Hemijska svojstva kiselina. Imena i formule najvažnijih kiselina i soli

Pretplatite se
Pridružite se zajednici “koon.ru”!
U kontaktu sa:

Kiseline su složene tvari čiji molekuli uključuju atome vodika koji se mogu zamijeniti ili zamijeniti atomima metala i kiselinskim ostatkom.

Na osnovu prisustva ili odsustva kiseonika u molekuli, kiseline se dele na kiseline koje sadrže kiseonik(H 2 SO 4 sumporna kiselina, H 2 SO 3 sumporna kiselina, HNO 3 azotna kiselina, H 3 PO 4 fosforna kiselina, H 2 CO 3 ugljična kiselina, H 2 SiO 3 silicijska kiselina) i bez kiseonika(HF fluorovodonična kiselina, HCl hlorovodonična kiselina (hlorovodonična kiselina), HBr bromovodična kiselina, HI jodovodična kiselina, H 2 S hidrosulfidna kiselina).

U zavisnosti od broja atoma vodika u molekulu kiseline, kiseline su jednobazne (sa 1 ​​H atoma), dvobazne (sa 2 H atoma) i trobazne (sa 3 H atoma). Na primjer, dušična kiselina HNO 3 je jednobazna, jer njena molekula sadrži jedan atom vodika, sumpornu kiselinu H 2 SO 4 dvobazni, itd.

Postoji vrlo malo neorganskih spojeva koji sadrže četiri atoma vodika koji se mogu zamijeniti metalom.

Dio molekule kiseline bez vodika naziva se kiselinski ostatak.

Kiseli ostaci mogu se sastojati od jednog atoma (-Cl, -Br, -I) - to su jednostavni kiseli ostaci, ili se mogu sastojati od grupe atoma (-SO 3, -PO 4, -SiO 3) - to su složeni ostaci.

U vodenim rastvorima, tokom reakcija razmene i supstitucije, kiseli ostaci se ne uništavaju:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Reč anhidrid znači bezvodna, odnosno kiselina bez vode. Na primjer,

H 2 SO 4 – H 2 O → SO 3. Anoksične kiseline nemaju anhidride.

Kiseline su dobile ime po nazivu elementa koji tvori kiselinu (sredstvo za stvaranje kiseline) s dodatkom završetaka "naya" i rjeđe "vaya": H 2 SO 4 - sumporna; H 2 SO 3 – ugalj; H 2 SiO 3 – silicijum itd.

Element može formirati nekoliko kisikovih kiselina. U ovom slučaju, naznačeni završeci u nazivima kiselina bit će kada element pokazuje veću valenciju (molekula kiseline sadrži visok sadržaj atoma kisika). Ako element pokazuje nižu valenciju, završetak u nazivu kiseline će biti „prazan“: HNO 3 - dušik, HNO 2 - dušik.

Kiseline se mogu dobiti otapanjem anhidrida u vodi. Ako su anhidridi nerastvorljivi u vodi, kiselina se može dobiti djelovanjem druge jače kiseline na sol tražene kiseline. Ova metoda je tipična i za kisik i za kiseline bez kisika. Kiseline bez kisika se također dobivaju direktnom sintezom iz vodika i nemetala, nakon čega slijedi otapanje rezultirajućeg spoja u vodi:

H 2 + Cl 2 → 2 HCl;

H 2 + S → H 2 S.

Rastvori nastalih gasovitih supstanci HCl i H 2 S su kiseline.

U normalnim uslovima, kiseline postoje u tečnom i čvrstom stanju.

Hemijska svojstva kiselina

Otopine kiseline djeluju na indikatore. Sve kiseline (osim silicijumske) su visoko rastvorljive u vodi. Posebne supstance - indikatori vam omogućavaju da odredite prisustvo kiseline.

Indikatori su supstance složene strukture. Mijenjaju boju ovisno o interakciji s različitim kemikalijama. U neutralnim rastvorima imaju jednu boju, u rastvorima baza imaju drugu boju. U interakciji s kiselinom mijenjaju boju: indikator metil narandže postaje crven, a lakmusov indikator također postaje crven.

Interakcija sa bazama s stvaranjem vode i soli, koja sadrži nepromijenjeni kiselinski ostatak (reakcija neutralizacije):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Interakcija s baznim oksidima sa stvaranjem vode i soli (reakcija neutralizacije). Sol sadrži kiselinski ostatak kiseline koja je korištena u reakciji neutralizacije:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Interakcija sa metalima. Da bi kiseline stupile u interakciju sa metalima, moraju biti ispunjeni određeni uslovi:

1. metal mora biti dovoljno aktivan u odnosu na kiseline (u nizu aktivnosti metala mora se nalaziti prije vodonika). Što se metal dalje nalazi u seriji aktivnosti, to je intenzivnije u interakciji sa kiselinama;

2. kiselina mora biti dovoljno jaka (odnosno sposobna da donira ione vodonika H+).

Kada curi hemijske reakcije kiseline s metalima, nastaje sol i oslobađa se vodik (osim interakcije metala s dušičnom i koncentriranom sumpornom kiselinom):

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Imate još pitanja? Želite li saznati više o kiselinama?
Da biste dobili pomoć od tutora, registrujte se.
Prva lekcija je besplatna!

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.

Formule kiselinaNazivi kiselinaNazivi odgovarajućih soli
HClO4 hlor perhlorati
HClO3 hipohlorni hlorati
HClO2 hlorid hloritima
HClO hipohlorni hipohloritima
H5IO6 jod periodates
HIO 3 jodni jodati
H2SO4 sumporna sulfati
H2SO3 sumporna sulfiti
H2S2O3 tiosumpor tiosulfati
H2S4O6 tetrationic tetrationati
HNO3 nitrogen nitrati
HNO2 azotni nitriti
H3PO4 ortofosforni ortofosfati
HPO 3 metafosforna metafosfati
H3PO3 fosfor fosfiti
H3PO2 fosfor hipofosfiti
H2CO3 ugalj karbonati
H2SiO3 silicijum silikati
HMnO4 mangan permanganata
H2MnO4 mangan manganata
H2CrO4 hrom hromati
H2Cr2O7 dihrom dichromats
HF fluorovodonik (fluorid) fluoridi
HCl hlorovodonična (hlorovodonična) hloridi
HBr bromovodična bromidi
HI vodonik jodid jodidi
H2S hidrogen sulfid sulfidi
HCN cijanovodonik cijanidi
HOCN cijan cijanati

Dozvolite mi da vas ukratko podsjetim konkretni primjeri kako pravilno nazvati soli.


Primjer 1. Sol K 2 SO 4 formira se od ostatka sumporne kiseline (SO 4) i metala K. Soli sumporne kiseline nazivaju se sulfati. K 2 SO 4 - kalijum sulfat.

Primjer 2. FeCl 3 - sol sadrži željezo i ostatak hlorovodonične kiseline(Cl). Naziv soli: gvožđe (III) hlorid. Napomena: in u ovom slučaju ne samo da moramo imenovati metal, već i naznačiti njegovu valenciju (III). U prethodnom primjeru to nije bilo potrebno, jer je valencija natrijuma konstantna.

Važno: naziv soli treba da ukazuje na valenciju metala samo ako metal ima promenljivu valenciju!

Primjer 3. Ba(ClO) 2 - sol sadrži barij i ostatak hipohlorne kiseline (ClO). Naziv soli: barijum hipohlorit. Valencija metala Ba u svim njegovim jedinjenjima je dva; nije potrebno naznačiti.

Primjer 4. (NH 4) 2 Cr 2 O 7. NH 4 grupa se naziva amonijum, valencija ove grupe je konstantna. Naziv soli: amonijum dihromat (dikromat).

U gornjim primjerima naišli smo samo na tzv. srednje ili normalne soli. O kiselim, bazičnim, dvostrukim i kompleksnim solima, solima organskih kiselina ovdje se neće govoriti.

Ako ste zainteresovani ne samo za nomenklaturu soli, već i za metode njihove pripreme i Hemijska svojstva, preporučujem da se okrenete relevantnim odjeljcima priručnika za hemiju: "

Kiseline su hemijska jedinjenja koja su sposobna da doniraju električki nabijeni vodikov jon (kation) i takođe prihvate dva elektrona u interakciji, što rezultira formiranjem kovalentne veze.

U ovom članku ćemo pogledati glavne kiseline koje se proučavaju u srednjoj školi. srednje škole, a također naučiti mnoge zanimljivosti o raznim kiselinama. Hajde da počnemo.

Kiseline: vrste

U hemiji postoji mnogo različitih kiselina koje imaju vrlo različita svojstva. Hemičari razlikuju kiseline po sadržaju kiseonika, isparljivosti, rastvorljivosti u vodi, jačini, stabilnosti i da li pripadaju organskoj ili neorganskoj klasi hemijskih jedinjenja. U ovom članku ćemo pogledati tabelu koja predstavlja najpoznatije kiseline. Tabela će vam pomoći da zapamtite naziv kiseline i njenu hemijsku formulu.

Dakle, sve je jasno vidljivo. Ova tabela prikazuje najpoznatije kiseline u hemijskoj industriji. Tabela će vam pomoći da zapamtite imena i formule mnogo brže.

Vodonik sulfidna kiselina

H 2 S je hidrosulfidna kiselina. Njegova posebnost je u tome što je i gas. Vodonik sulfid je veoma slabo rastvorljiv u vodi, a takođe je u interakciji sa mnogim metalima. Sumporovodikova kiselina pripada grupi "slabih kiselina", čije ćemo primjere razmotriti u ovom članku.

H 2 S ima blago slatkast ukus, a takođe i veoma oštar miris pokvarena jaja. U prirodi se može naći u prirodnim ili vulkanskim gasovima, a oslobađa se i prilikom raspadanja proteina.

Svojstva kiselina su vrlo raznolika; čak i ako je kiselina nezamjenjiva u industriji, može biti vrlo štetna za ljudsko zdravlje. Ova kiselina je veoma toksična za ljude. Kada se udahne mala količina vodonik sulfida, osoba se budi glavobolja, počinje jaka mučnina i vrtoglavica. Ako osoba udahne veliki broj H 2 S, može dovesti do napadaja, kome ili čak trenutne smrti.

Sumporna kiselina

H 2 SO 4 je jaka sumporna kiselina sa kojom se deca upoznaju na časovima hemije u 8. razredu. Hemijske kiseline kao što je sumporna kiselina su veoma jaki oksidanti. H 2 SO 4 djeluje kao oksidant na mnoge metale, kao i na bazične okside.

H 2 SO 4 izaziva hemijske opekotine kada dođe u kontakt sa kožom ili odećom, ali nije tako toksičan kao sumporovodik.

Azotna kiselina

Jake kiseline su veoma važne u našem svetu. Primjeri takvih kiselina: HCl, H 2 SO 4, HBr, HNO 3. HNO 3 je dobro poznata azotna kiselina. Našao je široku primenu u industriji, kao i u poljoprivredi. Koristi se za izradu raznih đubriva, u nakitu, pri štampanju fotografija, u proizvodnji lijekovi i boje, kao i u vojnoj industriji.

Hemijske kiseline kao što je azotna kiselina su veoma štetne za organizam. Pare HNO 3 ostavljaju čireve, izazivaju akutnu upalu i iritaciju respiratornog trakta.

Dušična kiselina

Dušična kiselina se često miješa sa dušičnom kiselinom, ali postoji razlika između njih. Činjenica je da je mnogo slabiji od dušika, ima potpuno drugačija svojstva i djelovanje na ljudski organizam.

HNO 2 je našao široku primenu u hemijskoj industriji.

Fluorovodonična kiselina

Fluorovodonična kiselina (ili fluorovodonik) je rastvor H 2 O sa HF. Formula kiseline je HF. Fluorovodonična kiselina se vrlo aktivno koristi u industriji aluminija. Koristi se za otapanje silikata, jetkanja silicijuma i silikatnog stakla.

Vodonik-fluorid je vrlo štetan za ljudski organizam i, ovisno o svojoj koncentraciji, može biti blagi narkotik. Ako dođe u dodir s kožom, u početku nema promjena, ali nakon nekoliko minuta može se pojaviti oštar bol i hemijska opekotina. Fluorovodonična kiselina je veoma štetna za životnu sredinu.

Hlorovodonična kiselina

HCl je hlorovodonik i jaka je kiselina. Hlorovodonik zadržava svojstva kiselina koje pripadaju grupi jakih kiselina. Kiselina je providna i bezbojna po izgledu, ali se dimi u vazduhu. Hlorovodonik se široko koristi u metalurškoj i prehrambenoj industriji.

Ova kiselina izaziva hemijske opekotine, ali je ulazak u oči posebno opasan.

Fosforna kiselina

Fosforna kiselina (H 3 PO 4) je po svojim svojstvima slaba kiselina. Ali čak i slabe kiseline mogu imati svojstva jakih. Na primjer, H 3 PO 4 se koristi u industriji za obnavljanje željeza od rđe. Osim toga, fosforna (ili ortofosforna) kiselina se široko koristi u poljoprivredi - od nje se proizvode mnoga različita gnojiva.

Svojstva kiselina su vrlo slična - gotovo svaka od njih je vrlo štetna za ljudski organizam, H 3 PO 4 nije izuzetak. Na primjer, ova kiselina također uzrokuje teške hemijske opekotine, krvarenje iz nosa i lomljenje zuba.

Ugljena kiselina

H 2 CO 3 je slaba kiselina. Dobiva se otapanjem CO 2 (ugljični dioksid) u H 2 O (voda). Ugljena kiselina se koristi u biologiji i biohemiji.

Gustina raznih kiselina

Gustina kiselina zauzima važno mjesto u teorijskom i praktičnom dijelu hemije. Poznavajući gustinu, možete odrediti koncentraciju određene kiseline, riješiti probleme kemijskog proračuna i dodati ispravnu količinu kiseline da dovršite reakciju. Gustoća bilo koje kiseline mijenja se ovisno o koncentraciji. Na primjer, što je veći procenat koncentracije, to je veća gustina.

Opća svojstva kiselina

Apsolutno sve kiseline jesu (odnosno, sastoje se od nekoliko elemenata periodnog sistema), a u svom sastavu nužno uključuju H (vodik). Zatim ćemo pogledati koji su uobičajeni:

  1. Sve kiseline koje sadrže kisik (u čijoj se formuli nalazi O) pri razgradnji tvore vodu, a također i kiseline bez kisika se razlažu u jednostavne tvari (na primjer, 2HF se razlaže na F 2 i H 2).
  2. Oksidirajuće kiseline reaguju sa svim metalima u nizu aktivnosti metala (samo onima koji se nalaze lijevo od H).
  3. Oni stupaju u interakciju s raznim solima, ali samo s onima koje je formirala još slabija kiselina.

Prema sopstvenim fizička svojstva kiseline se oštro razlikuju jedna od druge. Na kraju krajeva, oni mogu imati miris ili ne, a također mogu biti različiti agregatna stanja: tečni, gasoviti i čak čvrsti. Čvrste kiseline su veoma zanimljive za proučavanje. Primjeri takvih kiselina: C 2 H 2 0 4 i H 3 BO 3.

Koncentracija

Koncentracija je vrijednost koja određuje kvantitativni sastav bilo koje otopine. Na primjer, kemičari često moraju odrediti koliko je čiste sumporne kiseline prisutno u razrijeđenoj kiselini H 2 SO 4. Da bi to učinili, sipaju malu količinu razrijeđene kiseline u mjernu čašu, izvagaju je i određuju koncentraciju pomoću grafikona gustoće. Koncentracija kiselina je usko povezana s gustoćom; često ih ima pri određivanju koncentracije računski problemi, gdje je potrebno odrediti postotak čiste kiseline u otopini.

Klasifikacija svih kiselina prema broju H atoma u njihovoj hemijskoj formuli

Jedna od najpopularnijih klasifikacija je podjela svih kiselina na jednobazne, dvobazne i, shodno tome, trobazne kiseline. Primeri jednobaznih kiselina: HNO 3 (azotna), HCl (hlorovodonična), HF (fluorovodonična) i druge. Ove kiseline se nazivaju jednobaznim, jer sadrže samo jedan atom H. Takvih kiselina je mnogo, nemoguće je zapamtiti apsolutno svaku. Trebate samo zapamtiti da su kiseline klasificirane prema broju H atoma u njihovom sastavu. Slično su definirane i dvobazne kiseline. Primjeri: H 2 SO 4 (sumporni), H 2 S (vodonik sulfid), H 2 CO 3 (ugalj) i drugi. Tribazni: H 3 PO 4 (fosforni).

Osnovna klasifikacija kiselina

Jedna od najpopularnijih klasifikacija kiselina je njihova podjela na one koje sadrže kisik i bez kisika. Kako zapamtiti bez znanja hemijska formula tvari koje su kiseline koje sadrže kisik?

Sve kiseline bez kiseonika ne sadrže važan element O je kiseonik, ali sadrži H. Stoga se uz njihovo ime uvijek vezuje riječ “vodonik”. HCl je H 2 S - vodonik sulfid.

Ali možete napisati i formulu zasnovanu na nazivima kiselina koje sadrže kiseline. Na primjer, ako je broj O atoma u tvari 4 ili 3, nazivu se uvijek dodaje sufiks -n-, kao i završetak -aya-:

  • H 2 SO 4 - sumpor (broj atoma - 4);
  • H 2 SiO 3 - silicijum (broj atoma - 3).

Ako tvar ima manje od tri atoma kisika ili tri, tada se sufiks -ist- koristi u nazivu:

  • HNO 2 - azotni;
  • H 2 SO 3 - sumpor.

Opća svojstva

Sve kiseline imaju kiselkast i često blago metalni ukus. Ali postoje i druga slična svojstva koja ćemo sada razmotriti.

Postoje supstance koje se nazivaju indikatori. Indikatori mijenjaju boju, ili boja ostaje, ali se mijenja njena nijansa. Ovo se dešava kada na indikatore utiču druge supstance, kao što su kiseline.

Primjer promjene boje je tako poznati proizvod kao što je čaj i limunova kiselina. Kada se limun doda u čaj, čaj postepeno počinje da primetno svetli. To je zbog činjenice da limun sadrži limunsku kiselinu.

Ima i drugih primjera. Lakmus, koji u neutralnom okruženju ima ljubičasta boja pocrveni kada se doda hlorovodonična kiselina.

Kada su napetosti u nizu napetosti prije vodonika, oslobađaju se mjehurići plina - H. Međutim, ako se metal koji je u zateznoj seriji nakon H stavi u epruvetu s kiselinom, tada neće doći do reakcije, neće biti evolucija gasa. Dakle, bakar, srebro, živa, platina i zlato neće reagovati sa kiselinama.

U ovom članku smo ispitali najpoznatije kemijske kiseline, kao i njihova glavna svojstva i razlike.

Kisela formula Ime kiseline Naziv soli Odgovarajući oksid
HCl Solyanaya Hloridi ----
HI Hidrojodna Jodidi ----
HBr Bromovodična bromidi ----
HF Fluorescentno Fluoridi ----
HNO3 Nitrogen Nitrati N2O5
H2SO4 Sumporna Sulfati SO 3
H2SO3 Sumporna Sulfiti SO 2
H2S Hidrogen sulfid Sulfidi ----
H2CO3 Ugalj Karbonati CO2
H2SiO3 Silicijum Silikati SiO2
HNO2 Nitrogenous Nitriti N2O3
H3PO4 Fosfor Fosfati P2O5
H3PO3 Fosfor Fosfiti P2O3
H2CrO4 Chrome Hromati CrO3
H2Cr2O7 Dvohromni Bihromati CrO3
HMnO4 Mangan Permanganati Mn2O7
HClO4 Hlor Perhlorati Cl2O7

Kiseline se mogu dobiti u laboratoriji:

1) prilikom rastvaranja kiselih oksida u vodi:

N 2 O 5 + H 2 O → 2HNO 3;

CrO 3 + H 2 O → H 2 CrO 4 ;

2) kada soli interaguju sa jakim kiselinama:

Na 2 SiO 3 + 2HCl → H 2 SiO 3 ¯ + 2NaCl;

Pb(NO 3) 2 + 2HCl → PbCl 2 ¯ + 2HNO 3.

Kiseline interaguju sa metalima, bazama, bazičnim i amfoternim oksidima, amfoternim hidroksidima i solima:

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 (koncentrovano) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

H 2 SO 4 + Ca(OH) 2 → CaSO 4 ¯ + 2H 2 O;

2HBr + MgO → MgBr 2 + H 2 O;

6HI ​​+ Al 2 O 3 → 2AlBr 3 + 3H 2 O;

H 2 SO 4 + Zn(OH) 2 → ZnSO 4 + 2H 2 O;

AgNO 3 + HCl → AgCl¯ + HNO 3 .

Obično kiseline reaguju samo s onim metalima koji dolaze prije vodonika u nizu elektrokemijskih napona i oslobađa se slobodni vodik. Takve kiseline ne stupaju u interakciju sa nisko aktivnim metalima (naponi dolaze nakon vodonika u elektrohemijskom nizu). Kiseline koje su jaka oksidaciona sredstva (azotna, koncentrisana sumporna) reaguju sa svim metalima, izuzev plemenitih (zlato, platina), ali u ovom slučaju se ne oslobađa vodonik, već voda i oksid, jer na primjer, SO 2 ili NO 2.

Sol je proizvod zamjene vodika u kiselini metalom.

Sve soli se dijele na:

prosjek– NaCl, K 2 CO 3, KMnO 4, Ca 3 (PO 4) 2 itd.;

kiselo– NaHCO 3, KH 2 PO 4;

glavni – CuOHCl, Fe(OH) 2 NO 3.

Srednja sol je proizvod potpune zamjene vodikovih iona u molekulu kiseline atomima metala.

Kisele soli sadrže atome vodika koji mogu sudjelovati u reakcijama kemijske izmjene. U kiselim solima došlo je do nepotpune zamjene atoma vodika atomima metala.

Bazične soli su proizvod nepotpune zamjene hidrokso grupa polivalentnih metalnih baza kiselim ostacima. Bazične soli uvijek sadrže hidrokso grupu.

Srednje soli se dobijaju interakcijom:

1) kiseline i baze:

NaOH + HCl → NaCl + H 2 O;

2) kiselina i bazni oksid:



H 2 SO 4 + CaO → CaSO 4 ¯ + H 2 O;

3) kiseli oksid i razlozi:

SO 2 + 2KOH → K 2 SO 3 + H 2 O;

4) kiseli i bazični oksidi:

MgO + CO 2 → MgCO 3 ;

5) metal sa kiselinom:

Fe + 6HNO 3 (koncentrovano) → Fe(NO 3) 3 + 3NO 2 + 3H 2 O;

6) dve soli:

AgNO 3 + KCl → AgCl¯ + KNO 3 ;

7) soli i kiseline:

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ¯;

8) soli i alkalije:

CuSO 4 + 2CsOH → Cu(OH) 2 ¯ + Cs 2 SO 4.

Soli kiselina se dobijaju:

1) kod neutralizacije višebazičnih kiselina sa alkalijom u višku kiseline:

H 3 PO 4 + NaOH → NaH 2 PO 4 + H 2 O;

2) tokom interakcije srednjih soli sa kiselinama:

CaCO 3 + H 2 CO 3 → Ca(HCO 3) 2;

3) tokom hidrolize soli koje stvara slaba kiselina:

Na 2 S + H 2 O → NaHS + NaOH.

Glavne soli se dobijaju:

1) za vrijeme reakcije između polivalentne metalne baze i kiseline u višku baze:

Cu(OH) 2 + HCl → CuOHCl + H 2 O;

2) tokom interakcije srednjih soli sa alkalijama:

SuCl 2 + KOH → CuOHCl + KCl;

3) tokom hidrolize srednjih soli formiranih od slabih baza:

AlCl 3 +H 2 O → AlOHCl 2 + HCl.

Soli mogu komunicirati s kiselinama, alkalijama, drugim solima i vodom (reakcija hidrolize):

2H 3 PO 4 + 3Ca(NO 3) 2 → Ca 3 (PO 4) 2 ¯ + 6HNO 3 ;

FeCl 3 + 3NaOH → Fe(OH) 3 ¯ + 3NaCl;

Na 2 S + NiCl 2 → NiS¯ + 2NaCl.

U svakom slučaju, reakcija ionske izmjene se završava tek kada se formira slabo topljivo, plinovito ili slabo disocirajuće jedinjenje.

Osim toga, soli mogu stupiti u interakciju s metalima, pod uvjetom da je metal aktivniji (ima negativniji potencijal elektrode) od metala uključenog u sol:

Fe + CuSO 4 → FeSO 4 + Cu.

Soli se također karakteriziraju reakcijama raspadanja:

BaCO 3 → BaO + CO 2;

2KClO 3 → 2KCl + 3O 2.

Laboratorijski rad №1

DOBIJANJE I SVOJSTVA

BAZE, KISELINE I SOLI

Eksperiment 1. Priprema alkalija.

1.1. Interakcija metala sa vodom.

Ulijte destilovanu vodu u kristalizator ili porculansku šolju (oko 1/2 posude). Nabavite od svog učitelja komad metalnog natrijuma, prethodno osušen filter papirom. Ubacite komadić natrijuma u kristalizator s vodom. Kada se reakcija završi, dodajte nekoliko kapi fenolftaleina. Zabilježite uočene pojave i napravite jednačinu za reakciju. Imenujte dobiveni spoj i zapišite njegovu strukturnu formulu.



1.2. Interakcija metalnog oksida sa vodom.

U epruvetu (1/3 epruvete) sipajte destilovanu vodu i u nju stavite grudvicu CaO, dobro promešajte, dodajte 1-2 kapi fenolftaleina. Zabilježite uočene pojave, napišite jednačinu reakcije. Imenujte dobiveni spoj i navedite njegovu strukturnu formulu.

Odaberite kategoriju Knjige Matematika Fizika Kontrola pristupa i upravljanje Sigurnost od požara Dobavljači korisne opreme Merni instrumenti (instrumenti) Mjerenje vlažnosti - dobavljači u Ruskoj Federaciji. Merenje pritiska. Mjerenje troškova. Mjerači protoka. Merenje temperature Merenje nivoa. Mjerači nivoa. Tehnologije bez rovova Kanalizacijski sistemi. Dobavljači pumpi u Ruskoj Federaciji. Popravka pumpe. Pribor za cjevovode. Leptir ventili (leptir ventili). Kontrolni ventili. Kontrolni ventili. Mrežasti filteri, filteri za blato, magnetno-mehanički filteri. Kuglasti ventili. Cijevi i elementi cjevovoda. Zaptivke za navoje, prirubnice itd. Elektromotori, električni pogoni... Priručnik Abecede, nazivi, jedinice, šifre... Abecede, uklj. grčki i latinski. Simboli. Kodovi. Alfa, beta, gama, delta, epsilon... Ocene električnih mreža. Konverzija mjernih jedinica decibela. Dream. Pozadina. Mjerne jedinice za šta? Mjerne jedinice za pritisak i vakuum. Konverzija jedinica za pritisak i vakuum. Jedinice dužine. Konverzija jedinica dužine (linearne dimenzije, udaljenosti). Jedinice zapremine. Konverzija jedinica zapremine. Jedinice gustine. Konverzija jedinica gustine. Jedinice površine. Konverzija jedinica površine. Jedinice mjerenja tvrdoće. Konverzija jedinica tvrdoće. Jedinice temperature. Konverzija jedinica temperature u Kelvin / Celzius / Fahrenheit / Rankine / Delisle / Newton / Reamur jedinice za ugao (" ugaone dimenzije"). Konverzija mjernih jedinica ugaone brzine i ugaonog ubrzanja. Standardne greške mjerenja Razni plinovi kao radni mediji. Azot N2 (rashladno sredstvo R728) Amonijak (rashladno sredstvo R717). Antifriz. Vodonik H^2 (rashladno sredstvo R702) Vodena para. Vazduh (Atmosfera) Prirodni gas - prirodni gas. Biogas je kanalizacioni gas. Tečni gas. NGL. LNG. Propan-butan. Kiseonik O2 (rashladno sredstvo R732) Ulja i maziva Metan CH4 (rashladno sredstvo R50) Svojstva vode. Ugljen monoksid CO. Ugljen monoksid. Ugljični dioksid CO2. ( Rashladno sredstvo R744). Hlor Cl2 Hlorovodonik HCl, takođe poznat kao hlorovodonična kiselina. Rashladna sredstva (rashladna sredstva). Rashladno sredstvo (rashladno sredstvo) R11 - Fluorotriklorometan (CFCI3) Rashladno sredstvo (rashladno sredstvo) R12 - Difluorodihlorometan (CF2CCl2) Rashladno sredstvo (rashladno sredstvo) R125 - Pentafluoroetan (CF2HCF3). Rashladno sredstvo (rashladno sredstvo) R134a je 1,1,1,2-tetrafluoroetan (CF3CFH2). Rashladno sredstvo (rashladno sredstvo) R22 - Difluorohlorometan (CF2ClH) Rashladno sredstvo (rashladno sredstvo) R32 - Difluorometan (CH2F2). Rashladno sredstvo (Rashladno sredstvo) R407C - R-32 (23%) / R-125 (25%) / R-134a (52%) / Procenat težine. ostali Materijali - termička svojstva Abrazivi - zrnatost, finoća, oprema za mlevenje. Tlo, zemlja, pijesak i druge stijene. Pokazatelji rastresitosti, skupljanja i gustine tla i stijena. Skupljanje i labavljenje, opterećenja. Uglovi nagiba, oštrica. Visine izbočina, deponija. Drvo. Drvo. Drvo. Dnevnici. Ogrevno drvo... Keramika. Ljepila i ljepljive spojeve Led i snijeg (vodeni led) Metali Aluminij i legure aluminija Bakar, bronza i mesing Bronza Mesing Bakar (i klasifikacija legura bakra) Nikl i legure Korespondencija razreda legura Čelici i legure Referentne tabele težina valjanog metala i cijevi . +/-5% Težina cijevi. Težina metala. Mehanička svojstvačelika Minerali livenog gvožđa. Azbest. Prehrambeni proizvodi i prehrambene sirovine. Svojstva, itd. Veza na drugi dio projekta. Gume, plastike, elastomeri, polimeri. Detaljan opis Elastomeri PU, TPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/ P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE modifikovan), Čvrstoća materijala. Sopromat. Građevinski materijali. Fizička, mehanička i termička svojstva. Beton. Betonski malter. Rješenje. Građevinski elementi. Čelik i drugi. Tablice primjenjivosti materijala. Hemijska otpornost. Primjenjivost temperature. Otpornost na koroziju. Materijali za brtvljenje - zaptivači za fuge. PTFE (fluoroplastika-4) i derivati ​​materijala. FUM traka. Anaerobni lepkovi Nesušeći (neotvrdnjavajući) zaptivači. Silikonski zaptivači (organosilicij). Grafit, azbest, paronit i derivati ​​Paronit. Termički ekspandirani grafit (TEG, TMG), kompozicije. Svojstva. Aplikacija. Proizvodnja. Vodovodni lan Zaptivke gumeni elastomeri Izolacija i termoizolacionih materijala. (link do odjeljka projekta) Inženjerske tehnike i koncepti Zaštita od eksplozije. Zaštita od udara okruženje. Korozija. Klimatske verzije (tabele kompatibilnosti materijala) Klase pritiska, temperature, nepropusnosti Pad (gubitak) pritiska. — Inženjerski koncept. Zaštita od požara. Vatre. Teorija automatska kontrola(propis). TAU Matematički priručnik Aritmetika, Geometrijska progresija i sume nekih nizova brojeva. Geometrijske figure. Svojstva, formule: perimetri, površine, zapremine, dužine. Trokuti, pravougaonici itd. Stepeni u radijane. Ravne figure. Svojstva, stranice, uglovi, atributi, perimetri, jednakosti, sličnosti, tetivi, sektori, površine, itd. Površine nepravilnih figura, zapremine nepravilnih tijela. prosječna vrijednost signal. Formule i metode za izračunavanje površine. Charts. Izgradnja grafova. Čitanje grafikona. Integralni i diferencijalni račun. Tablični derivati ​​i integrali. Tabela derivata. Tabela integrala. Tabela antiderivata. Pronađite izvod. Pronađite integral. Diffuras. Kompleksni brojevi. Imaginarna jedinica. Linearna algebra. (Vektori, matrice) Matematika za najmlađe. Kindergarten- 7. razred. Matematička logika. Rješavanje jednačina. Kvadratne i bikvadratne jednadžbe. Formule. Metode. Rješenje diferencijalne jednadžbe Primjeri rješenja običnih diferencijalnih jednadžbi reda višeg od prvog. Primjeri rješenja najjednostavnijih = analitički rješivih običnih diferencijalnih jednadžbi prvog reda. Koordinatni sistemi. Pravougaoni kartezijanski, polarni, cilindrični i sferni. Dvodimenzionalni i trodimenzionalni. Sistemi brojeva. Brojevi i znamenke (stvarni, kompleksni, ....). Tabele sistema brojeva. Power series Taylor, Maclaurin (=McLaren) i periodični Fourierov niz. Širenje funkcija u serije. Tablice logaritama i osnovne formule Tablice brojčanih vrijednosti Bradisove tablice. Teorija i statistika vjerojatnosti Trigonometrijske funkcije, formule i grafovi. sin, cos, tg, ctg….Vrijednosti trigonometrijske funkcije. Formule za redukciju trigonometrijskih funkcija. Trigonometrijski identiteti. Numeričke metode Oprema - standardi, dimenzije Aparati, kućna oprema. Odvodnjavanje i drenažni sistemi. Kontejneri, rezervoari, rezervoari, rezervoari. Instrumentacija i automatizacija Instrumentacija i automatizacija. Merenje temperature. Transporteri, trakasti transporteri. Kontejneri (link) Pričvršćivači. Laboratorijska oprema. Pumpe i pumpne stanice Pumpe za tečnosti i pulpe. Inženjerski žargon. Rječnik. Screening. Filtracija. Odvajanje čestica kroz mrežice i sita. Približna čvrstoća užadi, kablova, užadi, užadi od raznih plastičnih masa. Proizvodi od gume. Spojevi i spojevi. Prečnici su konvencionalni, nazivni, DN, DN, NPS i NB. Metric and inča. SDR. Ključevi i utori. Standardi komunikacije. Signali u sistemima automatizacije (instrumentacijski i upravljački sistemi) Analogni ulazni i izlazni signali instrumenata, senzora, mjerača protoka i uređaja za automatizaciju. Interfejsi za povezivanje. Komunikacijski protokoli (komunikacije) Telefonske komunikacije. Pribor za cjevovode. Slavine, ventili, ventili... Konstrukcijske dužine. Prirubnice i navoji. Standardi. Priključne dimenzije. Threads. Oznake, veličine, namjene, vrste... (referentni link) Priključci ("higijenski", "aseptični") cjevovoda u prehrambenoj, mliječnoj i farmaceutskoj industriji. Cijevi, cjevovodi. Prečnici cevi i druge karakteristike. Izbor promjera cjevovoda. Brzine protoka. Troškovi. Snaga. Tablice odabira, Pad tlaka. Bakarne cijevi. Prečnici cevi i druge karakteristike. Cijevi od polivinil klorida (PVC). Prečnici cevi i druge karakteristike. Polietilenske cijevi. Prečnici cevi i druge karakteristike. Cijevi polietilen HDPE. Prečnici cevi i druge karakteristike. Čelične cijevi (uključujući nehrđajući čelik). Prečnici cevi i druge karakteristike. Čelična cijev. Cijev je nerđajuća. Cijevi iz od nerđajućeg čelika. Prečnici cevi i druge karakteristike. Cijev je nerđajuća. Cijevi iz ugljenični čelik. Prečnici cevi i druge karakteristike. Čelična cijev. Fitting. Prirubnice prema GOST, DIN (EN 1092-1) i ANSI (ASME). Prirubnički priključak. Prirubnički priključci. Prirubnički priključak. Elementi cjevovoda. Električne lampe Električni konektori i žice (kablovi) Elektromotori. Električni motori. Električni sklopni uređaji. (Link ka odeljku) Standardi za lični život inženjera Geografija za inženjere. Udaljenosti, rute, karte….. Inženjeri u svakodnevnom životu. Porodica, djeca, rekreacija, odjeća i stanovanje. Djeca inžinjera. Inženjeri u kancelarijama. Inženjeri i drugi ljudi. Socijalizacija inženjera. Zanimljivosti. Inženjeri odmaraju. Ovo nas je šokiralo. Inženjeri i hrana. Recepti, korisne stvari. Trikovi za restorane. međunarodne trgovine za inženjere. Naučimo da razmišljamo kao trgovac. Transport i putovanja. Licni automobili, bicikli... Ljudska fizika i hemija. Ekonomija za inženjere. Bormotologija finansijera - ljudskim jezikom. Tehnološki koncepti i crteži Pisanje, crtanje, kancelarijski papir i koverte. Standardne veličine fotografija. Ventilacija i klimatizacija. Vodovod i kanalizacija Opskrba toplom vodom (PTV). Opskrba pitkom vodom Otpadne vode. Snabdijevanje hladnom vodom Industrija galvanizacije Rashladni uređaji Parni vodovi/sistemi. Vodovi/sistemi kondenzata. Parne linije. Cjevovodi kondenzata. Prehrambena industrija Snabdevanje prirodnim gasom Zavarivanje metala Simboli i oznake opreme na crtežima i dijagramima. Konvencionalni grafički prikazi u projektima grijanja, ventilacije, klimatizacije i grijanja i hlađenja, prema ANSI/ASHRAE standardu 134-2005. Sterilizacija opreme i materijala Opskrba toplinom Elektronska industrija Snabdijevanje električnom energijom Fizički priručnik Abecede. Prihvaćene notacije. Osnovne fizičke konstante. Vlažnost vazduha je apsolutna, relativna i specifična. Vlažnost vazduha. Psihrometrijski stolovi. Ramzin dijagrami. Vremenski viskozitet, Reynoldsov broj (Re). Jedinice viskoziteta. Gasovi. Svojstva gasova. Individualne plinske konstante. Pritisak i vakuum Vakuum Dužina, udaljenost, linearna dimenzija Zvuk. Ultrazvuk. Koeficijenti apsorpcije zvuka (link na drugi odjeljak) Klima. Klimatski podaci. Prirodni podaci. SNiP 23.01.99. Građevinska klimatologija. (Statistika klimatskih podataka) SNIP 23.01.99 Tabela 3 - Prosječna mjesečna i godišnja temperatura zraka, °C. Bivši SSSR. SNIP 01/23/99 Tabela 1. Klimatski parametri hladnog perioda godine. RF. SNIP 01/23/99 Tabela 2. Klimatski parametri toplog perioda godine. Bivši SSSR. SNIP 01/23/99 Tabela 2. Klimatski parametri toplog perioda godine. RF. SNIP 23-01-99 Tabela 3. Prosječna mjesečna i godišnja temperatura zraka, °C. RF. SNiP 23.01.99. Tabela 5a* - Prosječni mjesečni i godišnji parcijalni pritisak vodene pare, hPa = 10^2 Pa. RF. SNiP 23.01.99. Tabela 1. Klimatski parametri hladne sezone. Bivši SSSR. Gustine. Utezi. Specifična gravitacija. Nasipna gustina. Površinski napon. Rastvorljivost. Rastvorljivost gasova i čvrstih materija. Svetlo i boja. Koeficijenti refleksije, apsorpcije i prelamanja Abeceda boja:) - Oznake (kodiranja) boja (boja). Svojstva kriogenih materijala i medija. Stolovi. Koeficijenti trenja za različite materijale. Toplotne količine uključujući ključanje, topljenje, plamen, itd…… Dodatne informacije vidi: Adijabatski koeficijenti (indikatori). Konvekcija i ukupna izmjena topline. Koeficijenti termičke linearne ekspanzije, termičke zapreminske ekspanzije. Temperature, ključanje, topljenje, ostalo... Konverzija jedinica temperature. Zapaljivost. Temperatura omekšavanja. Tačke ključanja Tačke topljenja Toplotna provodljivost. Koeficijenti toplotne provodljivosti. Termodinamika. Specifična toplota isparavanja (kondenzacije). Entalpija isparavanja. Specifična toplota sagorevanja (kalorična vrednost). Potreba za kiseonikom. Električne i magnetske veličine Električni dipolni momenti. Dielektrična konstanta. Električna konstanta. Dužina elektromagnetnih talasa(imenik drugog odjeljka) Tenzije magnetsko polje Koncepti i formule za elektricitet i magnetizam. Elektrostatika. Piezoelektrični moduli. Električna čvrstoća materijala Struja Električni otpor i provodljivost. Elektronski potencijali Hemijski priručnik "Hemijska abeceda (rečnik)" - nazivi, skraćenice, prefiksi, oznake supstanci i jedinjenja. Vodene otopine i smjese za obradu metala. Vodeni rastvori za nanošenje i uklanjanje metalne prevlake Vodeni rastvori za čišćenje od naslaga ugljika (asfaltno-smolne naslage, naslage ugljenika iz motora sa unutrašnjim sagorevanjem...) Vodeni rastvori za pasivizaciju. Vodeni rastvori za jetkanje - uklanjanje oksida sa površine Vodeni rastvori za fosfatiranje Vodeni rastvori i smeše za hemijsku oksidaciju i bojenje metala. Vodeni rastvori i smeše za hemijsko poliranje Odmašćivanje vodenih rastvora i organskih rastvarača pH vrednost. pH tablice. Sagorevanje i eksplozije. Oksidacija i redukcija. Klase, kategorije, oznake opasnosti (toksičnosti). hemijske supstance Periodni sistem hemijski elementi D. I. Mendeljejeva. Tabela Mendeljejeva. Gustina organski rastvarači(g/cm3)u zavisnosti od temperature. 0-100 °C. Svojstva rješenja. Konstante disocijacije, kiselost, bazičnost. Rastvorljivost. Smjese. Toplinske konstante supstanci. Entalpije. Entropija. Gibbs energije... (link ka hemijskom imeniku projekta) Elektrotehnika Regulatori Sistemi garantovanog i neprekidnog napajanja. Dispečerski i kontrolni sistemi Strukturirani kablovski sistemi Data centri

Povratak

×
Pridružite se zajednici “koon.ru”!
U kontaktu sa:
Već sam pretplaćen na zajednicu “koon.ru”