геологических факторов большое влияние оказывают инженерно-технические условия строительства и, в частности, форма и размеры выработок, их ориентация в массиве, способ проходки и поддержания, технология крепления и др.

Очевидно, что при одновременном учете всех этих факторов аналитическое описание закономерностей процесса формирования напряженно-деформированного состояния практически невозможно. Вместе с тем многолетний опыт и знания, накопленные в механике горных пород, показывают, что при любом сочетании влияющих факторов всегда может быть выделен один-два главных, имеющих определяющее значение для характера реализации механических процессов. Так, например, при строительстве тоннеля в скальных породах из всех факторов главнейшим будет трещиноватость пород. Именно она обусловливает в данном случае реализацию механических процессов в виде локальных вывалов или сплошного сводообразования. В качестве другого при мера можно привести случай, когда определяющими факторам» будут форма и размеры выработки. Так, в кровле очистной горной выработки прямоугольной формы, имеющей ширину, значительно большую, чем высоту, возникают опасные для ее эксплуатации растягивающие напряжения. Число подобных примеров, можно было бы продолжить.

Все вышесказанное позволяет определить методический подход к изучению основных закономерностей процесса формирования напряженно-деформированного состояния породного массива вокруг горных выработок.

Вначале предлагается рассмотреть простейшую задачу, ее решение принять за базовое, а затем в сравнении с этим решением изучить влияние различных естественных (природных) и искусственных (технологических) факторов на напряженно-деформированное состояние породного массива.

В качестве такой базовой задачи рассмотрим полное поле напряжений в окрестности горизонтальной протяженной горной выработки кругового поперечного сечения,пройденной на достаточно большой глубине в сплошном однородном изотропном породном массиве с равнокомпонентным начальным напряженным состоянием q, предполагая линейную физическую зависимость между напряжениями и деформациями, т. е. рассматривая породный массив как линейно-деформируемый. Будем предполагать, что реактивный отпор крепи р равномерно распределен по контуру выработки. В такой постановке граничные условия имеют вид

s r = p при r = 1 при r à ¥. (7.1*)

Решая соответствующую задачу теории упругости в постановке плоской деформации при m = 0.5, получаем в цилиндрической системе координат (r , q – в плоскости поперечного сечения выработки, z – продольная ось выработки) следующие полные-напряжения:

и безразмерные смещения

(7.2)

где s q , s r – соответственно тангенциальное (окружное) и радиальное нормальные напряжения; s z – нормальное напряжение в направлении продольной оси выработки; t r q , t rz , t qz – касательные напряжения; и – безразмерные радиальные смещения; Е – модуль деформации горных пород; r – безразмерная радиальная координата рассматриваемой точки породного массива, выраженная в единицах радиуса выработки, в проходке R b .

Соответствующее начальное поле напряжений характеризуется компонентами

а дополнительное поле напряжении – компонентами

Для наглядности распределение компонентов s q и s r полного (сплошные линии), начального (штрихпунктирные линии) и дополнительного (пунктирные линии) полей напряжений показано на рис. 7.1.

Окружающие выработку породы имеют ограниченную несущую способность, т. е. способность сопротивляться увеличению напряжений, и могут деформироваться без разрушения в определенных пределах. Поэтому следствием сформировавшегося в результате проведения выработок нового напряженно-деформированного состояния могут быть процессы разрушения горных пород, проявляющиеся в одних породах в виде хрупкого разрушения, в других – в виде пластического течения. В результате вокруг выработки образуются области запредельного состояния и полного (руинного) разрушения, которые могут охватывать весь контур выработки или отдельные его части. Деформируемость разрушенных пород повышается, а это в свою очередь вызывает значительное увеличение смещений породного контура.

Таким образом, образование в породном массиве частично или полностью разрушенных областей пород является одной из форм реализации механических процессов деформирования пород или, как принято говорить, одной из форм проявления горного давления. Частичное или сплошное сводообразование, значительные смещения породного контура, т. е. основные источники формирования нагрузок на конструкции подземных сооружений, являются следствием процессов разрушения. Поэтому знание основных закономерностей разрушения поре вокруг выработок необходимо для качественной и количественной оценки возможных проявлений горного давления и, следовательно, и научно обоснованного выбора способов и средств борьбы с этими проявлениями.

Как уже отмечалось ранее, разрушение пород протекает различно как в виде хрупкого разрушения, так и путем пластического деформирования. Поэтом для математического анализа механических процессов разрушения используются различные геомеханические модели.

В хрупкоразрушающихся породах образование области предельного равновесия может привести к нарушению сплошности массива на внешней границе этой области, что математически выражается в виде неравенства тангенциальных нормальных напряжений, действующих по обе стороны от указанной границы, процессе разрушения изменяются механические характеристики пород в области предельного равновесия и, в частности, прочность пород на сжатие уменьшаете до величины остаточной прочности. Этому случаю соответствует модель идеально-хрупкой среды, определяемая диаграммой деформирования Оаb (рис. 8.1) физическим уравнением (5.69) на запредельном участке деформирования.

В пластичных породах образование области предельного равновесия может происходить без столь заметных разрушений, как в хрупких, и проявляется в виде пластического течения без разрывов сплошности. При этом в определенном диапазоне деформации существенного изменения механических характеристик не происходит. Это позволяет использовать в данном случае модель идеалы» пластичной среды, показанную на рис. 8.1 в виде диаграммы Оас , и физическое уравнение (5.67) на запредельном участке деформирования.

Нагрузки и воздействия.

Расчеты при проектировании колодцев должны производится на нагрузки и воздействия, которые определяются условиями строительства и эксплуатации сооружения (рис. 1).

Расчетные значения веса стен G 0 , кН, днища G д, кН и тиксотропного раствора G т , кН определяются по проектным размерам элементов, принимая вес железобетонных конструкций в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций (II).

Горизонтальное давление грунта на колодец формируют следующие нагрузки:

а) основное давление грунта определяется как давление грунта в состоянии покоя по формуле:

, (1)

где g – удельный вес грунта, кН/м 3 ;
z – расстояние от поверхности грунта до рассматриваемого сечения, м;
j – угол внутреннего трения грунта.

Для колодцев, погружаемых ниже уровня грунтовых вод, удельный вес грунта принимается с учетом взвешивающего действия воды, т. е.

где g s – удельный вес частиц грунта, кН/м 3 ;
g w – удельный вес воды, принимается 10 кН/м 3 ;
e – коэффициент пористости грунта.

б) основное давление тиксотропного раствора в период погружения колодца определяется по формуле:

где g 1 – удельный вес тиксотропного раствора, кН/м 3 .

в) дополнительное давление грунта, вызываемое наклоном пластов:

где a – коэффициент, зависящий от наклона пластов (принимается по (2), с. 14).

г) гидростатическое давление грунтовых вод, учитываемое во всех грунтах, кроме водоупорных:

, (5)

где h b – расстояние от поверхности грунта до уровня грунтовых вод, м.

д) дополнительное давление от сплошной вертикальной равномерно-распределенной вокруг сооружения нагрузки q:

, (6)

е) дополнительное давление от вертикальной сосредоточенной нагрузки <2 или от нагрузки, равномерно распределенной по прямоугольной площади поверхности. Определяется по рекомендациям работы (2), с. 19-24.

Усилия трения ножа колодца по грунту определяются по формуле:

, (7)

где т –коэффициент условий работы. При расчете на всплытие т = 0.5, на погружение m = 1;

и –наружный периметр ножа колодца, м,

h u – высота ножа, м;

f – сопротивление грунта по боковой поверхности ножевой части, кПа. Определяется по таблице (/2/, с. 17). Для ориентировочных расчетов можно принять (при погружении колодца на глубину до 30 м):

– пески гравелистые, крупные и средней крупности 53 – 93

– пески мелкие и пылеватые 43-75

– суглинки и глины твердые и полутвердые 47 – 99

– супеси твердые и пластичные, суглинки и глины туго- и мягкопластичные 33 – 77

– супеси, суглинки и глины текучие и текучепластичные 20 – 40

усилия трения стен колодца в зоне тиксотропной рубашки определяются по формуле:

, (8)

где Н т –высота тиксотропной рубашки, м;
Т° –удельная сила трения стен колодца в зоне тиксотропной рубашки, принимается 1–2 кПа. При расчете на всплытие (после тампонажа щели тиксотропной рубашки цементно-песчаным раствором) 40 кПа.

Усилия сопротивления грунта под банкетной ножа определяются по формуле:

где R – расчетное сопротивление грунта основания, принимается в соответствии с рекомендациями работы /12/, с. 37 (табл. 1-5); F u – площадь подошвы ножа, м 2 .

Расчет колодца.

Расчет погружения колодца производится из условия:

, (10)

где G –вес колодца и пригрузки с учетом коэффициента надежности по нагрузке g f = 0,9;
g f1 –коэффициент надежности погружения: g f1 > 1 –в момент движения колодца, g f1 = 1 – в момент остановки колодца или яруса на проектной отметке.

Колодцы, погружаемые ниже уровня грунтовых вод, после устройства днища должны рассчитываться на всплытие в любых грунтах (за исключением случая, когда под днищем выполняется дренаж) на расчетные нагрузки из условия:

, (11)

где SG – сумма всех постоянных вертикальных нагрузок с учетом пригрузки с коэффициентом надежности по нагрузке g f = 0,9;
F g –площадь днища, м 2 ;

h w –расстояние от низа днища до уровня грунтовых вод, м;

g fw – коэффициент надежности против всплытия, равный 1,2.

Примеры расчета.

Рассчитать колодец с внутренним диаметром 20 м, глубиной 30 м, на нагрузки и воздействия, возникающие в условиях строительства (рис. 2 а). Колодец погружается в тиксотропной рубашке (g 1 =15.0 кН/м 3) с применением водопонижения. Грунты однородные, представлены суглинком тугопластичным (g = 16,6 кН/м 3 , g s = 26,8 кН/м 3 , e = 0,7, j = 18°, с = 17 кПа).

На основании исходных данных определяем вес стен колодца:

G 0 = 3,14×(10,6 2 – 10,0 2)×30×25 =29108 кН.

Основное давление тиксотропного раствора в период погружения (3):

– на отметке 0,00 Р r – 0;

– на отметке 28,00 Р r = 15×28 = 420 кПа.

Дополнительное давление от сплошной вертикальной нагрузки q = 20 кПа (6):

P g = 20×tg 2 (45-18/2) = 10,5 кПа.

По полученным значениям строим эпюру давлений (рис. 2а). Усилия трения ножа колодца по грунту (7):

T u =1×2×3,14×10,8×2×77 = 10445 кН.

Усилия трения стен колодца в зоне тиксотропной рубашки (8):

T m =1×2×3,14×28×2 = 352 кН.

Суммарные усилия трения:

T = T u + T m =10445 + 352 = 10797 кН.

Усилия сопротивления грунта под банкеткой ножа (9):

R u = 3,14×(10,8 2 – 10,6 2) ×200 = 2688 кН.

Расчет погружения колодца выполним по формуле (10):

Погружение колодца обеспечено.

Основное давление грунта (1):

– на отметке 0.00 Р r,о = 0;

– на отметке 19.00 (уровень грунтовых вод):

– на отметке 30.00:

Гидростатическое давление грунтовых вод (5):

Дополнительное давление от сплошной вертикальной нагрузки = 20кПа (6):

По полученным значениям строим эпюру давлений (рис. 2 б).

Усилия трения ножа колодца по грунту (при расчете на всплытие) (7):

Усилия трения стен колодца по грунту после выполнения тампонажа щели цементно-песчаным раствором (при расчете на всплытие) (8):

Расчет колодца на всплытие выполним по формуле (11) с учетом веса днища

G g = 3.14×10.8 2 ×1.8×25 = 16481 кН.

Пригрузка колодца не требуется.

Дренаж и водоотлив.

Обводненность грунтов в процессе строительства вызывает технологические сложности. В процессе эксплуатации подземного сооружения подземные воды порождают архимедову силу взвешивания, которая при недостаточной нагрузке сверху может привести к всплытию сооружения. Кроме того, даже при самых надежных видах гидроизоляции вода проникает в подземное сооружение. Дренаж – это система дрен и фильтров, собирающих подземную воду и отводящих ее от котлована или сооружения, а водоотлив – откачивающая система (насосы, трубопроводы).

При пересеченном рельефе возможно устройство самотечного дренажа, если в доступной близости проходит канализационный коллектор на глубине, большей глубины заложения дренажных устройств. Во всех остальных случаях дренаж требует подъема уловленной воды на поверхность с помощью водоотлива. Поскольку водоотлив связан с потреблением электроэнергии, и в случае перерывов в ее подаче обводненность массива может быстро измениться, на эксплуатационный период обычно не предусматривается дренаж грунта с водоотливом, и сооружение рассчитывается на работу при естественном режиме подземных вод. В процессе строительства сооружения – напротив, как правило, стремятся к полному осушению котлована.

Щитовой способ.

Для разработки грунта широко применяют проходческие щиты, представляющие собой передвижную крепь, позволяющую под защитой разрабатывать грунт и возводить обделку. Формы поперечного сечения щитов – круговая, сводчатая, прямоугольная, трапецеидальная, эллиптическая и пр. По способу рыхления различают немеханизированные и механизированные щиты. В первом случае грунт разрабатывают вручную или с применением ручных инструментов, во втором все операции полностью механизированы и выполняются специальным рабочим органом. Проходческий щит кругового очертания представляет собой стальной цилиндр, состоящий из ножевого и опорного колец, а также хвостовой оболочки (см. рис. 1).

Ножевое кольцо подрезает грунт по контуру выработки и служит для защиты работающих в забое людей. При проходке в мягких – грунтах оно имеет уширенную верхнюю часть – аванбек, а в слабых – предохранительный козырек. Опорное кольцо вместе с ножевым – основная несущая конструкция щита. По периметру опорного кольца равномерно располагаются щитовые домкраты, служащие для передвижения агрегата. Хвостовая оболочка закрепляет контур выработки в месте возведения очередного кольца обделки.

Немеханизированные щиты оснащают горизонтальными и вертикальными перегородками, выдвижными платформами, а также забойными и платформенными домкратами.

Работы по щитовой проходке начинают с монтажа щитов и оснащения их необходимым оборудованием. В зависимости от вида подземного сооружения, глубины его заложения и инженерно-геологических условий щиты собирают в открытых выемках или котлованах, опускают целиком через шахтный ствол или внутри камеры либо монтируют в специальных подземных камерах.

Технология щитовой проходки зависит главным образом от типа щита, свойств грунта и вида обделки. При проходке немеханизированными щитами разработку, погрузку и транспортирование грунта производит так же, как при горном способе работ с применением стандартного горнопроходческого оборудования (бурильные молотки, погрузочные машины, вагонетки, электровозы и пр.). Успешно применяют проходческие щитовые комплексы КТ 1-5,6; ТЩБ-3, КМ-19, КТ-5,6Б2, которые состоят из щитового агрегата и оборудования для выполнения горнопроходческих, монтажных, гидроизоляционных и вспомогательных работ. Уровень механизации щитовых комплексов достигает 90...95 %, а скорости проходки тоннелей диаметром 5...6 м составляют 300...400 м в месяц и более.

Схемы механизации щитовых работ отличаются способами разработки грунта, крепления кровли и лба забоя, все остальные операции по погрузке и транспортированию грунта, по возведению и гидроизоляции обделки выполняют аналогично. Из забоя щита грунт поступает на магистральный транспортер-перегружатель, в конце которого помещается бункер с двумя затворами, что позволяет выгружать грунт в вагонетки. На мосту закреплены толкатели нижнего или верхнего действия, при помощи которых перемещаются отдельные вагонетки, тележки с блоками, пневмобетоноукладчики и т. п.

По мере разработки грунта выработку крепят арочной, анкерной, набрызг-бетонной, комбинированной временной контурной крепью (рис. 2). Арочную крепь устраивают из металлических прокатных профилей (двутавры, швеллеры, трубы), изогнутых по контуру выработки. Каждая арка состоит из двух или четырех элементов, соединяемых на болтах. Арки устанавливают с шагом 0,8...1,5 м, опирая на грунт через деревянные подкладки и раскрепляя деревянными или металлическими распорками. Пространство между арками затягивают досками, железобетонными плитами или гофрированным» стальными листами. В сводовой части устраивают сплошную затяжку, разбирая ее перед бетонированием. Крепь устраивают в виде анкеров, расположенных в пробуренных скважинах, «подвешивая» к ненарушенному массиву участок нарушенного грунта; применяют клиновые и распорные металлические анкеры с замковым устройством, железобетонные (набивные, нагнетательные и перфорированные), закрепляемые по всей глубине шпура, сталеполимерные анкеры, закрепляемые в шпурах эпоксидными или полиэфирными смолами и вступающие в совместную работу с окружающим массивом через 1...2 ч после установки.

В выработках большого размера используют предварительно напряженные анкеры, которые заделывают в д

В условиях современных городов во многих случаях целесообразно их многоуровневое развитие, включающее широкое использование подземного пространства.

Подземное пространство города - пространство под дневной поверхностью земли, используемое для расширения городских территорий, создания новых концепций естественной среды обитания и ее сохранения, обеспечения эколого-экономического благополучия и устойчивого развития.

В то же самое время надо признать, что под землей жизнедеятельность людей осуществляется в экстремальных условиях. Соответственно при использовании подземного пространства целесообразно избегать длительного пребывания там людей.

Подземное пространство города включает: транспортные сооружения, промышленные предприятия и предприятия обслуживания населения, инженерно-коммуникационные городские сети и оборудование, а также различные сооружения специального назначения. Комплексное освоение подземного пространства характерно для крупных городов и мегаполисов, в основном, в общегородском центре и в центрах муниципальных районов, в зонах наиболее важных транспортных узлов и их пересечений, на территориях промышленного и коммунально-складского назначения.

Комплексное освоение подземного пространства способствует рациональному использованию наземной территории. При корректной организации оно обеспечивает:

  • - строительство дополнительных зданий и сооружений в условиях стеснённой городской застройки;
  • - сохранение и развитие территории зелёных зон и мест отдыха;
  • - повышение художественно-эстетических качеств городской среды, сохранение исторически ценной территории и уникальных объектов ландшафтной архитектуры;
  • - улучшение транспортного обслуживания, повышение безопасности движения, снижение уличных шумов и, наконец, экономию времени, затрачиваемого на пользование транспортной инфраструктурой;
  • - сокращение длины инженерных коммуникаций;
  • - защиту населения от возможных природных и техногенных аварий и катастроф.

Подземными называют сооружения, главные части которых расположены под землей но эксплуатационным соображениям. По своему назначению подземные сооружения подразделяют на:

транспортные (пешеходные, автотранспортные и железнодорожные тоннели, метрополитены, автостоянки и т.д.);

промышленные (корпуса первичного дробления руды, скиповые ямы доменных цехов, подземные части бункерных эстакад, установок грануляции шлаков, непрерывной разливки стали и проч.);

энергетические (подземные комплексы ГЭС и АЭС, шинные и кабельные тоннели и шахты, энергетические водоводы и т.д.);

хранилища (нефти, газа, вредных и радиоактивных отходов, холодильники);

общественные (предприятия коммунально-бытового обслуживания, торговли и общественного питания, складские, спортивные и зрелищные сооружения и т.д.);

инженерные (тоннели и сетевые и водопроводные коллекторы, бензопроводы между автозаправочными станциями, очистные и водозаборные сооружения и др.);

специального и научного назначения (ускорители заряженных частиц, тоннели для аэродинамических испытаний, подземные заводы, объекты обороны).

Среди большого количества объектов подземной инфраструктуры наиболее существенная роль отводится системам и сооружениям транспортного назначения. Б городах такими объектами являются системы скоростного внеуличного пассажирского рельсового транспорта (метрополитен, скоростной трамвай, городская железная дорога). Не менее важны пересечения городских улиц и дорог, транспортные и подводные тоннели и подземные пешеходные переходы. Под землей располагаются объекты, связанные с хранением и обслуживанием автомобильного транспорта (гаражи для постоянного хранения автотранспорта, гостевые автостоянки-паркинги), а также многофункциональные, многоуровневые объекты и комплексы, связанные с наземными зданиями и сооружениями транспортного назначения (вокзалы, торговые центры, станции метро). Таким образом, использование подземных сооружений позволяет пересмотреть структуру городов и разгрузить их, избавив от промышленных и складских объектов, хранилищ и транспортных магистралей.

В последние годы в подземном пространстве городов размещают многоярусные многофункциональные комплексы культурно-бытового обслуживания населения и инженерного обеспечения. Наиболее часто в состав подземных комплексов включают предприятия торговли, общественного питания и бытового обслуживания, складские помещения, транспортные и инженерные коммуникации, то есть такие объекты, которые предусматривают ограниченное по продолжительности пребывание людей. В зависимости от конкретных условий, подземные комплексы могут иметь от 2 до 6 ярусов. Площадь отдельных ярусов и их высоту устанавливают в зависимости от назначения подземного объекта. Для перемещения людей внутри комплекса, в ряде случаев, предусматривают эскалаторы и лифты. В целях снижения негативного психофизического воздействия, многоярусные подземные объекты имеют дневное освещение через атриумы различных конструкций в комбинациях с искусственным освещением, цветную отделку. Нередко при их оформлении используются натуральные материалы. Системы транспорта и подъёма обеспечивают перемещение посетителей и обслуживающего персонала внутри комплекса. Отдельное внимание при проектировании многофункциональных подземных комплексов, предназначенных для постоянного присутствия неограниченного числа людей, уделяется созданию комплексных, многоуровневых систем безопасности .

В условиях современных городов во многих случаях целесообразно их многоуровневое развитие, включающее широкое использование подземного пространства. Э. Утуджян, один из пионеров подземной урбанистики , подчеркивая целесообразность широкого развития многоуровневого строительства, отмечал, что "использование подземных сооружений позволит пересмотреть структуру городов и разгрузить их, избавив от заводов, рынков, вокзалов, складов и всяческих хранилищ, от транспортных магистралей и т.п. Эти сооружения парализуют город, и хотя без них невозможна повседневная жизнь, они "бездушны", поэтому нет никаких оснований отводить для них наружные пространства и объемы, которые можно использовать более рационально. Если избавиться на поверхности земли от сооружений, которые там не нужны и только портят ландшафт и отравляют воздух, можно за счет их увеличить площадь зеленых насаждений, разбить новые парки и скверы, построить стадионы. Все подземные сооружения будут защищены от внешних воздействий:

Не нужно будет опасаться пожаров;

Перестанут угрожать людям шумы и колебания атмосферных условий.

В подземном пространстве городов целесообразно широко размещать транспортные сооружения (метрополитен, железнодорожные и автомобильные туннели и вокзалы, гаражи, автобазы), предприятия культурно-бытового обслуживания , зрелищны е , спортивные и торговые объекты (в особенности в сочетании с подземными переходами и сооружениями транспорта), инженерные сооружения и коммуникации (трубопроводы, кабели, коллекторы, электроподстанции, трансформаторные подстанции, станции перекачки и подкачки, центральные тепловые пункты, котельные, очистные сооружения), склады (продовольственные, промтоварные, горючего, холодильники и пр.).

Расчеты по совокупности социально-экономических, инженерно-экономических и градостроительных факторов показывают высокую эффективность использования подземного пространства городов. Научные и проектные разработки по многим городам подтверждают реальность и целесообразность использования в широких масштабах подземного пространства городов . Накоплен большой положительный опыт подземного строительства (в нашей стране - в первую очередь при сооружении метрополитенов).

ПЛАНИРОВОЧНАЯ ОРГАНИЗАЦИЯ СОВРЕМЕННОГО ГОРОДА

Наиболее важными принципами проектирования города, определяющими его планировочную организацию, являются:

Четкое функциональное зонирование территории;

Гибкость планировочной структуры, обеспечивающая беспрепятственное развитие города;

Дифференциация транспортных магистралей;

Организация эффективной системы обслуживания;


Создание экологической инфраструктуры города, включающей единую систему зеленых насаждений и мероприятия по охране окружающей среды;

Эффективное и экономичное оснащение города всеми видами инженерного обслуживания. Необходимое условие - выполнение композиционных требований к плану города: развитие городского центра и взаимодействующих с ним районных общественных центров, создание привлекательного силуэта города и обеспечение зрительного восприятия его главных природных и архитектурных доминант.

При проектировании города необходимо выделить его "каркас" - территории наиболее интенсивного освоения и сосредоточения наиболее важных функций. "Каркас" - наиболее устойчивая во времени основа пространственно-планировочной организации города.

Промышленные зоны города (ПЗ) различаются в зависимости от профиля расположенных в их пределах промышленных производств, определяющих размеры этих зон и необходимые санитарные разрывы от них. Главные требования к взаиморасположению ПЗ и селитебных районов:

1. 1). Их территориальное развитие не должно противоречить друг другу:

Они не должны располагаться чересполосно; промышленность не должна перекрывать возможности развития селитебных зон (СЗ), и наоборот; промышленность следует размещать так, чтобы она не закрывала выход из СЗ к реке или берегу моря; СЗ недопустимо располагать над залеганиями полезных ископаемых.

2). ПЗ должны развиваться со строгим соблюдение санитарно-гигиенических требований (выполнение условий, связанных с охраной воздушного бассейна:

Исключение подветренного размещения СЗ по отношению к источнику выбросов; обеспечение необходимых разрывов с учетом класса санитарной вредности предприятий и их групп;

Обязательное удаление санитарно-вредных предприятий на большое расстояние;

Озеленение ПЗ и санитарных разрывов между ПЗ и СЗ;

Обеспечение требований охраны водного бассейна города и др.

2. Взаимное расположение ПЗ и СЗ должно быть удобно для организации пассажирских связей между ними и не препятствовать обслуживанию предприятий городским транспортом (например, нежелательно одностороннее размещение ПЗ и СЗ по отношению друг к другу). ПЗ необходимо конструировать комплексно, возможно сочетание в одной зоне предприятий разного профиля. "Чистые"промышленные предприятия и научно-технические центры - можно среди СЗ. Селитебная территория – занимает примерно 1\2 территории современного города. Жилая застройка брутто - 50% (из нее выделяются территории жилой застройки нетто - без общ. учреждений, зеленых насаждений, проездов внутри микрорайонов - 50% от брутто или 12-13% городской территории); улицы и площади - 15-20%; участки городских общих зданий и сооружений. - 15-20%; общегородские озелененные пространства - 10-15%. Размеры необходимых СЗ - 10 га на 1000 жит. Современная планировочная структура города основывается на прогрессивных идеях середины 20 в. - дифференциация транспортных магистралей, изоляция мест расселения от потоков массового автомобильного транспорта, ступенчатая организация обслуживания, широкое озеленение вокруг домов.

ДЕМОГРАФИЧЕСКИЕ ФАКТОРЫ

Среди прогнозов, имеющих наиболее важное значение для проектирования расселения и городов, особенное место занимают демографические прогнозы .

При проектировании расселения и городов в перспективе следует учитывать следующие тенденции и проблемы:

1.Мозаичность , асимметрия демографической ситуации . Не существует и вряд ли будет существовать одинаковая демографическая ситуация в разных странах и регионах мира.

2. Вынужденные миграции . Внезапный распад Советского Союза стал трагедией для миллионов людей, оказавшихся по разные стороны государственных границ. Сотни тысяч людей покидают районы национальных конфликтов или районы с нарастающей межэтнической напряженностью. Между тем Россия не готова сейчас принять столь огромное число переселенцев в условиях экономического кризиса, дороговизны жилищного строительства и т.д.

3. Необходимость управления миграционными процессами . Крайне важными задачами миграционной политики, возникшими в последние годы, стало регулирование миграционных потоков, устремившихся из ближнего зарубежья, с севера, где в ряде мест сосредоточены слишком значительные и неэффективно используемые трудовые ресурсы, расселение демобилизуемых военнослужащих и др.

4. Изменения в структуре населения и занятости . Следует учитывать ожидаемые большие изменения в возрастной структуре населения и в структуре занятости. Эти изменения наиболее четко фокусируются в трех фундаментальных тенденциях. Во-первых , по мере роста продолжительности жизни и совершенствования пенсионного обеспечения увеличивающуюся долю населения составят лица в возрасте старше трудоспособного. Во-вторых , при сокращении доли населения в трудоспособном возрасте произойдет уменьшение численности занятых в производственных процессах, поддающихся механизации и автоматизации, и расширится занятость в сфере услуг, управлении, науке и научном обслуживании. В-третьих , уже в ближайшие десятилетия коренным образом изменится "трудовой цикл" человека. Эти изменения должны быть ясно оценены и своевременно предусмотрены в процессе прогнозирования и проектирования с учетом весьма значительных региональных особенностей.

5. Возрастающая роль рационального использования квалификации и трудовых навыков населения . Помимо общего требования внимательного учета этого фактора при проектировании расселения и городов важно использовать сложившиеся "сгустки" квалифицированных кадров и научно-технического потенциала. При проектировании расселения и городов необходим всесторонний и глубокий анализ населения и трудовых ресурсов, а также тщательное исследование возможных вариантов роста и изменения структуры населения.

Введение

В последние годы в большинстве крупных городов мира отмечается повышенный интерес к широкому использованию подземного пространства.

Он вызван усилением урбанизации, стремительным развитием наземного транспорта, дефицитом городской территории и рядом других причин. Интенсивное освоение подземных пространств в городах является непременным условием развития современного градостроительства, которое предопределяет возможность эффективного использования городской территории, улучшения состояния внешней среды, сохранения архитектурно-пространственной целостности исторически сложившихся зон города, а также решения комплекса многих других, в том числе социально-экономических задач.

Степень использования подземного пространства, техника и технология ведения работ зависят от величины города, характера и содержания исторически сложившейся и перспективной застройки, концентрации дневного населения в различных частях города, расчетного количества автомобилей, природно-климатических, инженерно-геологических и других условий.

Принципы использования подземного пространства городов: российский и зарубежный опыт

Освоение подземного пространства наиболее актуально в центральных, отличающихся плотной застройкой и наиболее посещаемых районах города. Общественные центры города, включают: центральную зону города, главные магистрали, крупные общественно-транспортные узлы. Эти зоны являются местами концентрации «дневного» населения, обслуживание которого должно быть максимально приближено к местам его нахождения. В центральной зоне города наличие ценного историко-архитектурного наследия, целостности градостроительных ансамблей прошлого не позволяет развивать в достаточной степени административно-деловые, культурно-зрелищные и торговые функции, а также расширять уличную сеть и площади озеленения открытых пространств. Поэтому центральная часть города является местом наиболее интенсивного использования подземного пространства для размещения данных объектов. Приближения предприятий торговли и общественного питания, зрелищных и коммунально-бытовых объектов к участкам концентрации населения увеличивает их посещаемость, повышает их покупательную способность и рентабельность эксплуатации.

Такие предприятия располагаются:

  • - под центральными улицами (в Киеве, в Белграде, в Токио)
  • - под площадями и пересечениями центральных улиц (в Вене, Беллария, Бабенбергени Шоттентор, в Мюнхене, в Москве)
  • - в системе общественно-торговых центров (в Стокгольме, в Филадельфии, в Монреале)

В столице Поднебесной г. Пекине к 2020 г. Китайцы планируют построить подземный город. Площадь освоенной территории составит порядка 90 млн м2. На территории города планируют создать несколько финансовых районов, в которых размесятся банки и другие экономические структуры, а также транспортные развязки, крупные торговые центры. По словам архитекторов, ежегодно планируется вводить в строй до 10 млн м2.

В мировой практике перечень подземных и полуподземных сооружений весьма обширен и включает театральные, концертные и выставочные залы (театр « Латерна магика» и зал «Альгамбра» в Праге, консерватория и Центр искусств и ремесел в Париже, музей современного искусства в Нью-Йорке), торговые залы универсальных магазинов и рынков (Галери-Лафайет в Париже, Булл-Ринг в Бирмингеме), торгово-пешеходные комплексы и улицы-пассажи (Хельсинки, Вена, Осака), железнодорожные вокзалы (Варшава, Брюссель, Копенгаген, Неаполь, Сидней, Монреаль), автобусные вокзалы (Чикаго, Нью-Йорк, Лос-Анджелес) и аэровокзалы (в Париже, в Риме, в Брюсселе, в Вашингтоне), метрополитены действующие в более чем 150 городах мира.

Сейчас самой протяженной в мире подземной транспортной сетью является метрополитен в г. Лондоне. На сегодняшний день подземка насчитывает 275 станций, протяженность путей - 408 километров, пассажиропоток лондонского метро составляет 3 млн человек. К 2020 г. Совокупная длина веток пекинского метро в столице по планам китайских метростроителей составит 561 км, в городе будет действовать 19 веток метро.

В связи с широким использованием подземного пространства в крупных городах для транспортных целей многих проектировщиков возникает мысль о целесообразности сооружения целых подземных комплексов многоцелевого назначения, в которых можно было б разместить не только транспортное сооружения, но и все помещения для обслуживания пассажиров по пути их следования.

В последние годы транспортные сооружения все чаще решаются в комплексе с учреждениями обслуживания и торговли. Примерами могут служить автовокзал в Финляндии в комплексе с торговым центром, автовокзал в Голландии, включенный в состав торгового центра, автовокзал в Гамбурге, кооперированный с торговым центром, общественно-транспортные центры в Токио, Мюнхене и других городах.

Во многих городах США создан ряд крупных торговых центров, обеспечивающих предельную концентрацию обслуживания. В состав таких торговых центров обычно включаются продовольственные и промтоварные магазины, кафе, рестораны и другие общественные сооружения, вплоть до концертных залов, катков с искусственным льдом и плавательных бассейнов. Например, в торговом центре Ля-Рошель площадью 44 га размещаются железнодорожная и автобусная станции, гараж на 5 тысяч машин, театр, зал универсального назначения, гостиница. площадь торговых помещений - 72 тыс м2.

Для транспортного обслуживания в новых общественных центрах создается, как правило, несколько подземных уровней, используемых для движения рельсового подземного транспорта, пешеходных переходов, подземных стоянок и гаражей. Обычно на самом нижнем подземном уровне находится станция метрополитена и подземные участки городских подземных дорог; выше располагаются подземные тоннели для автотранспорта и подземные сооружения для пешеходов.

Для новых общественных центров Парижа, Монреаля, Хельсинки, Лос-Анджелеса, Лондона и других городов проектируются подземные участки магистралей, нередко пересекающие весь город в нескольких ярусах.

Несколько лет назад законченно строительство общественного центра в Париже.

Новый центр включает общественные, административные и жилые здания. В нем полностью разделены пути движения пешеходов и транспорта. Комплекс сооружения имеет многоярусную композицию с четырьмя-пятью подземными этажами. Все виды городского транспорта в новом общественном центре сосредоточены в подземном пространстве.

Основная транзитная автомагистраль Париж-Нормандия проходит в пределах общественного под землей, по ней пройдут основные автобусные маршруты и экспрессная линия метрополитена, связывающая новый центр со старыми центральными районами города.

На нижнем (четвертом от поверхности) подземном уровне проложена экспрессная линия метрополитена со станцией, расположенной около основных общественных сооружений комплекса. Следующий (третий от поверхности) подземный уровень отведен для движения автотранспорта дальнего сообщения. Еще выше проходят автобусные линии местного сообщения с автовокзалом. Самый верхний подземный уровень занят подъездами к зданиям, соединенными с периферийными трассами с односторонним движением с развязками в трех пунктах.

В Финляндии осуществляется проект планировки и застройки новых 3-х уровневого общественного центра в Хельсинки. Он запроектирован на берегу залива Тееле на участке, ограниченном железнодорожным вокзалом и зданием парламента. Для полного разделения движения пешеходов и транспорта на всех автомагистралях в местах пересечения предусмотрены подземные развязки. В подземном пространстве разместятся автостоянки и гаражи для этого района, будут построены переходы, связанные с подземными автостоянками, торговыми и обслуживающими учреждениями.

Для обслуживания населения Монреаля, а также близлежащих городов и пригородов в даунтауне создается крупный комплекс торговых, общественных и транспортных сооружений. Новый общественно-транспортный центр города сооружается на месте старой застройки.

В состав комплекса входят три крупных универсальных магазина, 4 отеля, 8 кинотеатров, 5 высотных административных зданий, 30 ресторанов, 20 крупных специализированных магазинов и крытых рынков, подземные многоярусные автостоянки на 9 тыс. машино-мест. Полезная площадь расположенных в центре магазинов, ресторанов, кинотеатров, книжных магазинов и пешеходных галерей превысит 1 млн. кв. футов (90 тыс. м 2).

Через новый центр проходят главные транспортные артерии города: три подземные линии метрополитена, подземные автомагистрали и две железнодорожные линии (Национальная и Тихоокеанская). Подземная скоростная автомагистраль должна соединять центральную зону города с Трансканадской автострадой. К ней должны примыкать пешеходно-торговые переходы протяженностью 6, 4 км, связанные с подземными автомобильными стоянками, станциями метрополитена, служебными подъездами для грузовых автомобилей и двумя центральными железнодорожными вокзалами.

В Москве на месте гостиница «Россия» будет построен многофункциональный комплекс с гостиницами, киноконцертным залом, залом для камерной музыки, с предприятиями торговли и общественного питания.

Планируется максимально использовать подземное пространство - будут оборудованы автостоянки более чем на тысячу мест. В подземной части комплекса будет воссоздан облик улиц Москвы, системой подземных переходов свяжут Красную площадь и Манежный комплекс на Охотном ряду.

В мировой практике быстрыми темпами идет развитие строительства подземных паркингов и гаражей. Преимущества подземных гаражей и паркингов очевидны. Подземные сооружения дает существенную экономию территории (или практически ее совсем не требуют, за исключением выездного устройства), поскольку могут быть размещены под существующими парками, скверами, площадями, зданиями т. д. Кроме того, для подземных (полуподземных) гаражей могут быть использованы территории, которые не удалось использовать для других целей (овраги, участки с большим уклоном, разного рода выемки, небольшие карьеры и т. п.)

В функциональном отношении подземные гаражи способствуют разделению транспортного и пешеходного движения, общей разгрузке наземного пространства. Например, в г. Москве осуществляется несколько таких проектов. На подземном пространстве под площадью Тверской заставы ведется строительство транспортной развязки с многофункциональным комплексом общей площадью 107387, 5 кв. м., включающим и многоярусный подземный гараж - стоянку на 731 машино-мест, общей площадью 27715 кв. м. Трехуровневый паркинг на 1000 машино-мест будет построен и под Пушкинской площадью. Дополнительно там будут выстроены сувенирные магазины, кафе и небольшой выставочный зал.

Заслуживает внимание стремление к созданию целостной системы подземных сооружений, обслуживающих центральную зону города.

Во многих крупнейших городах мира при реконструкции и строительстве общественных центров основное движение пешеходов проектируется под улицами и площадями на глубине 3, 5м. по подземным пешеходным улицам-переходам с распределительными подземными залами, имеющими световые озелененные колодцы (для освещения подземных помещений). На одном уровне с этими пешеходными подземными коммуникациями сооружаются подземные торговые культурно- бытовые, зрелищные помещения спортивные объекты кафе и рестораны со входами, ориентированными непосредственно на пешеходный подземный уровень. Длина подземных пешеходных коммуникаций измеряется сотнями и тысячами метров.

Современный уровень развития подземного строительства в мегаполисах позволяет решать большинство задач по экономически эффективному и экологически безопасному размещению социально значимых объектов комплексно и оперативно. Годовые темпы сооружения подземных объектов в общем объеме строительства находятся в достаточно большом диапазоне: от 5-8 % в городах, только осваивающих эту область хозяйственной деятельности (например, в Москве), до 25-30% в крупнейших мегаполисах с большим опытом в данной сфере (например, в Париже, Токио, Лондоне).

Отечественная и зарубежная практика использования подземного пространства свидетельствует о большом значении подземного строительства в городах. Масштабы и виды размещаемых под землей городских объектов должны обусловливаться социальными, экономическим и градостроительными соображениями, исходя из необходимости создания наилучших условий обслуживания населения, а также обеспечения наиболее рационального использования городских территорий, повышения эффективности капитальных вложений в градостроительство.


Освоение подземного пространства


Целенаправленное использование подземного пространства городов имеет многовековую историю. Под землей предки располагали оборонительные и культовые сооружения, галереи тайных переходов, хранилища и жилье. Ниже поверхности земли особенно активно стали строить с развитием систем инженерного обеспечения. Трудно перечислить, что спрятано там в современном городе. Однако все подземные сооружения можно объединить в пять групп.

Сети и оборудование инженерного обеспечения городской застройки относят к первой группе. Водопроводящие системы являются самыми распространенными. К ним причисляют инфраструктуры холодного и горячего водоснабжения, а также водоотведения: бытовой, ливневой и промышленной канализации.

В пределах городской застройки размещают не только трубопроводы сетей, но и оборудование. Очень часто его устанавливают в подземных сооружениях. Заглубляют под землю смотровые помещения, насосные и станции перекачки, котельные, бойлерные и тепловые пункты.

Под землей прокладывают системы паро- и газопроводов, снабженные специальным оборудованием, которое нередко прячут под землей. При необходимости строят резервуары для воды, других жидкостей и сжатых газов.

В инженерном хозяйстве городов особое место занимают системы электроснабжения и коммуникации электронной связи. Как правило, электроэнергию и потенциал слабых токов передают по металлическим или оптиковолоконным кабелям. Вместе с оборудованием трансформаторных, релейных, телефонных и ретрансляционных станций их тоже заглубляют в землю.

В результате технического прогресса инженерные системы обновляются, получают дальнейшее развитие. Сегодня трудно предсказать, какое новое оборудование подарит городам XXI в. Например, уже сейчас существуют локальные системы пневмотранспорта твердых отходов. Они пока действуют в пределах квартала или жилой группы, перемещают мусор к накопительно-сортировочным и упаковочным станциям. Может быть, в дальнейшем через такие системы отходы будут транспортировать к мусороперерабатывающим заводам.

Объекты промышленности, технического, бытового и складского назначения часто размещают под землей. Существуют целые подземные заводы оборонного значения. Заглубляют отдельные цеха и лаборатории, которые нужно защитить от пыли и шума. Или наоборот, предотвратить засорения окружающей среды от производственных источников (например радиации).

Рис. 5.14. Подземные торгово-пешеходные улицы:
а - продольный разрез по сооружению в г. Норсбруке (США); б - то же, в г. Эдинбурге (Англия)

В целях экономии городских территорий под землей создают такие предприятия бытового обслуживания, как прачечные и химчистки. Там же размещают склады. В городах широко распространены овощехранилища, холодильники, склады горюче-смазочных материалов, водо- и газохранилища.

Культурно-зрелищные учреждения, торговля и общественное питание являются наиболее притягательными для населения. Подземное пространство достаточно удобно для размещения учрежцений этой группы. В помещениях эпизодического обслуживания отсутствие дневного света допустимо, поскольку не предусмотрено постоянное пребывание в них людей. Но при выборе проектного решения, как правило, рассматривают альтернативу: строить под землей или на поверхности.

Строительство подземных сооружений сопряжено с серьезными инвестициями, значительно превышающими капитальные вложения в наземные объекты. Однако завышение стоимости подземного строительства может быть экономически оправдано, и прежде всего, на плотно застроенных территориях центра города, где земля очень дорога. Кроме того в земле требуется меньше энергии для обогрева помещений в холодный период года, что может привести к сокращению эксплуатационных затрат.

Под землей строят целые пешеходно-торговые улицы значительной протяженности. Как правило, галереи размещают в нескольких уровнях. На рис. 5.14, а показан разрез такой структуры. Здесь горожане движутся вдоль сдаваемых в аренду торговых помещений прямыми путями от одного уровня к другому. Для перехода на галереи другого уровня устроены лестницы и пандусы, но имеются и пристенные декоративно оформленные лифты.

Эспланады освещают искусственно. Однако ядро, высота которого достигает двух ярусов, получает и естественное освещение. Это позволило использовать в интерьере натуральные зеленые насаждения.

Разрез другого линейного сооружения, построенного под открытым рынком, показан на рис. 5.14, б. В нем интересно обыграно сочетание старых зданий с новыми объемами. Вместо пандусов и лифтов использованы эскалаторы. Хотя покрытие имеет световые фонари, оно успешно используется как территория рынка.

Рис. 5.15 Компактный подземный центр в г. Миннеаполисе (США), разрез по центральной части

Рис. 5. 16. Подземный торгово-рекреационный комплекс на Манежной площади в Москве (авторский коллектив под руководством архит. М.М. Посохина):
а -разрез; б - план; 1 - вход из вестибюля станции метро; 2-то же, с поверхности площади

Ввод в эксплуатацию торгово-пешеходного молла повысил привлекательность наземных магазинов и торговых павильонов.

В практике градостроительства имеет место устройство компактных моллов. Разрез одного из них изображен на рис. 5.15. Сооружение представляет трехуровневую систему, два из которых являются рабочими, а нижний используется как складской. Он снабжен рампами для грузового транспорта с товарами.

Рис. 5.17. Подземная транспортная магистраль в сложившейся застройке:
а - проложенная под зданиями; б-то же, под прогулочной эспланадой; 1 - стальные трубы с монолитным железобетонным сердечником, уложенные методом продавливания; 2 - вертикальные конструкции, выполненные методом «стена в грунте»; 3 - габариты существующих фундаментов; 4 - анкерные крепления кустами свай; 5 - подпорная стена набережной; 6-дренирующий слой; 7-коллектор для коммуникаций; 8 - дополнительно заглубленные фундаменты

Центральный дворик прямоугольной формы, несколько вытянутый между двумя рядами магазинов, имеет одну особенность. Его легкая стальная крыша приподнята над покрытием этих магазинов, что создает возможность осветить помещения естественным светом через фонари.

Аналогичные моллы имеются в России. Так, на одной из центральных площадей Москвы в конце XIX в. построен двухуровневый торгово-рекреаци-онный комплекс, показанный на рис. 5.16. В нем размещены два крупных универмага и магазины розничной торговли. Включены и учреждения питания: ресторан, кафе и бар. Не забыты объекты культуры. Оборудован археологический музей «Исторический театр».

В комплексе удачно решены связи с наземным и внеуличным транспортом. Входы со станции метрополитена объединены с переходом, ведущим к входам в торговые помещения. Предусмотрен подземный гараж на 370 автомашин.

На покрытии верхнего яруса организована озелененная рекреационная зона. Она объединена со старейшим зеленым массивом Москвы -Александровским садом. Река Неглинка частично освобождена из коллектора, что позволило дополнить парковый комплекс еще одним декоративным элементом - водными поверхностями.

Рис. 5.18. Проект реконструкции Тверской улицы в Москве. Фрагмент разреза с использованием подземного пространства под проезжую часть и для размещения стоянок (Мастерская №2 Моспроекта-2)

Многие весьма разнообразные сооружения дорожно-транспортной группы убирают под землю, преследуя две цели. Во-первых, сократить пагубное влияние шума на городскую среду, во-вторых, достичь экономии площадей, занятых транспортными коммуникациями.

Движение транспорта на пересечениях улиц и перегонах между перекрестками организовывают, строя эстакады и тоннели. Рассмотрим методы устройства подземных сооружений. На перегонах проезды прокладывают под землей в определенных случаях. Например, когда на плотно застроенной территории спрямляют трассу или сквозь застройку пробивают новую скоростную магистраль. На рис. 5.17, а показан один из вариантов устройства тоннеля в охранной зоне историко-архитектурной среды города.

Он несет двоякую функцию. С одной стороны, в его пределах объединено разностороннее движение транспорта, которое осуществляется по двум параллельным улицам, изображенным пунктиром внизу на плане. С другой - тоннель является пересечением в двух уровнях с улицей городского значения, перпендикулярной ему.

Здесь интересна интерпретация способа «стена в грунте». Боковые стены тоннеля нельзя было выполнить, традиционно установив оборудование сверху. Поэтому их возводили горизонтальной проходкой, нагнетая раствор водовоз-душным способом. Покрытия штольни выполнили способом продавливания стальных труб с последующим устройством в них железобетонного сердечника.

Другой пример-, иллюстрируемый рис. 5.17, б, более прост, поскольку его осуществляли на свободной от зданий трассе. Сквозное движение переведено под землю, что позволило на месте проезжей части набережной реки устроить прогулочную эспланаду, одновременно сократив воздействие транспортного шума на прилегающую застройку.

Рис 5.19. Подземные гаражи:
а - скатно-винтового типа; б-то же, роторного с вращающейся вокруг вертикальной оси кабиной лифта- в - с подъемником конвейером-монорельсом; 1 - машинное отделение подъемника; 2 - кабина подъемника; 3устанавливаемая автомашина; 4 - монорельс конвейера; 5 - передвигающаяся по монорельсу платформа для автомашин

Авторы не рассматривают другие виды пересечений в двух уровнях, оборудованные подземными сооружениями. Эти вопросы достаточно полно рассмотрены в специальной литературе по организации движения.
Одной из серьезнейших транспортных проблем городов России является проблема хранения индивидуального автотранспорта. В прошлые времена ей не уделяли должного внимания. Градостроители предполагали, что машиностроительная промышленность страны не может обеспечить спрос на автомашины.

Рис. 5.20. Полуподземные стоянки-гаражи:
а - врезанная в холм; б - во дворе, совмещенная с подземным проездом для загрузки товаров в магазины (въезды в подземное пространство с торцов); в - во дворе-«колодце», перекрытом на уровне пола второго этажа и с использованием габарита здания; г - то же, но под частью двора; 1 -воздушные вытяжки из гаража; 2 - газонепроницаемое перекрытие; 3 - поверхность срезаемого холма; 4 - проезд в магазины; 5 - пандус (стрелками показаны въезды в гараж)

В проекты новых городских образований закладывались решения с минимальным по международным стандартам количеством автостоянок. При реконструкции старозастроенных территорий их практически не предусматривали за неимением свободных площадей внутри кварталов. В результате улицы, переулки и дворы крупных городов оказались заполненными отстаивающимися машинами.

В пределах старой застройки смягчить описываемое явление можно путем строительства подземных стоянок. Временные стоянки необходимо строить одновременно с административными зданиями и торгово-рекреационными комплексами. Иногда совмещать с торговыми сооружениями, размещая в специально выделенных ярусах торгово-пешеходных улиц. Одно из таких решений показано на рис. 5.18. На фрагменте видно, как решены стоянки в нижних ярусах подземного сооружения под Тверской улицей в Москве.

В пределах дворового пространства кварталов строят многоэтажные стоянки (рис. 5.19). Как правило, они должны быть компактными и не занимать большие площади. Поэтому рамповые въезды на ярусы многоместных стоянок, типа изображенных на рис. 5.19, д, делают редко. Чаще рампы заменяют лифтами-подъемниками (рис. 5.19, б и в).

Многоэтажные многоместные стоянки являются сложными инженерными сооружениями, возведение которых может растянуться на годы. В условиях функционирующей жилой застройки такое строительство не всегда осуществимо, поэтому во всем мире при реконструкции жилых кварталов прибегают к решениям, показанным на рис. 5.20. В одном случае используют рельеф местности (схема а и в), в другом -совмещают с подъездами в складские зоны магазинов (схема б), в третьем -устраивают короткие рампы (схема г).

Частичное размещение стоянки в габаритах здания рационально, если оно построено по двух- и трехпролетной схемам, но с внутренними опорами в виде колонн. Приспособление подвалов домов с внутренними стенами нерационально, поскольку требует больших затрат на пробивку и усиление проемов или замену стен на столбы.

← Вернуться

×
Вступай в сообщество «koon.ru»!
ВКонтакте:
Я уже подписан на сообщество «koon.ru»