Home experiments for children 5 years old. Interesting chemistry experiments you can do at home

Subscribe
Join the “koon.ru” community!
In contact with:

Guys, we put our soul into the site. Thank you for that
that you are discovering this beauty. Thanks for the inspiration and goosebumps.
Join us on Facebook And In contact with

There are very simple experiments that children remember for the rest of their lives. The guys may not fully understand why this is all happening, but when time will pass and they find themselves in a physics or chemistry lesson, a very clear example will certainly emerge in their memory.

website I collected 7 interesting experiments that children will remember. Everything you need for these experiments is at your fingertips.

Fireproof ball

Will need: 2 balls, candle, matches, water.

Experience: Inflate a balloon and hold it over a lit candle to demonstrate to children that the fire will make the balloon burst. Then pour plain tap water into the second ball, tie it and bring it to the candle again. It turns out that with water the ball can easily withstand the flame of a candle.

Explanation: The water in the ball absorbs the heat generated by the candle. Therefore, the ball itself will not burn and, therefore, will not burst.

Pencils

You will need: plastic bag, simple pencils, water.

Experience: Fill the plastic bag halfway with water. Use a pencil to pierce the bag right through where it is filled with water.

Explanation: If you pierce a plastic bag and then pour water into it, it will pour out through the holes. But if you first fill the bag halfway with water and then pierce it with a sharp object so that the object remains stuck into the bag, then almost no water will flow out through these holes. This is due to the fact that when polyethylene breaks, its molecules are attracted closer to each other. In our case, the polyethylene is tightened around the pencils.

Unbreakable balloon

You will need: balloon, a wooden skewer and some dishwashing liquid.

Experience: Coat the top and bottom with the product and pierce the ball, starting from the bottom.

Explanation: The secret of this trick is simple. In order to preserve the ball, you need to pierce it at the points of least tension, and they are located at the bottom and at the top of the ball.

Cauliflower

Will need: 4 glasses of water, food colorings, cabbage leaves or white flowers.

Experience: Add any color of food coloring to each glass and place one leaf or flower in the water. Leave them overnight. In the morning you will see that they have turned different colors.

Explanation: Plants absorb water and thereby nourish their flowers and leaves. This happens due to the capillary effect, in which water itself tends to fill the thin tubes inside the plants. This is how flowers, grass, and big trees. By sucking in tinted water, they change color.

floating egg

Will need: 2 eggs, 2 glasses of water, salt.

Experience: Carefully place the egg in a glass with a simple clean water. As expected, it will sink to the bottom (if not, the egg may be rotten and should not be returned to the refrigerator). Pour into the second glass warm water and stir 4-5 tablespoons of salt in it. For the purity of the experiment, you can wait until the water cools down. Then place the second egg in the water. It will float near the surface.

Explanation: It's all about density. Average density the eggs are much larger than those of plain water, so the egg sinks down. And the density of the salt solution is higher, and therefore the egg rises up.

Crystal lollipops

Will need: 2 cups of water, 5 cups of sugar, wooden sticks for mini kebabs, thick paper, transparent glasses, saucepan, food coloring.

Experience: In a quarter glass of water, boil sugar syrup with a couple of tablespoons of sugar. Sprinkle some sugar onto the paper. Then you need to dip the stick in the syrup and collect the sugar with it. Next, distribute them evenly on the stick.

Leave the sticks to dry overnight. In the morning, dissolve 5 cups of sugar in 2 glasses of water over a fire. You can leave the syrup to cool for 15 minutes, but it should not cool too much, otherwise the crystals will not grow. Then pour it into jars and add different food colorings. Place the prepared sticks in a jar of syrup so that they do not touch the walls and bottom of the jar; a clothespin will help with this.

Explanation: As the water cools, the solubility of sugar decreases, and it begins to precipitate and settle on the walls of the vessel and on your stick seeded with sugar grains.

Lighted match

Will be needed: Matches, flashlight.

Experience: Light a match and hold it at a distance of 10-15 centimeters from the wall. Shine a flashlight on the match and you will see that only your hand and the match itself are reflected on the wall. It would seem obvious, but I never thought about it.

Explanation: Fire does not cast shadows because it does not prevent light from passing through it.

The ability to see miracles in everyday objects distinguishes a genius from other people. Formed creativity V early childhood when the baby inquisitively studies the world. Scientific experiments, including experiments with water, - easy way get your child interested in natural sciences and an excellent form of family leisure.

From this article you will learn

Why water is good for home experiments

Water is the ideal substance to get acquainted with physical properties items. The advantages of the substance we are familiar with are:

  • accessibility and low cost;
  • the ability to exist in three states: solid, vapor and liquid;
  • the ability to easily dissolve various substances;
  • the transparency of the water ensures the clarity of the experience: the baby will be able to explain the result of the study himself;
  • safety and non-toxicity of substances necessary for experiments: the child can touch with his hands everything that interests him;
  • no need additional tools and equipment, special skills and knowledge;
  • You can conduct research both at home and in kindergarten.

The complexity of the experiments depends on the age of the child and the level of his knowledge. It is better to start experiments with water for children with simple manipulations; in older children preschool educational institution group or at home.

Experiments for kids (4-6 years old)

All little children enjoy the process of pouring and mixing liquids. different color. The first lessons can be devoted to getting to know the organoleptic properties of the substance: taste, smell, color.

In children preparatory group You may ask what is the difference between mineral water and sea water. In kindergarten, the results of research do not need to be proven and what is happening can be explained in accessible words.

Transparency experience

You will need two transparent glasses: one with water, the other with an opaque liquid, such as tomato juice, milk, cocktail tubes or spoons. Place objects in each container and ask the kids, in which of the cups is the straw visible and in which is not? Why? Which substance is transparent and which is impenetrable?

Drowning - not drowning

You need to prepare two glasses of water, salt and raw fresh egg. Add salt to one of the glasses at the rate of two tablespoons per glass. If you put an egg in a clean liquid, it will sink to the bottom, and if you put it in a salty liquid, it will appear on the surface of the water. The child will develop a concept of the density of matter. If you take a large container and gradually add fresh water in salted water, the egg will gradually sink.

Freezing

On initial stage It will be enough to pour water into the mold with the child and put it in the freezer. You can watch together the process of melting an ice cube, and speed up the process by touching it with your fingers.

Then complicate the experiment: put a thick thread on an ice cube and sprinkle the surface with salt. After a few moments, everything will grab together and the cube can be lifted up by the thread.

A fascinating sight is represented by melting cubes of colored ice placed in a transparent container with vegetable oil (you can take baby oil). Droplets of water sinking to the bottom form a bizarre pattern that is constantly changing.

Steam is also water

For the experiment, you need to boil water. Notice to the children how steam rises above the surface. Hold a mirror or glass saucer over a container of hot liquid, such as a thermos. Show how droplets flow from it. Make a conclusion: if you heat water, it will turn into steam; when cooled, it will turn into a liquid state again.

"CONSPIRACY"

It's not an experience, but rather a focus. Before starting the experiment, ask the kids if water in a closed container can change color under a magic spell. In front of the children, say a spell, shake the jar, and the colorless liquid will become colored.

The secret is that water-soluble paint, watercolor or gouache is applied to the lid of the container in advance. When shaken, the water washes away the paint layer and changes color. The main thing is not to turn the inside of the lid towards the audience.

Broken pencil

The simplest experiment demonstrating the refraction of an image in a liquid is placing a tube or pencil in a transparent glass filled with water. The part of the product immersed in liquid will appear deformed, causing the pencil to appear broken.

The optical properties of water can also be checked in this way: take two eggs of the same size and immerse one of them in water. One will appear larger than the other.

Expansion on freezing

Take plastic cocktail straws, cover one end with plasticine, fill with water to the brim and seal. Place the straw in the freezer. After a while, notice to the baby that the liquid, freezing, expanded and displaced the plasticine plugs. Explain that water can rupture a container if exposed to low temperatures.

Dry cloth

Place a dry paper napkin at the bottom of an empty glass. Turn it over and lower it vertically into a bowl of water with the edges down to the bottom. Prevent liquid from getting inside by holding the glass with force. Also remove the glass from the water in a vertical direction.

If everything is done correctly, the paper in the glass will not get wet; air pressure will prevent this. Tell the children the story of a diving bell that can be used to lower people to the bottom of a body of water.

Submarine

Place a tube in a glass filled with water and bend it in the lower third. We immerse the glass completely upside down in a container of water so that part of the straw is on the surface. We blow into it, the air instantly fills the glass, it jumps out of the water and turns over.

You can tell the children that fish use this technique: to sink to the bottom, they squeeze with their muscles air bubble, and some of the air comes out of it. To rise to the surface, they pump up air and float up.

Bucket rotation

To carry out this experiment, it is advisable to call your dad for help. The procedure is as follows: take a strong bucket with a strong handle and fill it halfway with water. A more spacious place is chosen; it is advisable to conduct the experiment in nature. You need to take the bucket by the handle and quickly rotate it so that the water does not spill. When the experiment is over, you can watch the splashes spilling out of the bucket.

If your child is old enough, explain that liquid is held in place by centrifugal force. You can experience its effect on attractions whose operating principle is based on circular motion.

Vanishing coin

To demonstrate this experiment, fill a quart jar with water and close the lid. Take out a coin and give it to the baby so that he can be convinced that it is an ordinary one. Have your child place it on the table and you place the jar on top. Ask your child if he sees the money. Remove the container and the coin will be visible again.

floating paper clip

Before starting the experiment, ask your child if they drown in water metal objects. If he finds it difficult to answer, throw a paper clip vertically into the water. She will sink to the bottom. Tell your child that you know a magic spell to keep the paperclip from sinking. Using a flat hook bent from a second specimen, slowly and carefully place a horizontal paperclip on the surface of the water.

To prevent the product from completely sinking to the bottom, first rub it with a candle. The trick can be carried out thanks to a property of water called surface tension.

Anti-spill glass

For another experiment based on the properties of surface tension of water, you will need:

  • transparent smooth glass glass;
  • a handful of small metal objects: nuts, washers, coins;
  • oil, mineral or vegetable;
  • chilled water.

Before conducting the experiment, you need to grease the edges of a clean, dry glass with oil. Fill it with water and lower the metal objects one at a time. The surface of the water will no longer be flat and will begin to rise above the edges of the glass. At some point, the film on the surface will burst and the liquid will spill. Oil in this experiment is needed to reduce the connection between water and the surface of the glass.

Flowers on the water

Required materials and tools:

  • paper of different densities and colors, cardboard;
  • scissors;
  • glue;
  • wide container with water: basin, deep tray, dish.

The preparatory stage is making flowers. Cut the paper into squares with a side of 15 centimeters. Fold each one in half and then double again. Randomly cut out the petals. Bend them in half so that the petals form a bud. Dip each flower into the prepared water.

Gradually the flowers will begin to open. The speed of unraveling will depend on the density of the paper. The petals straighten due to swelling of the fibers of the material.

Treasure Hunt

Collect small toys, coins, beads and freeze them in one or more pieces of ice. The essence of the game is that as it thaws, objects will appear on the surface. To speed up the process, you can use kitchen utensils And various instruments: forks, tweezers, knife with a safe blade. If several children are playing, you can arrange a competition.

Everything is absorbed

The experience introduces the child to the ability of objects to absorb liquids. To do this, take a sponge and a plate of water. Dip the sponge into the plate and watch with your child as the water rises and the sponge becomes wet. Experiment with various items, some have the ability to absorb liquids, while others do not.

Ice cubes

Children love to freeze water. Experiment with them with shapes and colors: kids will make sure that the liquid follows the shape of the container in which it is placed. Freeze the colored water into cubes, first insert toothpicks or straws into each.

From the freezer you will get a lot of colorful boats. Put on paper sails and lower the boats into the water. The ice will begin to melt, forming bizarre colored stains: this is the diffusion of liquid.

Experiments with water of different temperatures

Process stages and conditions:

  1. Prepare four identical glass glasses, watercolor paints or food coloring.
  2. Pour into two glasses cold water, at two - warm.
  3. Color warm water black and cold water yellow.
  4. Place a glass with cold water into a plate, cover the container with warm black liquid with a plastic card, turn it over and place it so that the glasses are located symmetrically.
  5. Carefully remove the card, being careful not to dislodge the glasses.
  6. Cold and warm water will not mix due to the properties of physics.

Repeat the experiment, but this time place a glass of hot water down.

Conduct all experiments in kindergarten in a playful way.

Experiments for schoolchildren

Water tricks for schoolchildren should be explained already in elementary grade, introducing them to the simplest scientific concepts, then the young magician will easily master both physics and chemistry in grades 8–11.

Color layers

Take a plastic bottle, fill a third of it with vegetable oil, a third with water, and leave another third empty. Pour food coloring into the bottle and seal it with a lid. A child can see that oil is lighter than air, and water is heavier.

The oil will remain unchanged, but the water will be colored. If you shake the bottle, the layers will shift, but after a few moments everything will be as it was. When placing the container in the freezer, the layer of oil will sink to the bottom and the water will freeze on top.

Sippy sieve

Everyone knows that you cannot hold water in a sieve. Show your child a trick: grease a sieve with oil and shake. Carefully pour some water along the inside edge of the sieve. Water will not flow out, since it will be retained by the oil film. But if you run your finger along the bottom, it will collapse and the liquid will flow out.

Experiment with glycerin

The experiment can be carried out on the eve of the New Year. Take a jar with a screw cap, small plastic toy, glitter, glue and glycerin. Glue the toy, Christmas tree, snowman to inside covers.

Pour water into a jar, add glitter and glycerin. Close the lid tightly with the figurine inside and turn the container over. Thanks to glycerin, the sparkles will swirl beautifully around the figure if you regularly turn the structure over. The jar can be given as a gift.

Making a cloud

It's more of an environmental experiment. If your child asks you what clouds are made of, do this experiment with water. Pour into a 3 liter jar hot water, approximately 2.5 centimeters. Place pieces of ice on a saucer or baking sheet and place on the jar so that the neck is completely closed.

Soon a cloud of fog (steam) forms inside the container. You can draw your preschooler's attention to condensation and explain why it is raining.

Tornado

Often both children and adults are interested in how such an atmospheric phenomenon as a tornado is formed. Together with your children, you can answer this question by arranging the following experiment with water, which consists of the following steps:

  1. Prepare two 2-liter plastic bottles, tape, and a metal washer with a diameter of 2.5.
  2. Fill one of the bottles with water and place a washer on the neck.
  3. Turn the second bottle over, place it on top of the first and tightly wrap the top of both bottles with tape to prevent water from spilling out.
  4. Turn the structure over so that the water bottle is on top.
  5. Create a hurricane: start rotating the device in a spiral. The flowing stream will turn into a mini-tornado.
  6. Observe the process happening in the bottles.

A tornado can also be created in a bank. To do this, fill it with water, not reaching the edges by 4-5 centimeters, add dishwashing detergent. Close the lid tightly and shake the jar.

Rainbow

You can explain the origin of the rainbow to your child as follows. In a sunny room, place a wide container of water and place a sheet of white paper next to it. Place a mirror in the container and catch it Sunbeam, direct it towards the sheet so that a spectrum appears. You can use a flashlight.

Lord of matches

Pour water into a plate and let it float on the surface of the match. Dip a piece of sugar or soap into the water: in the first case, the matches will gather around the piece, in the second, they will float away from it. This happens because sugar increases the surface tension of water, while soap decreases it.

Water flows up

Place white flowers in a container of water colored with food coloring, preferably carnations or pale green plants such as celery. After some time, the flowers will change color. You can do it simpler: use white paper napkins, not flowers, in the experiment with water.

An interesting effect can be achieved if one edge of the towel is placed in water. a certain color, and the other - in another, contrasting shade.

Water from thin air

A fascinating home experiment clearly demonstrates how the condensation process occurs. To do this, take glass jar, fill it with ice cubes, add a spoonful of salt, shake several times and close the lid. After 10 minutes, droplets of water will appear on the outer surface of the jar.

For clarity, wrap it in a paper towel and make sure there is enough water. Tell your child where in nature you can see the process of water condensation: for example, on cold stones under the sun.

Paper cover

If you turn a glass of water over, it will spill out. Can a sheet of paper hold water? To answer the question, cut out a flat lid from thick paper that is 2-3 centimeters larger than the diameter of the edges of the glass.

Fill the glass about halfway with water, place a piece of paper on top and carefully turn it over. Due to air pressure, the liquid must remain in the container.

Thanks to this joke, a student can earn popularity among his classmates.

Soap Volcano

You will need: detergent, soda, vinegar, cardboard for the “volcano”, iodine. Pour water, vinegar, dish soap and a few drops of iodine or other dye into a glass. Make a cone out of dark cardboard and wrap the container with the ingredients so that the edges touch. Pour baking soda into a glass and the volcano will begin to erupt.

Spark plug pump

This fun water trick demonstrates the power of gravity. Take a small candle, place it on a saucer and light it. Pour some colored water into a saucer. Cover the candle with a glass, the liquid will gradually be drawn into it. The explanation lies in the change in pressure inside the container.

Growing Crystals

The result of this experiment will be to obtain beautiful crystals on the surface of the wire. To grow them you need a strong salt solution. You can determine whether the solution is sufficiently saturated by adding a new portion of salt. If it no longer dissolves, the solution is ready. How cleaner water, all the better.

To clear the solution of debris, pour it into another container. Dip a wire with a loop at the end into the solution and place everything in a warm place. To obtain patterned crafts, twist the wire as required. After a few days, the wire becomes covered with salt “snow”.

Dancing coin

Needed Glass bottle, coin and water. Place the empty bottle without the cap in the freezer for 10 minutes. Place a coin soaked in water on the neck of the bottle. In less than a minute, the cold air will expand from heating and begin to displace the coin, causing it to bounce on the surface.

Magic ball

Tools and materials: vinegar, baking soda, lemon, glass, balloon, bottle, electrical tape and funnel.

Process progress:

  • Pour water into a bottle, add a teaspoon of soda.
  • Mix three tablespoons of vinegar and lemon juice.
  • Quickly pour the mixture into the water bottle through the funnel and place the ball on the neck of the bottle containing the water and soda mixture. The reaction will occur instantly: the composition will begin to “boil” and the balloon will inflate as air is displaced.

To ensure that air from the bottle gets only into the ball, wrap the neck with electrical tape.

Balls in a frying pan

If you pour a little water onto a hot surface, it will disappear (evaporate). When you add another portion, balls resembling mercury form in the pan.

Burning liquid

Tape it up work surface sparkler sticks with tape, leaving the ends, set on fire and lower into a transparent vessel with water. The sticks will not go out, thanks to their chemical composition in water, their fire burns even brighter, creating the effect of a flaming liquid.

Water management

The intensity of sound is another means of changing the direction of fluid flow. The result can be observed using a powerful speaker. Under the influence of music or other sound effects the water takes on a bizarre, fantastic shape, forming foam and mini-fountains.

Rainbow water

The cognitive experiment is based on changes in the density of water. For the process, take four small glasses of water, dyes, a syringe and granulated sugar.

Add dye to the first glass and leave for a while. In the remaining mixture, dissolve 1, 2 and 3 teaspoons of sugar and dyes in succession. different colors. Unsweetened liquid is poured into a transparent glass with a syringe. Then, using a syringe, water is carefully released to the bottom, to which 0.5 teaspoon of sugar is added.

Third and fourth steps: a solution with an average and maximum concentration is released in the same way: closer to the bottom. If everything is done correctly, the glass will contain water with multi-colored layers.

colorful lamp

A cool experience delights not only children 5-6 years old, but also junior schoolchildren, and in adolescents. Equal parts of water and sunflower oil are poured into a glass or plastic bottle and dye is added. The process is started by dropping an effervescent aspirin tablet into water. The effect will be enhanced if this experiment is carried out in dark room, providing illumination using a flashlight.

Ice Formation

For the trick you will need plastic bottle with a capacity of 0.5 liters, filled with distilled water without gas, and freezer. Place the container in the freezer, after 2 hours, take it out and sharply hit it on a hard surface.

The water will begin to turn into ice before your eyes. The experiment is explained by the composition of distilled water: it lacks centers responsible for crystallization. After impact, bubbles appear in the liquid and the freezing process begins.

This is not all the manipulations carried out with water. Substances such as starch, clay, and shampoo change its properties beyond recognition. Children aged 6-7 years can easily do almost all experiments themselves in the kitchen or experiment under the supervision of their parents by watching a video tutorial or explanatory pictures.

More cool experiences shown in this video.

If necessary, the small chemist should be offered advice or assistance. It's even better to do all the research together: even adults will discover a lot amazing properties water.

IMPORTANT! *when copying article materials, be sure to indicate an active link to the original

Faktrum publishes 8 experiments that will delight children and raise many new questions in them.

1. Lava lamp

Needed: Salt, water, a glass of vegetable oil, some food coloring, a large transparent glass or glass jar.

Experience: Fill the glass 2/3 full with water, pour into the water vegetable oil. Oil will float on the surface. Add food coloring to water and oil. Then slowly add 1 teaspoon of salt.

Explanation: Oil is lighter than water, so it floats on the surface, but salt is heavier than oil, so when you add salt to a glass, the oil and salt begin to sink to the bottom. As the salt breaks down, it releases oil particles and they rise to the surface. Food coloring will help make the experience more visual and spectacular.

2. Personal rainbow

Needed: A container filled with water (bathtub, basin), a flashlight, a mirror, a sheet of white paper.

Experience: Pour water into the container and place a mirror on the bottom. We direct the light of the flashlight onto the mirror. The reflected light must be caught on the paper on which a rainbow should appear.

Explanation: A ray of light consists of several colors; when it passes through the water, it breaks down into its component parts - in the form of a rainbow.

3. Vulcan

Needed: Tray, sand, plastic bottle, food coloring, soda, vinegar.

Experience: A small volcano should be molded around a small plastic bottle from clay or sand - for the surroundings. To cause an eruption, you should pour two tablespoons of soda into the bottle, pour in a quarter cup of warm water, add a little food coloring, and finally pour in a quarter cup of vinegar.

Explanation: When baking soda and vinegar come into contact, a violent reaction begins, releasing water, salt and carbon dioxide. Gas bubbles push the contents out.

4. Growing crystals

Needed: Salt, water, wire.

Experience: To obtain crystals, you need to prepare a supersaturated salt solution - one in which the salt does not dissolve when adding a new portion. In this case, you need to keep the solution warm. To make the process go better, it is desirable that the water be distilled. When the solution is ready, it must be poured into a new container to get rid of the debris that is always in the salt. Next, you can lower a wire with a small loop at the end into the solution. Place the jar in a warm place so that the liquid cools more slowly. In a few days, beautiful salt crystals will grow on the wire. If you get the hang of it, you can grow fairly large crystals or patterned crafts on twisted wire.

Explanation: As the water cools, the solubility of the salt decreases, and it begins to precipitate and settle on the walls of the vessel and on your wire.

5. Dancing coin

Needed: Bottle, coin to cover the neck of the bottle, water.

Experience: Place the empty, unclosed bottle in the freezer for a few minutes. Moisten a coin with water and cover the bottle removed from the freezer with it. After a few seconds, the coin will begin to jump and, hitting the neck of the bottle, make sounds similar to clicks.

Explanation: The coin is lifted by air, which compressed in the freezer and occupied a smaller volume, but has now heated up and begun to expand.

6. Colored milk

Needed: Whole milk, food coloring, liquid detergent, cotton swabs, plate.

Experience: Pour milk into a plate, add a few drops of coloring. Then you need to take a cotton swab, dip it in the detergent and touch the swab to the very center of the plate with milk. The milk will begin to move and the colors will begin to mix.

Explanation: Detergent reacts with fat molecules in milk and sets them in motion. This is why skim milk is not suitable for the experiment.

7. Fireproof bill

Needed: Ten-ruble bill, tongs, matches or lighter, salt, 50% alcohol solution (½ part alcohol to ½ part water).

Experience: Add a pinch of salt to the alcohol solution, immerse the bill in the solution until it is completely saturated. Use tongs to remove the bill from the solution and allow the excess liquid to drain. Set the bill on fire and watch it burn without getting burned.

Explanation: As a result of the combustion of ethyl alcohol, water, carbon dioxide and heat (energy) are formed. When you set fire to a bill, the alcohol burns. The temperature at which it burns is not sufficient to evaporate the water with which it is soaked. paper bill. As a result, all the alcohol burns out, the flame goes out, and the slightly damp ten remains intact.

8. Walk on Eggs

Needed: two dozen eggs in cells, a garbage bag, a bucket of water, soap and good friends.

Experience: Place a garbage bag on the floor and place two boxes of eggs on it. Check the eggs in the cartons and replace if you notice a cracked egg. Also check that all the eggs are oriented in the same direction - either with the sharp ends up or with the blunt ends. If you place your foot correctly, distributing your weight evenly, you can stand or walk on eggshells barefoot. If you don’t want the extreme of careless movement, you can put a thin board or tile on top of the eggs. Then nothing will interfere.

Explanation: Everyone knows that an egg is easy to break, but the shell of eggs is very strong and can withstand a lot of weight. The “architecture” of the egg is such that with uniform pressure, the stress is distributed throughout the shell and prevents it from breaking.

More than 160 experiments that clearly demonstrate the laws of physics and chemistry were filmed, edited and posted online on the scientific and educational video channel “ Simple Science" Many of the experiments are so simple that they can be easily repeated at home - they do not require special reagents or equipment. Letidor was told by Denis Mokhov, author and Chief Editor scientific and educational video channel “Simple Science”.

– How did your project begin?

Since childhood, I have loved various experiences. For as long as I can remember, I have been collecting different ideas for experiments, in books, TV shows, so that later you can repeat them yourself. When I became a father myself (my son Mark is now 10 years old), it was always important for me to maintain my son’s curiosity and, of course, to be able to answer his questions. After all, like any child, he looks at the world completely differently than adults. And at a certain point, his favorite word became the word “why?” It is from these “why?” home experiments began. After all, telling is one thing, but showing is something completely different. We can say that my child’s curiosity was the impetus for creating the “Simple Science” project.

– How old was your son when you started practicing experiments at home?

We have been doing experiments at home since the moment our son went to school. kindergarten, somewhere after two years. At first these were completely simple experiments with water and balance. For example, jet pack , paper flowers on the water , two forks on a match head. My son immediately liked these funny “tricks.” Moreover, like me, it is always interesting for him not so much to observe as to repeat them himself.

You can conduct interesting experiments in the bathroom with young children: with a boat and liquid soap, paper boat and hot air balloon,
tennis ball and water jet. From birth, a child strives to learn everything new; he will definitely enjoy these spectacular and colorful experiences.

When we are dealing with schoolchildren, even first-graders, then we can go all out. At this age, children are interested in relationships, they will observe the experiment more carefully, and then look for an explanation of why it happens this way and not otherwise. Here it is possible to explain the essence of the phenomenon, the reasons for the interactions, even if not in entirely scientific terms. And when a child encounters similar phenomena during school lessons (including in high school), the teacher’s explanations will be clear to him, because he already knows this from childhood, he has personal experience in this area.

Interesting experiments for younger students

**Package pierced with pencils**

**Egg in a bottle**

Rubber egg

**– Denis, what do you advise parents in terms of the safety of home experiments?** – I would conditionally divide the experiments into three groups: harmless, experiments that require care and experiments, and the last **–** experiments that require compliance with safety precautions. If you are demonstrating how two forks rest on the end of a toothpick, then this is the first case. If you are doing an experiment with atmospheric pressure when a glass of water is covered paper sheet and then turn it over, then you need to be careful not to spill water on electrical appliances **–** do the experiment over the sink. When experiments involve fire, keep a container of water just in case. And if you use any reagents or chemicals (even ordinary vinegar), then it’s better to go to Fresh air or in a well-ventilated room (for example, a balcony) and be sure to put on protective goggles on the child (you can use ski, construction or sunglasses).

**– Where can I get reagents and equipment?** **– ** At home, when conducting experiments with children under 10 years of age, it is best to use publicly available reagents and equipment. This is what each of us has in the kitchen: soda, salt, egg, forks, glasses, liquid soap. Safety is paramount in our business. Especially if your “young chemist,” after successful experiments with you, tries to repeat the experiments on his own. Just don’t need to prohibit anything, all children are inquisitive, and the prohibition will act as an additional incentive! It is better to explain to the child why some experiments cannot be done without adults, what is certain rules, somewhere you need an open area for conducting experiments, somewhere you need latex gloves or glasses. **– Have there been any cases in your practice when an experiment turned into an emergency?** **– ** Well, nothing like that happened at home. But in the editorial office of “Simple Science”, incidents often happen. Once, while doing an experiment with acetone and chromium oxide, we slightly miscalculated the proportions, and the experiment almost got out of control.

And recently, while filming for the Science 2.0 channel, we had to do a spectacular experiment when 2000 table tennis balls fly out of a barrel and fall beautifully to the floor. So, the barrel turned out to be quite fragile and instead of a beautiful flight of balls, there was an explosion with a deafening roar. **– Where do you get ideas for experiments?** **–** We find ideas on the Internet, in popular science books, in the news about some interesting discoveries or unusual phenomena. The main criteria are **–** entertainment and simplicity. We try to choose experiments that are easy to repeat at home. True, sometimes we produce “delicacies” **–** experiments that require unusual devices and special ingredients, but this does not happen too often. Sometimes we consult with professionals from certain fields, for example, when we do experiments on superconductivity at low temperatures or in chemical experiments when rare reagents are required. Our viewers (whose number this month has exceeded 3 million) also help us in finding ideas, for which we, of course, thank them.

When choosing a gift for my eleven-year-old nephew, I couldn’t do without a book))). It was decided to search among books aimed at distracting the guy as much as possible from modern gadgets. Since he is very smart and inquisitive, I hope that summer holidays he will not be bored without a tablet, but with the help of this book and another gift, but that’s another topic. I settled on "Veselye" scientific experiments for children. 30 exciting experiments at home", Egor Belko, Petersburg publishing house

ISBN 978-5-496-01343-7

Home experiments. There is probably no child who would not be interested and would not want to build an erupting volcano at home or “settle” a cloud in a jar, a rainbow in a glass, push an egg into a bottle or grow a purple daisy. And even more so when everything that is needed for these experiments is at home: on the desktop or in mom’s kitchen, and no special reagents or chemicals are needed. The most “dangerous” means for conducting experiments in this book is perhaps vinegar.

On each spread it is given detailed description experiment: necessary materials, a description of the preparation and progress of the experiment and its scientific explanation, as well as clear and colorful illustrated tips. All experiments are very simple, and everything needed to carry them out can be easily found in every home. From the age of 6-7, I think, you can already give a book to a child for independent study, and before this age you can have a great time with mom, or even better with dad (dads are better able to explain the properties of objects and materials, they somehow it turns out simpler and clearer)))











My daughter is almost 3 years old, but we also love to experiment. For example, we have already done, we built an entire installation of a mountain peak and a volcano erupting in it, and with ice and simply painted with “soda” paints, and then “foamed” the drawing with vinegar or, perhaps, a solution of citric acid. The child’s delight is guaranteed, and even if he does not understand the reason for what is happening, he will certainly remember the impressions of what he saw. The goal and task of such activities with a child is to simply and clearly show that any phenomenon in nature or human life has a simple explanation, and we can understand its components; awaken the child’s interest in everything that has a logical scientific explanation, but does not give impetus to curiosity at first sight; teach the child to seek the truth of what is happening; and just to make it clear that from any object or material found in the kitchen, yard or bathroom, you can make something interesting and exciting with your own hands. We have already sent the book to my nephew, but I photographed all the spreads so that I could repeat the experiments with my daughter. There is a lot of information about such things on the Internet now, and if you try, you can compile your own book of “home experiments,” but if you don’t want to spend a lot of time searching or just have a holiday coming up for your beloved children, then this book is worthy of attention.

Return

×
Join the “koon.ru” community!
In contact with:
I am already subscribed to the community “koon.ru”